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Abstract

People living in endemic areas often habour several malaria infections at once. High-resolution genotyping can distinguish
between infections by detecting the presence of different alleles at a polymorphic locus. However the number of infections
may not be accurately counted since parasites from multiple infections may carry the same allele. We use simulation to
determine the circumstances under which the number of observed genotypes are likely to be substantially less than the
number of infections present and investigate the performance of two methods for estimating the numbers of infections
from high-resolution genotyping data. The simulations suggest that the problem is not substantial in most datasets: the
disparity between the mean numbers of infections and of observed genotypes was small when there was 20 or more alleles,
20 or more blood samples, a mean number of infections of 6 or less and where the frequency of the most common allele
was no greater than 20%. The issue of multiple infections carrying the same allele is unlikely to be a major component of the
errors in PCR-based genotyping. Simulations also showed that, with heterogeneity in allele frequencies, the observed
frequencies are not a good approximation of the true allele frequencies. The first method that we proposed to estimate the
numbers of infections assumes that they are a good approximation and hence did poorly in the presence of heterogeneity.
In contrast, the second method by Li et al estimates both the numbers of infections and the true allele frequencies
simultaneously and produced accurate estimates of the mean number of infections.
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Introduction

People who live in malaria-endemic areas may have several

concurrent infections. Accurately discriminating between these

both yields the multiplicity of infection (MOI), an epidemiological

measure of the number of infections per individual, and can

improve the understanding of many areas of malariology, such as

the dynamics of infections, pathogenesis, effect of transmission

intensity, drug efficacy and parasite genetics.

Plasmodium populations are highly diverse. Polymerase chain

reaction (PCR)-based genotyping using polymorphic loci has been

established to discriminate parasite clones within an individual.

Whilst PCR can detect the alleles of parasites present in a blood

sample, it does not always give an accurate count of the infections

present since parasites from multiple infections may bear the same

allele or alleles close in size. High-resolution techniques have

increased the discriminatory power by more precisely determining

the size or sequence of the alleles. However since the true number

of infections is unknown, the accuracy of high-resolution

techniques cannot be determined. Two questions arise: (i) Is there

substantial underestimation of the multiplicity in the blood

samples due to multiple indistinguishable genotypes? (ii) What is

the distribution of the number of infections in the population from

which the sample was drawn?

There have been few attempts to address these issues. Carter

and Mcgregor [1] derived a formula to estimate the mean number

of infections using data on a single locus which has two alleles. Hill

and Babiker [2] extended the equations to incorporate multiple

alleles and loci. However with the large number of alleles

distinguished using high-resolution genotyping, this method

becomes cumbersome to implement. Li and colleagues developed

models which have the principal aim of estimating either

haplotype frequencies [3] or haplotype-trait associations [4], but

can also allow the number of infections to be estimated.

There is a lack of information on the circumstances under

which the number of infections and number of observed genotypes

differ substantially. Factors such as the number of alleles, the

heterogeneity of allele frequencies, number of blood samples and

mean number of infections are likely to play a role.

In this paper, we (a) present simulations to evaluate the impact

of different factors on the disparity between the number of
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observed genotypes and the number of infections present and (b)

evaluate two methods of estimating the numbers of infections.

Methods

Due to the large number of alleles distinguished by high-

resolution genotyping, we focus on one marker gene. Adding

information from a second marker is not justified since in practice

it would not greatly enhance the ability to distinguish between

infections and would increase complexity.

Simulations to determine when the numbers of
infections and observed genotypes differ substantially

For each individual simulated blood sample, we randomly

generated the number of infections and then randomly selected an

allele for each infection. We then determined the numbers of

observed genotypes. The simulations only refer to the time that a

blood sample is taken, giving a cross-sectional snapshot of the

infections present in an individual. We do not simulate the

processes of acquiring and clearing infections.

We defined a baseline scenario with 100 blood samples, the

number of infections per blood sample following a zero-truncated

Poisson distribution with a mean of 5.03 infections corresponding

to m of 5, and 20 alleles of equal frequency. We investigated the

effect of the different factors by varying them one by one (Table 1).

A simulated sample of n blood samples will have stochasticity due

to the random generation of both the numbers of infections per

blood samples from a distribution and the alleles assigned to each

infection. We captured the variability in the mean number of

observed genotypes by simulating 101 sets for each scenario, each

set with n blood samples. The minimum and maximum mean

from the 101 sets are presented.

Methods to estimate the numbers of infections from
high-resolution genotyping data

We present two potential methods, one proposed here and one

previously described. They differ in their approach but, in

practice, the most important difference between them is that the

first estimates the numbers of infections assuming that the

observed allele frequencies are a good approximation of the true

allele frequencies, whereas the second is able to estimate numbers

of infections and true allele frequencies simultaneously. Thus we

investigate whether the added complexity of the second method is

necessary to provide accurate estimates.

Method 1: Estimating numbers of infections only. The

first model estimates the parameters of the distribution of the

numbers of infections. The observed allele frequencies are used to

derive the conditional probabilities of observing j genotypes given

that there are k infections present in a blood sample. These

conditional probabilities are then combined in a Bayesian model

with the frequencies of observed genotypes and an assumed

distribution for the numbers of infections. The details are provided

below. This model does not estimate the true allele frequencies but

assumes that the allele frequencies are either known from another

source or that the observed allele frequencies are a good

approximation of the true allele frequencies.

Details of Method 1. We are interested in the unknown

frequencies of k infections in the selected blood samples, ak, and in

the population from which they were drawn, a’k for k~1,::::M.

We choose the integer M to be greater than the maximum

number of observed genotypes with the intention that M is larger

than the unknown maximum number of infections per blood

sample.

The observed frequencies of blood samples with j genotypes, bj ,

follow a multinomial distribution (b1,:::bM )*Mn(Nc,p1,::::pM )
where Nc is the number of blood samples in a population survey

and pj is the probability of a blood sample having j observed

genotypes.

We derive pj using the conditional probabilities of observing j
genotypes given that k infections are present, pjDk

pj~
X

k

pjDk ak

We obtain pjDk from the observed allele frequencies using

simulation. This avoids the need to determine the equations,

which become complicated for large k. For each k, we randomly

select 100,000 samples of k alleles and count the frequencies of the

numbers of distinct genotypes. The true allele frequencies are

unknown, we assume that the observed allele frequencies are a

reasonable approximation and that the alleles are randomly

distributed.

We allow for sampling variation in the numbers of infections.

We specify that the frequencies of infections in the sample of blood

samples, ak, arise from a multinomial distribution

(a1,:::aM )*Mn(Nc,a’1,::::a’M ) where a’k are the population

frequencies we wish to estimate. We assume that a’k are specified

by the probability function of a chosen distribution and estimate

the values of the parameters describing this distribution to obtain

our estimates.

The model was fitted using the Metropolis-Hastings algorithm

in WinBUGS [5]. We used R to simulate the conditional

probabilities, pass the inputs to WinBUGS via R2Bugs [6] and

return the results.

Method 2: Estimating both numbers of infections and

allele frequencies simultaneously. The second method

Table 1. Factors investigated by the simulations.

parameter values*

number of alleles{ 2, 3, 4, 5, 7, 15, 20, 30, 50, 100

frequency of most common allele{ 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

mean number of infections 1.13, 1.27, 1.58, 2.31, 3.16, 4.07, 5.03, 6.01, 7.01, 8.00, 9.00, 10.00, 11.00

distribution of numbers of blood samples zero-truncated Poisson, zero-truncated negative binomial

number of blood samples 5, 10, 15, 20, 30, 50, 100

*The baseline scenario is indicated by bold font.
{All alleles have equal frequency.
{The remaining alleles have equal frequency.
doi:10.1371/journal.pone.0042496.t001
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estimates both the distribution of the numbers of infections and the

true allele frequencies simultaneously using the Expectation-

Maximization algorithm [7]. The model is described by Li et al

[3] and is implemented in R [6] using the package malaria.em.

This model was originally aimed at estimating multi-loci haplotype

frequencies, a more complicated problem, but is readily used here

with data from only one marker gene. By iteratively alternating

between performing an expectation (E) step, which computes the

expectation of the log-likelihood evaluated using the current

estimate for the parameters, and a maximization (M) step, which

computes parameters maximizing the expected log-likelihood

found on the E step, the EM approach finds the maximum

likelihood estimates of the parameters. The numbers of infections

are assumed to follow a zero-truncated Poisson distribution.

To evaluate how well these methods perform in different

circumstances, we applied them to the simulations described

above. We also tested how well they performed when the

assumption of a Poisson distribution for the numbers of infections

is incorrect by applying them simulated numbers of observed

genotypes generated from negative binomial distributions with

different variances.

Example using genotyping data
We apply both methods to data from a study of malaria

infections in children in Maprik District, Papua New Guinea [8–

11]. Plasmodium falciparum and P. vivax are both present in this area.

Children aged one to three years at enrolment were followed up

over 16 months, but only blood samples from the baseline survey

were included in this analysis. There were 190 children enrolled in

March 2006, but only samples positive by microscopy or LDR, a

molecular method for Plasmodium species detection [12], were

genotyped using high-resolution capillary electrophoresis-based

PCR. The P falciparum infections were genotyped using one marker

(msp2) and the P vivax infections with two markers (msp1F3 and

MS16).

Ethics statement
The cohort study was approved by institutional review boards of

the PNG Medical Research Advisory Committee (approvals 05.19

and 09.24), University Hospitals Case Medical Center (Cleveland,

Ohio USA), and the Ethikkommission beider Basel (approval 03/

06). Informed written consent was provided by the parents or legal

guardians of each child.

Results

Simulations to determine when the numbers of
infections and observed numbers of genotypes differ

There was variation in the simulated mean numbers of observed

genotypes due to random variation in numbers of infections and in

the alleles selected (Figure 1, shaded polygons). The disparity

between the number of infections and number of observed

genotypes was greater with increasing mean numbers of infections

(Figure 1a), decreasing numbers of alleles (Figure 1b) and

increasing heterogeneity in allele frequencies (Figure 1c). Small

sample sizes lead to increased variability but there was no

substantial difference between the true number of infections and

the numbers of genotypes observed (Figure 1d). The disparity was

small where there were 20 or more alleles, 20 or more blood

samples, a mean MOI of 6 or less and where the frequency of the

most common allele was no greater than 20%.

Evaluation of methods to estimate the numbers of
infections

Both methods were applied to the simulated data above to

evaluate how well they could reproduce the mean number of

infections. The methods were applied to each of the 101 sets of n
simulated blood samples for each scenario and the distributions of

estimated means are shown as boxplots.

The estimates using Method 1 (Figure 2, left hand column) were

generally good where the observed allele frequencies would be a

reasonable approximation of the true allele frequencies. Where

there was heterogeneity in allele frequencies, however, they were

poor (Figure 2e). The observed allele frequencies are a poor

approximation of the true frequencies in the presence of

heterogeneity in the allele frequencies (Figure 3). This is because

the chance of multiple infections with the same allele occurring in

the same blood sample is greater the higher the allele frequency. If

the true allele frequencies were known, then Method 1 performed

well (results not shown).

The second method by Li et al (Figure 2, right hand column)

provided unbiased estimates even if there was heterogeneity in

allele frequencies. The variability of the estimates was large under

circumstances where there was very little information such as for a

very large degree of heterogeneity in allele frequencies, small

numbers of blood samples or very few alleles. Coverage of the 95%

confidence intervals was reasonably good for both methods (not

shown), ranging from 91% to 98%, when restricted to circum-

stances when the bias was low. However coverage fell dramatically

when there was substantial heterogeneity in allele frequencies with

Method 1.

The mean number of infections was reasonably accurately

estimated even when the assumption of a Poisson distribution for

the numbers of infections was incorrect, unless the extra-Poisson

variation was large (Figure 4). However, although we tested this

assumption using the negative binomial distribution, we did not

exhaustively test all possible distributions.

Application to data
Of the samples from 190 children aged 1 to 3 years in Maprik

district, Papua New Guinea, 76 (40%) were positive by microscopy

or LDR for P falciparum and 80 (42%) for P vivax. The number of

alleles observed ranged from 31 to 67 for the 3 markers (Table 2).

There was little difference between the mean number of observed

genotypes and estimated mean number of infections in this dataset

suggesting that there were few infections obscured by shared

alleles. Both methods estimated slightly a different mean MOI for

P vivax infections from the two markers. This is likely to be due to

the slightly lower detectibility of MS16 compared to msp1F3 [10].

Discussion

Our simulations indicate that the problem of indistinguishable

alleles is unlikely to lead to substantial underestimation of the

number of infections by using the number of observed genotypes.

The size of the disparity was small for 20 or more alleles, a sample

size of 20 or greater, a mean MOI of 6 or less and where the

frequency of the most common allele was no greater than 20%.

We did not, however, simulate combinations of these variables.

Since none of the baseline values we adopted (100 blood samples,

20 alleles of equal frequency, a zero-truncated Poisson distribution

with mean 5.03 infections) strongly impacted on the number of

observed genotypes, it seems unlikely that a more generous value

in one variable could compensate for poor value in another, such

as a marker with poor discriminatory ability in combination with a

larger number of blood samples. These approximate cut-offs could

Estimating the Numbers of Malaria Infections
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serve as criteria for selecting genetic markers for discriminating

between infections in an individual. They also support guidelines

for the related problem of distinguishing recrudescences from new

infections in clinical trials of drug efficacy [13] and justify the use

of statistical methods which assume that the observed MOI is

reasonably accurate [14].

Accurate estimates of the mean number of infections could be

obtained. Both methods investigated in this study differ from

previous studies [1,2] in that, facilitated by the large number of

alleles detected by high-resolution genotyping, they concentrate on

only one marker gene. Assumptions about the allele frequencies

were found to be important. The method by Li et al, which uses the

EM algorithm to estimate both the numbers of infections and the

true allele frequencies simultaneously, provided unbiased esti-

mates. In contrast, method 1 which assumes that the observed

allele frequencies are similar to the true allele frequencies had

biased estimates in some cases. This method would only be

appropriate where the observed allele frequencies are similar to

the true frequecies (such as for homogenous allele frequencies or

low MOI) or if they are known from another source. The observed

allele frequencies suffer from the same problem that multiple

infections bearing the same allele are not counted. This is also true

of prevalence, and the distinction between the prevalence and

frequency of alleles has been previously illustrated [15].

Neither method takes detectability into account. The blood

samples do not necessarily contain parasites from all the infections

present if there are low densities in the blood stream. This could be

due to a low parasite biomass, sequestration or synchronisation.

When the parasites are present at low levels in the sample, they

may not be detected due to methodological constraints with PCR

[16,17]. In multi-clonal infections, minority variants might be

missed due to being outcompeted in the competition for primers or

other consituents of the reaction mix [10]. There is variation in

assay sensitivity between different laboratories [18] and between

different markers. Reported estimates of the probability of

dectecting a clone lie in the range of 0.4 to 0.9 for P. falciparum

and P. vivax [10,11,19,20]. The model estimates refer only to

infections which would have been counted if they had been

distinguished in the genotyping.

We assume that the alleles are distributed at random. In the case

of markers associated with drug resistance, the distribution of

alleles is unlikely to be random [21] although these are unlikely to

be useful for estimating the MOI. The assumption would also be

untrue if there are multiple blood samples from the same hosts,

especially if they are taken within a short time period. Correlation

between alleles could also arise due to sibling infections which

could occur if gametocytes from multiple infections are taken up in

the same blood meal and, following meiosis, multiple related

sporozoites are injected into a person in one bite. Recent work has

suggested that there may be discrete spatial clusters of P falciparum

parasite types [22].

Figure 1. Impact of factors on the simulated mean number of genotypes. a: Mean number of infections b: number of alleles c: frequency of
most common allele d: number of blood samples. Solid line: mean number of infections, shaded polygon: minimum and maximum of mean observed
number of genotypes for the 101 simulated sets of n blood samples. Baseline case: 100 children, 20 alleles of equal frequency, the number of
infections per blood sample follows a zero-truncated Poisson distribution with a mean of 5.03 (Table 1). Each panel shows the effect of varying one
factor from the baseline case.
doi:10.1371/journal.pone.0042496.g001
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This problem is distinct from the adjustment of antimalarial

drug efficacy trial results using PCR data. In this case, interest

centres on whether a single infection detected following treatment

signifies a new infection or a treament failure. It has been

considered elsewhere [17,23–28].

Method 1 does not estimate the number of infections in an

individual blood sample, but rather only the distributions which

best approximate the population frequencies. Method 2, by Li et al,

can additionally give the posterior probabilities for different

configurations of marker genes and numbers of infections

corresponding to the observed genotypes for each individual.

Extensions could be made by including the option of a negative

binomial distribution for the number of infections in a host, and by

considering non-random selection of alleles. For the method we

had proposed (method 1), in theory it would also be possible to

estimate the allele frequencies in addition to the numbers of

infections. However, in practice, simulating the matrix of

conditional probabilities, pjDk, at each iteration would be very

time-consuming.

In conclusion, we have shown that with high-resolution

genotyping the problem of underestimating numbers of infections

due to multiple infections bearing the same allele is unlikely to be

substantial. Accurate estimates of the mean number of infections

can be obtained with the method by Li et al which can be

implemented in R using the package malaria.em. In most surveys

of malaria infection, far more than 20 blood samples will be typed

and the mean numbers of observed genotypes as detected by

typing size polymorphic markers have been reported to be lower

than 6 even in areas of intense transmission. Most markers

established for genotyping have exhibited more than 20 alleles

with frequencies usually below 20%. Under such circumstances,

the difference between the mean number of infections and

observed genotypes is likely to be small.

Figure 2. Model performance: estimated numbers of infections from the simulated sets of blood samples. LH column: Method 1, RH
column: Method 2. Solid line: true mean number of infections, shaded polygon: minimum and maximum of mean observed number of genotypes for
the 101 sets (samples of n blood samples) for each scenario. Boxplots: Estimates of the mean number of infections for each of the 101 sets. Baseline
scenario: 100 children, 20 alleles of equal frequency, the number of infections per blood sample follows a zero-truncated Poisson distribution and a
mean of 5.03 (Table 1).
doi:10.1371/journal.pone.0042496.g002
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Figure 3. Actual and observed frequency of the most common allele. Solid line: line of equality, shaded polygon: the minimum and
maximum observed frequencies of the most common allele for the 101 sets (each of 100 blood samples) for each scenario. There were 20 alleles, the
frequency of the most dominant allele is shown on the X-axis, the remaining 19 had equal frequency. The number of infections per blood sample
followed a zero-truncated Poisson distribution with a mean of 5.03.
doi:10.1371/journal.pone.0042496.g003

Figure 4. Model performance when the assumed distribution for the numbers of infections is incorrect. The observed numbers of
genotypes were simulated using numbers of infections following negative binomial distributions, however the models assume that the numbers of
infections follow a Poisson distribution. The parameter m was set to 3. A small value of r indicates larger variation and skew compared to a Poisson
distribution whereas a value of 100 is similar to a Poisson. LH: Method 1 RH: Method 2. Solid line: true mean number of infections, shaded polygon:
minimum and maximum of mean observed number of genotypes for the 101 sets (each set of n blood samples) for each scenario. Boxplots: Estimates
of the mean number of infections for each of the 101 sets. We simulated blood samples from 100 children and 20 alleles of equal frequency (Table 1).
doi:10.1371/journal.pone.0042496.g004
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parameter P. falciparum msp2 P. vivax MS16 P. vivax msp1F3

number of blood samples included 76 80 79

number of alleles detected 33 67 31

frequency of most common allele 15% 5% 24%

mean number of observed genotypes 1.71 (1.47, 1.95) 2.19 (1.89, 2.49) 2.21 (1.90, 2.53)

maximum number of observed genotypes 7 6 6

heterozygosity{ He 0.93 0.98 0.87

Estimated mean number of infections:

method 1 1.87 (1.57, 2.22) 2.26 (1.89, 2.80) 2.58 (2.07, 3.28)

method 2 1.80 (1.41, 2.23) 2.26 (1.70, 2.89) 2.54 (2.23, 2.86)

{The expected heterozygosity He is the probability that 2 clones taken at random from the population carry different alleles.
doi:10.1371/journal.pone.0042496.t002
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