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Abstract

Human interleukin-3 (hIL-3) is a polypeptide growth factor that regulates the proliferation, differentiation, survival and
function of hematopoietic progenitors and many mature blood cell lineages. Although recombinant hIL-3 is a widely
used laboratory reagent in hematology, standard methods for its preparation, including those employed by
commercial suppliers, remain arduous owing to a reliance on refolding insoluble protein expressed in E. coli. In
addition, wild-type hIL-3 is a poor substrate for radio-iodination, which has been a long-standing hindrance to its use
in receptor binding assays. To overcome these problems, we developed a method for expression of hIL-3 in E. coli
as a soluble protein, with typical yields of >3mg of purified hIL-3 per litre of shaking microbial culture. Additionally, we
introduced a non-native tyrosine residue into our hIL-3 analog, which allowed radio-iodination to high specific
activities for receptor binding studies whilst not compromising bioactivity. The method presented herein provides a
cost-effective and convenient route to milligram quantities of a hIL-3 analog with wild-type bioactivity that, unlike wild-
type hIL‑3, can be efficiently radio-iodinated for receptor binding studies.

Citation: Hercus TR, Barry EF, Dottore M, McClure BJ, Webb AI, et al. (2013) High Yield Production of a Soluble Human Interleukin-3 Variant from E. coli
with Wild-Type Bioactivity and Improved Radiolabeling Properties. PLoS ONE 8(8): e74376. doi:10.1371/journal.pone.0074376

Editor: Mark J van Raaij, Centro Nacional de Biotecnologia - CSIC, Spain

Received June 3, 2013; Accepted July 31, 2013; Published August 26, 2013

Copyright: © 2013 Hercus et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by National Health and Medical Research Council of Australia (NHMRC) grants (1033368 and 565217); an Australian
Research Council fellowship (FT100100100) to JMM; with additional support from the Victorian State Government Operational Infrastructure Support and
NHMRC IRIISS grant (361646). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: Tim.Hercus@health.sa.gov.au; jamesm@wehi.edu.au (JMM)

Introduction

Human interleukin-3 (hIL-3) is a four-helix bundle, short
chain cytokine that is widely expressed in vivo, principally by
hematopoietic cells, such as activated T-lymphocytes, mast
cells and basophils [1]. This cytokine serves an important role
in the regulation of proliferation, differentiation, survival and
activation of a range of hematopoietic cell types, including
progenitor cells, dendritic cells, basophils and mast cells [2–4].
In particular, IL‑3 is known to stimulate the production and
function of basophils and mast cells in the context of allergic
inflammation in vivo [5,6], and is commonly used as a stimulus
to culture these cell types in vitro (for example, 7–9). Owing to
its importance in immune cell stimulation and implication in the
pathogenesis of acute myeloid leukemia and chronic myeloid
leukemia [10–13], IL-3 signaling has emerged as a potential
therapeutic target for the treatment of allergic diseases,
including asthma, and hematopoietic malignancies.

The effects of IL-3 on target cells are initiated by IL-3 binding
to a transmembrane receptor system composed of an IL-3-
specific α-subunit (IL-3Rα) and a common β-subunit (βc)
shared with the related cytokines, IL-5 and GM-CSF [14–16].
Engagement of these cell surface receptors by IL-3 leads to
transmission of a signal across the cell membrane, via a poorly
understood process, activation of intracellular signaling
networks and subsequent cellular responses. A bottleneck in
our efforts to characterize hIL-3 engagement of its receptor in
vitro has been a paucity of efficient methods for hIL-3
production from E. coli. Wild-type recombinant hIL-3 expressed
in E. coli exhibits limited solubility [17] and has been typically
produced by oxidative refolding of material expressed in
inclusion bodies, even by commercial suppliers. Here, we
describe an economical, rapid and simple method to express
and purify milligram quantities of soluble hIL-3 from E. coli. In
addition to affording high yields (typically >3mg/L of shaking
microbial culture), the resultant recombinant hIL-3 bears a non-
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native tyrosine at the N-terminus to allow efficient 125I-
radiolabelling for receptor binding studies. Despite truncation of
the native sequence to enhance solubility, as described in the
pioneering work of Olins et al. [17], and the introduction of the
non-native N-terminal tyrosine, the hIL-3 expressed and
purified from the soluble fraction of E. coli lysates using our
method and commercially-sourced recombinant hIL-3
preparations were equipotent growth stimuli in TF-1 cell
proliferation studies. Therefore, the method described herein
provides a robust and convenient strategy to produce milligram
quantities of fully bioactive soluble hIL‑3 for a broad range of
laboratory applications, including hematopoietic cell culture and
molecular characterization of hIL-3 receptor binding.

Materials and Methods

Expression construct
A cDNA encoding hIL-3 residues 13-125, including the W13Y

mutation, was amplified from an IMAGE clone template
(IMAGE: 6971773; NCBI accession: BC066272) with Pfu
polymerase using the primers: 5’ CGC GGa TCc tAT gtt aac
tgc tct aac atg atc gat g; 3’ ATAAGAATGCGGCCG cTA ctg ttg
agc ctg cgc att ctc. The PCR product was digested with BamHI
and NotI restriction endonucleases before ligation into the
corresponding restriction sites in the vector, pETNusH HTb
[18], a derivative of pETM30 bearing a kanamycin-resistance
marker. The insert was verified by Big Dye Terminator
sequencing.

Protein expression and purification from E. coli
E. coli BL21 CodonPlus (DE3)-RIPL cells transformed with

the expression construct described above were cultured at
37°C in 2 L flasks containing 0.6 L of TYH medium (20 g
tryptone, 10 g yeast extract, 5 g NaCl and 1 g MgSO4 per litre
with 46 mM HEPES pH 7.4) and supplemented with 50 µg/ml
kanamycin. Once the optical density at 600 nm reached
0.6-0.8, cultures were adjusted to 1.5 mM isopropyl β-D-1-
thiogalactopyranoside (IPTG) and incubated at ~23°C with
shaking for ~16 hours. We found that induction for ~16 hours at
18-25°C gave comparable yields, although higher expression
temperatures were not tested. Cells were harvested by
centrifugation and lysed by sonication in NL buffer (0.2 M NaCl,
50 mM Na phosphate pH 8.0, 10% v/v glycerol, 0.05% v/v Na
azide) freshly supplemented with 20 mM imidazole, 0.05% v/v
Tween 20 and 1 mM phenylmethylsulfonyl fluoride (PMSF).
The lysate was clarified by centrifugation at 26,800xg for 30
minutes followed by 0.45 µm filtration of the supernatant. Crude
lysate was bound at 4°C and 2 ml/min to a 10 ml column of Ni-
NTA Agarose (Qiagen) equilibrated in NL buffer that had been
packed in an XK-26 column holder (GE Healthcare). The Ni-
NTA agarose was washed in 200 ml NL buffer containing 20
mM imidazole at 5 ml/min and the bound NusA-His6-hIL-3
(13-125; W13Y) fusion protein eluted in 100 ml NL buffer
containing 250 mM imidazole at 5 ml/min and collected in 10 ml
fractions. Fractions containing purified NusA-His6-hIL-3
(13-125; W13Y) fusion protein were pooled and concentrated
to a final volume of < 20 ml using Vivaspin 20, 30,000
molecular weight cut-off devices (Sartorius). The concentrated

fusion protein was dialysed against 50mM Tris-HCl pH 7.4,
adjusted to 1 mM dithiothreitol (DTT), 0.5 mM EDTA and mixed
with purified TEV protease, produced in-house, at 23°C for ~16
hours. The amount of TEV protease used was empirically
determined for each batch of the NusA-His6-hIL-3 (13-125;
W13Y) fusion protein to achieve complete cleavage. Typically,
complete cleavage required up to 0.1 mg TEV protease per 10
mg NusA-His6-hIL-3 (13-125; W13Y).

The TEV protease-digested NusA-His6-hIL-3 (13-125; W13Y)
fusion protein was fractionated by size exclusion
chromatography (SEC) using a Superdex 200 column (26 mm
x 600 mm, GE Healthcare) fitted with a 10 ml Super Loop and
operated at 4°C with a flow rate of 2 ml/min. SEC was
performed using a running buffer composed of 150 mM NaCl,
50 mM Na phosphate pH 7.0. SEC fractions containing hIL-3
were established by SDS-PAGE analysis with Coomassie Blue
staining and then pooled, with a portion sterilized using Spin-X
filters (Corning).

In some cases, SEC purified hIL-3 (13-125; W13Y) was
further purified by reversed-phase chromatography. Glacial
acetic acid was added to the SEC purified hIL-3 (13-125;
W13Y) to a final concentration of 1% (v/v) while trifluoroacetic
acid was added to a final concentration of 0.1% (v/v). The
sample was applied to an Aquapore RP300 reversed-phase
column (4.6 mm x 100 mm) in buffer A (0.1% v/v trifluoroacetic
acid in water) via a 2 ml injection loop fitted to a Breeze 2 semi-
preparative HPLC system (Waters). Bound proteins were
eluted over 60 minutes using a linear gradient from 100%
buffer A to 100% buffer B (0.085% v/v trifluoroacetic acid in
acetonitrile) at 1 ml/min with the collection of 1 ml fractions into
tubes containing 20 µl 2M Tris. Fractions containing purified
hIL-3 (13-125; W13Y) were pooled, lyophilized, resuspended in
PBS and sterilized using Spin-X filters.

Purified hIL-3 (13-125; W13Y) was quantitated by analytical
SEC using a Superdex 200PC column (3.2 mm x 300 mm, GE
Healthcare) and a 50 µl loop operated at 25°C and 40 µl/min
with a running buffer composed of 150 mM NaCl, 50 mM Na
phosphate pH 7.0. The area under the hIL-3 peak was
integrated by using the calculated extinction coefficient of 0.644
M-1 cm-1. The concentrations of commercially-sourced hIL-3
used to compare the bioactivity of hIL-3 (13-125; W13Y) was
specified by the manufacturers.

Mass spectrometry analysis
hIL-3 (13-125; W13Y) was digested with trypsin using the

FASP protocol [19] and eluted peptides were injected and
separated by nano flow reversed-phase liquid chromatography
on a nano LC system (1200 series, Agilent) using a
nanoAcquity C18 150 mm × 0.15 mm I.D. column (Waters) with
a linear 45 minute gradient from 5 to 100% buffer B set at a
flow rate of 1.2 µl/min (Buffer A: 0.1% Formic acid in Milli-Q
water; Buffer B: 0.1% Formic acid, 80% acetonitrile
(Mallinckrodt, Baker) 20% Milli-Q water). The nano HPLC was
coupled on-line to a Q-Exactive mass spectrometer equipped
with a nano-electrospray ion source (Thermo, Fisher Scientific)
for automated MS/MS. The Q-Exactive was run in a data-
dependent acquisition mode with the full scan resolution set at
30,000 and the top-ten multiply charged species selected for
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fragmentation using the high energy collision disassociation
(HCD) (single charged species were ignored). Fragment ions
were analysed with the resolution set at 17,500 and the ion
threshold set to 1e5 intensity. The activation time was set to 30
ms and the normalized collision energy set to 24. Raw files
consisting of full-scan MS and high resolution MS/MS spectra
were converted to the MGF data format with Proteome
Discoverer 1.4 and searched against UniProt database
(2013/02) including the hIL-3 analog sequence, limiting the
search to human taxonomy using Mascot v 2.4. Mascot
parameters for each search included Trypsin/no P enzyme with
three missed cleavages, a fixed modification in the form of
carbamidomethyl at Cys residues and variable modifications of
Acetyl at protein N-Terminal and oxidation at Met residues.
Spectra were searched with a mass tolerance of 20 ppm in MS
mode and 40 mmu in MS/MS mode.

IL-3 Bioactivity Assays
The proliferative activity of hIL-3 (13-125; W13Y) was

assayed using the GM-CSF, IL-3-dependent human
erythroleukaemia cell line, TF-1 [20] according to established
protocols (for example, 21). Cells (5 x 104 per well) were
incubated with serially-diluted hIL-3 in 96-well plates for 40
hours before being pulsed with 0.25 µCi per well of [6-3H]
thymidine (PerkinElmer) for 6 hours. Cells were harvested onto
glass fibre filters and washed extensively before scintillation
counting in liquid scintillation fluid on a Top Count NXT
(PerkinElmer).

IL-3 Binding Assays
Purified hIL-3 (13-125; W13Y) was radio-iodinated using

Pierce Pre-Coated Iodination tubes (Thermo Scientific)
according to established protocols [22,23]. COS cells were

transfected by electroporation with expression plasmids
encoding the human IL-3Rα subunit (pSG5: IL‑3Rα) and the
human βc subunit (pSG5: βc). Binding assays using COS cells
transiently expressing IL-3 receptors was performed as
previously described [24] and the data analysed using EBDA-
LIGAND software (KELL; Biosoft).

Results

Expression construct design
In an attempt to produce hIL-3 in the soluble fraction of E.

coli lysates rather than in inclusion bodies, we prepared a
fusion protein with NusA-His6 [18], (Figure 1). To this end, we
PCR amplified a fragment encoding the four-helix bundle core
of hIL-3, residues 13-125, and ligated into the vector,
pETNusH, as an in-frame fusion C-terminal to the 55kDa
solubility tag, NusA, and a His6 affinity tag to allow fusion
protein purification by Ni2+ chromatography. Between the His6

tag and the hIL-3 sequence is a vector-encoded TEV protease
recognition site. TEV protease cleavage of the NusA-His6 tag
from hIL-3 introduces a non-native GAMGS at the N-terminus
owing to a cloning artifact. We chose to incorporate a TEV
protease cleavage site, since this enzyme can be readily
prepared in the laboratory to high yields [25] and cuts with high
efficiency and sequence specificity unlike other enzymes, such
as thrombin and Factor Xa. Importantly, TEV protease offers
the flexibility of cleaving substrates at 25°C, typically within 2
hours, or at 4°C overnight should the target protein be
temperature sensitive.

Full length hIL-3 is expressed from mammalian cells as a
pro-protein that is cleaved during secretion (signal peptide
shown in grey in Figure 1) to yield a mature polypeptide, the
first residue of which we have numbered as residue 1 (Figure

Figure 1.  Alignment of amino acid sequences of human and mouse IL-3.  The amino acid sequences of full length wild-type
hIL-3, hIL-3(13-125; W13Y), the hIL-3 analog SC-65369 [41], and wild-type full length mouse IL-3 were manually aligned owing to
low homology between mouse and human IL-3 (29% identity). Numbers above the sequence refer to the mature form of full length
hIL-3 with dots above every 10th residue. The sequences shown in gray for full length hIL-3 and full length mouse IL-3 are signal
peptides that are cleaved during secretion. The key substitution, W13Y in hIL-3(13-125; W13Y), is shown in bold text and
highlighted.
doi: 10.1371/journal.pone.0074376.g001

Preparation of Soluble hIL-3 from E. coli
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1). Prior studies have established that truncation of hIL-3 at
either terminus enhances its solubility without compromising
bioactivity [17] and the enhanced solubility of a truncated and
highly-mutated hIL-3 analog, SC-65369 (Figure 1), allowed its
solution structure to be determined [26]. Although the
sequence of our hIL-3 protein is wild-type, but truncated at both
N- and C-termini, we introduced a tyrosine in place of Trp13
(highlighted in Figure 1) in our expression construct to facilitate
radio-iodination for receptor binding assays.

Purification of hIL-3(13-125; W13Y)
We developed a method to prepare hIL-3 to high-purity and

yield (Figure 2A). The expression of NusA-His6 fused
hIL-3(13-125; W13Y) was carried out in E. coli BL21 Codon
Plus (DE3) RIPL, followed by cell lysis and Ni2+-
chromatography. Following cleavage of the fusion protein with
TEV protease, the mixture was concentrated and the
hIL‑3(13-125; W13Y) separated from uncut fusion protein, the
NusA-His6 tag and TEV protease using preparative SEC. The
molecular mass difference between NusA and hIL-3 was
sufficiently large (55kD vs. 13.4kD) to permit resolution by
Superdex-200 26/60 SEC, with NusA elution at 186 mL and
hIL‑3 at 254 mL (Figure 2B). While the hIL-3 fractions were of
high purity as gauged by SDS-PAGE with Coomassie Blue
staining with no detectable NusA or TEV protease present
(Figure 2C), we proceeded to purify hIL-3 to homogeneity using
reversed-phase high-performance liquid chromatography (RP-
HPLC; Figure 2D). RP-HPLC was performed with a gradient of
0 to 100% acetonitrile with hIL-3 elution occurring at ~50%
acetonitrile. As evidenced by the RP-HPLC chromatogram
shown in Figure 2D, negligible quantities of proteinaceous
contaminants were present in hIL-3 following SEC,
underscoring that RP-HPLC can be considered a polishing step
but does not vastly enhance the purity of hIL-3. Routinely, the
yields per litre of shaking bacterial culture exceed 3mg,
although in some instances we have obtained up to 7mg of
purified hIL-3(13-125; W13Y) per litre of culture.

We verified the correct sequence of purified hIL-3(13-125;
W13Y) protein and confirmed the introduced modifications by
performing mass spectrometry. Purified protein was subjected
to tryptic digestion and tandem mass spectrometry analysis. As
summarized in Figure 2E, >90% sequence coverage was
observed, verifying the composition of the purified product. The
identified peptides are shown in Table S1.

Characterization of bioactivity relative to commercially-
sourced hIL-3

Having established a high-yielding strategy to express and
purify soluble hIL-3(13-125; W13Y) from E. coli, we proceeded
to compare its potency as a growth stimulus in TF-1 cell
proliferation assays relative to recombinant hIL-3 sourced from
two different commercial vendors. TF-1 is a factor-dependent
cell line that endogenously expresses the hIL-3 receptor, and is
a cell line commonly used to assay hIL-3 bioactivity. As shown
in Figure 3A, in the absence of hIL-3, no TF-1 cell proliferation
was observed, illustrating the cell proliferation relies on hIL-3
stimulation. Preparations of hIL-3(13-125; W13Y) purified by
SEC (open squares) and by SEC plus RP-HPLC (open circles)

were equipotent stimuli in TF-1 proliferation assays (Figure
3A). These preparations of hIL-3(13-125; W13Y) exhibited
comparable, if not slightly enhanced, potency compared to
hIL-3 sourced from vendor A (black circles). Surprisingly,
however, a second commercially-sourced sample (black
squares; vendor B) was an order of magnitude less potent than
each of our hIL-3(13-125; W13Y) preparations and the hIL-3
supplied by vendor A. Consequently, we concluded that not
only are the bioactivities of our SEC product and our RP-HPLC
product virtually indistinguishable, but their bioactivities in TF1
proliferation assays were equivalent or better than
commercially-supplied hIL-3 from two different vendors.

Receptor binding assays with radio-iodinated
hIL-3(W13Y; 13-125)

We next examined the capacity of hIL-3(13-125; W13Y) to
be radio-iodinated for receptor binding studies. We employed a
conventional tyrosine-labeling strategy based on that of Fraker
and Speck [27], using the protein iodination reagent previously
known as Iodogen, to incorporate 125I into hIL-3(13-125; W13Y)
to high specific activities, typically around 150,000 cpm/ng. We
then examined the capacity of 125I-labelled hIL-3(W13Y;
13-125) to bind hIL-3 receptors, which we transiently
overexpressed in COS cells. While COS cells expressing the
hIL-3Rα subunit alone bound 125I-hIL‑3(13-125; W13Y) with a
Kd of 143nM (Figure 3B), as expected, those co-expressing
both the hIL-3Rα and hβc subunits bound 125I-hIL‑3(13-125;
W13Y) with a high-affinity Kd of 456pM (Figure 3C).

Discussion

Since the human IL-3 gene was cloned in 1986 [28], high-
yielding, cost-effective approaches have been sought for the
expression and purification of hIL-3 for biochemical, structural
and biological studies, including as a growth stimulus for cell
culture applications. While several different preparation
methods from a variety of expression hosts have been
described [29–32], E. coli remains the most rapid, accessible
and inexpensive source of recombinant cytokines. Commonly,
however, the preparation of recombinant cytokines from E. coli
necessitates time-consuming and cumbersome oxidative
refolding steps (e.g. [33]). In the present work, we demonstrate
the efficacy of producing hIL-3 as a soluble fusion protein
bearing a NusA-His6 solubility/purification tag, which allows for
convenient purification prior to cleavage with TEV protease.
Consistent with an emerging role for the NusA tag as an
alternative to GST fusions to enhance the solubility of poorly-
soluble proteins [34,35], we have previously found that the
NusA tag was effective in allowing the preparation of mouse
IL-3 as a soluble protein from E. coli [18] (Figure 1) with yields
and solubility in aqueous solvents sufficient for NMR
spectroscopy studies [36–38]. In addition to maintaining hIL-3
in soluble form, the present method allows the preparation of
milligram quantities of hIL-3 per litre of shaking E. coli culture,
is rapid, simple and completely avoids refolding. To minimize
losses during chromatographic steps, rather than dialyzing the
TEV protease-cleaved hIL-3 and performing further Ni2+-
chromatography, the cleavage reaction was concentrated and
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applied directly to a preparative SEC column. The large
molecular weight difference between the NusA-His6 tag (55
kDa) and hIL-3 (13.4 kDa) enabled resolution of the two

species by SEC (Figure 2B). Whilst the SEC product was
highly purified (Figure 2C) with no detectable NusA or TEV
protease present, an additional polishing step, reversed-phase

Figure 2.  Purification of the hIL-3(13-125; W13Y) analog.  A) Workflow diagram illustrating the purification protocol for
hIL-3(13-125; W13Y).
B) Elution profile of the TEV protease digested, NusA and hIL-3 analog mixture, following size exclusion chromatography (SEC)
using a Superdex 200 column (26 mm x 600 mm) operated at 2 ml/min at 4°C with 50 mM sodium phosphate pH 7.0, 150 mM NaCl
as running buffer. Free NusA eluted at ~186 mL and the hIL-3 analog eluted at 254 mL. The first peak at 116 mL contains
aggregates while we suspect the last peak at 328 mL contains DTT from the digest. Molecular weight (kDa) marker elution positions
are marked as dots above the elution profile.
C) Analysis of hIL-3 analog purification by 15% acrylamide reducing SDS-PAGE with Coomassie Blue staining. NusA: hIL-3(13-125;
W13Y) fusion protein was isolated by Ni-chromatography (Lane 1) prior to cleavage by TEV protease (Lane 2) to yield free NusA
(55kDa) and the hIL-3 analog (13.4kDa). Fractions containing the hIL-3 analog that eluted around 254ml during SEC are shown
(Lanes 4-9), illustrating that the hIL-3 analog was purified free from NusA (Lane 3).
D) The SEC purified hIL-3 analog was applied to an Aquapore RP300 reversed-phase column (4.6 mm x100 mm) and bound
proteins eluted using a 0-100% gradient of acetonitrile in 0.1% trifluoroacetic acid. The hIL-3 analog eluted at 34 min (~50%
acetonitrile).
E) Purified hIL-3(13-125; W13Y) was subjected to tryptic digestion and tandem mass spectrometry. The sequences of peptides not
identified in this analysis are shown as lowercase italics. Asterisked methionine residues were oxidized. Sequence arising from the
NusA-His6 fusion overhang after TEV protease cleavage is underlined, while the residues are numbered according to the mature,
full-length IL-3 reference sequence.
doi: 10.1371/journal.pone.0074376.g002
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Figure 3.  Functional activity of the hIL-3(13-125; W13Y)
analog.  A) TF-1 cell proliferation was assessed using titrations
of hIL-3(13-125; W13Y) purified by SEC only (open squares) or
purified by SEC plus RP-HPLC (open circles). As controls,
commercial recombinant hIL-3 from supplier A (black circles)
and B (black squares) were also included. Each value
represents the mean of triplicate determinations and error bars
represent one standard deviation. Representative data is
shown from n=2 experiments.
B) Scatchard plot showing 125I-hIL-3(13-125; W13Y) binding to
COS cells transiently expressing IL3Rα only. Data are from a
representative binding experiment (n = 4) showing the line of
best fit for IL-3 binding.
C) Scatchard plot showing 125I-hIL-3(13-125; W13Y) binding to
COS cells transiently co-expressing IL-3Rα and βc. Data is
from a representative binding experiment (n = 6) showing the
line of best fit for IL-3 binding. Binding data for panels B and C
were analyzed using EBDA-LIGAND software (KELL).
doi: 10.1371/journal.pone.0074376.g003

HPLC, can be employed to purify the hIL-3(13-125; W13Y) to
homogeneity (Figure 2D). Both the SEC and the RP-HPLC
products exhibited comparable bioactivities in stimulating
proliferation of the hIL-3-dependent cell lines, TF-1 (Figure 3A).
We consider the RP-HPLC step non-essential for structural and
biochemical studies of hIL-3, but note it is likely to be
advantageous for biological studies since RP-HPLC is known
to largely eliminate lipopolysaccharide (LPS) [39], an agonist of
the pro-inflammatory TLR4 receptor, which is a common
contaminant of proteins prepared from Gram-negative bacterial
hosts.

In designing our hIL-3 expression construct, we introduced a
tyrosine in place of Trp13 (highlighted in Figure 1) to serve as a
substrate for 125I-labelling. Wild-type hIL-3 is a poor substrate
for commonly employed tyrosine-radioiodination methods, such
as Iodogen or iodine monochloride labeling, owing to the sole
tyrosine being buried in the helical bundle core ( [26]; PDB,
1JLI), leading to low specific activities when native hIL-3 is
tyrosine-radioiodinated [23]. We reasoned that introduction of a
tyrosine residue peripheral to the four-helix bundle would
overcome a longstanding technical hurdle and allow efficient
radiolabelling of the hIL-3 analog. As anticipated, introduction
of a non-native Tyr residue N-terminal to the hIL-3 four helix
bundle does not impact the bioactivity (Figure 3A). We found
that hIL-3(13-125; W13Y) is an excellent substrate for 125I-
labeling using the Iodogen method and we successfully used
the radiolabelled product in receptor binding studies, affording
Kd values comparable to those reported in prior hIL-3 receptor
binding studies [40].

In summary, herein we describe a simple and inexpensive
procedure for preparation of a hIL-3 analog as a soluble
protein, which exhibits wild-type bioactivity and improved radio-
labeling capacity, from E. coli. Not only does this procedure
typically yield >3mg per litre of shaking culture, but the whole
procedure can be completed within 3 days without the
necessity of oxidative refolding.

Supporting Information

Table S1.  Tryptic peptide mass spectra identifying
hIL-3(13-125; W13Y).
High quality spectra identified 89% of the full length construct
sequence using Mascot 2.4 upon searching the UniProt
database (with the vector-derived overhang, GAMGS,
included). Complete details of the experiment are shown in
Materials and Methods.
(XLS)
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