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Abstract

Prostate cancer is a leading cause of morbidity and cancer-related death worldwide. 
Androgen deprivation therapy (ADT) is the cornerstone of management for advanced 
disease. The use of these therapies is associated with multiple side effects, including 
metabolic syndrome and truncal obesity. At the same time, obesity has been associated 
with both prostate cancer development and disease progression, linked to its effects 
on chronic inflammation at a tissue level. The connection between ADT, obesity, 
inflammation and prostate cancer progression is well established in clinical settings; 
however, an understanding of the changes in adipose tissue at the molecular level 
induced by castration therapies is missing. Here, we investigated the transcriptional 
changes in periprostatic fat tissue induced by profound ADT in a group of patients with 
high-risk tumours compared to a matching untreated cohort. We find that the deprivation 
of androgen is associated with a pro-inflammatory and obesity-like adipose tissue 
microenvironment. This study suggests that the beneficial effect of therapies based on 
androgen deprivation may be partially counteracted by metabolic and inflammatory side 
effects in the adipose tissue surrounding the prostate.

Introduction

For over 80  years, androgen deprivation by surgical or 
medical castration has been the cornerstone of treatment 
for advanced prostate cancer (1). As new cytotoxic and 
androgen receptor-targeted therapies have been developed, 
demonstrating survival benefit in combination with 
androgen deprivation in a number of clinical settings, the 
duration a patient can expect to be in a castrated state 

prior to death has been extended significantly (2). Given 
that androgen signalling is important for homeostasis in 
a number of different organ systems, it is not surprising 
that both short- and long-term use is associated with a 
number of deleterious effects (3).

Forefront of these is the association of androgen 
deprivation with metabolic syndromes such as diabetes 
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mellitus (4) and obesity (5), as androgens play a key 
role in the regulation of intermediate metabolism and 
tissue composition (6). Increased fat tissue mass (known 
in conjunction with loss of muscle mass as sarcopenic 
obesity) is one of the main metabolic side effects of 
androgen deprivation therapy (ADT) (7), even for short-
term treatment (8, 9, 10). At the molecular level, lack of 
androgen-related hormones leads to changes in tissue 
lipid composition and decreased insulin sensitivity (4). For 
example, gonadotropin-releasing hormone agonists have 
been shown to alter tissue lipid profiles with cholesterol 
levels, triglycerides and high-density lipoproteins shown 
to increase up to 10.6, 25 and 8–20%, respectively (8, 10).

The promotion of an obese-like phenotype by 
androgen deprivation is highly clinically relevant, as 
obesity (expressed as BMI) is itself associated with the 
development of prostate cancer, post-prostatectomy 
biochemical failure and risk of death from prostate cancer. 
Although the link between elevated BMI and increased 
risk of prostate cancer is still controversial (11, 12, 13), 
several studies have found a positive association between 
BMI and cancer grade and/or stage at the time of radical 
prostatectomy (14, 15, 16). Two recent studies identified 
an association between BMI and biochemical failure rates 
following radical prostatectomy, based on a large-scale, 
multi-ethnic cohort (13, 17). The relationship between 
BMI and prostate cancer-specific mortality is also widely 
supported (18, 19, 20, 21).

Although the connection between ADT, obesity and 
prostate cancer progression is well established in clinical 
settings, a molecular understanding of the changes in adipose 
tissue associated with castrating therapies is still missing, 
in part due to a paucity of appropriate clinical specimens. 
This is especially important for periprostatic adipose tissue 
due to its proximity to the cancer site and its potential to 
influence prostate hormonal and immune homeostasis 
(22). Here for the first time, based on a unique cohort of 
patients with 6-month profound androgen suppression 
and receptor blockade, we performed an integrative study 
of the molecular and cellular changes in periprostatic fat 
associated with androgen deprivation. In this study, we 
show that ADT is associated with a pro-inflammatory and 
obesity-like adipose tissue microenvironment.

Materials and methods

Ethics statement

The collection and use of tissue for this study had 
Epworth Healthcare institutional review board approval 

and patients provided written informed consent (HREC 
approval number 34506).

Study cohort selection

ADT-treated patients (n = 11) were recruited from an open-
label neoadjuvant phase II study in which patients with 
high-risk disease received a ‘supercastration’ regimen 
consisting of degarelix 240/80 mg subcutaneously 
every 4  weeks; abiraterone acetate 500 mg orally daily 
titrating upwards every 2  weeks by 250 mg to a final 
dose of 1000 mg daily; bicalutamide 50 mg orally daily 
and prednisolone 5 mg orally twice daily for a total of 
6 months (Australian New Zealand Clinical Trials Registry 
12612000772842). Untreated patients with similar pre-
treatment characteristics were obtained from a prospective 
prostatectomy biorepository (22, 23). Prior to ligation of 
the dorsal venous complex and prostate pedicles, the 
anterior prostate was defatted and the specimen was 
removed immediately, placed in a sterile container and 
transferred on ice for long-term storage in the vapour 
phase of liquid nitrogen. Patients were risk categorised 
using the CAPRA scoring system, which uses pre-treatment 
clinical and pathological variables (including age, serum 
PSA level, biopsy tumour grade, clinical stage) to predict 
the risk of bone metastasis and prostate cancer-specific 
mortality (24). Differences between patient groups were 
assessed by the Mann–Whitney or chi-squared test as 
appropriate.

Gene expression screen

A total of 50–100 µg of adipose tissue was separated from 
fresh frozen samples stored at −160°C. RNA was isolated 
using the Qiagen RNeasy Lipid Tissue Mini Kit and eluted 
in 35 µL nuclease-free water. 0.5–1 µg of total RNA was 
used as the input for cDNA library synthesis using TruSeq 
RNA Sample Prep Kit v2 (Illumina), and libraries were 
constructed according to manufacturer’s instructions. 
Samples were sequenced on a HiSeq 2500 (Illumina) using 
101 base paired-end chemistry, aiming for 50 million 
mapped paired-end reads per sample.

Data pre-processing and mapping

The RNA-sequencing quality for each sample was 
controlled using the FastQC algorithm (25). Reads were 
trimmed for Illumina adapters and low-quality fragments 
using the Trimmomatic algorithm, and short reads filtered 
out from the pools according to default settings (26).  
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The remaining reads were aligned to the reference 
genome (hg19) with the STAR aligner using default 
settings (27). The gene abundance for each sample was 
quantified in terms of reads per gene (read-count) using 
featureCounts (28). Low abundance genes were filtered 
from the analysis, if not present in at least 0.5 parts per 
million in two-thirds of the samples in each treatment 
group (i.e., treated and naïve).

Differential expression and gene set 
enrichment analyses

Considering the sparse batch distribution, the gene 
abundances were adjusted for unknown variation using 
RUVseq with one unwanted covariate (using default 
settings) (29). The resulting covariate matrix for the 
unwanted covariate was appended to the design matrix 
(i.e. treated vs naïve, plus the intercept term); then, all 
samples were tested for differential transcription using the 
edgeR package (30), considering differentially transcribed 
genes with a false discovery rate <0.05. Ensemble pathway 
analyses were performed using the algorithm EGSEA (31). 
In order to test for the enrichment of an obesity molecular 
phenotype among the differentially transcribed genes, 
an ad hoc signature data set (46) was queried using the 
algorithm GSEA (32).

Differential tissue composition analyses

The associations between (i) the abundance of stromal 
and immune cell types within the tissue and (ii) the 
treatment status (i.e., treated or naïve) was inferred using 

two distinct approaches. Both approaches included a two-
step inference, where the cellular composition of each 
sample is inferred first (i.e., the proportion of several 
cell types within the tissue sample), and an association 
analysis is performed integrating such inference with the 
treatment status. The first approach applied the algorithm 
Cibersort (33), for the inference of tissue composition, in 
combination with DirichletReg (34), for the regression 
of the proportional estimates produced by Cibersort. 
Considering that Cibersort was designed mainly for 
microarray data, and only for PBMC cell types, a custom 
probabilistic Bayesian model was also implemented 
(Fig.  1) based on the Markov chain Monte Carlo 
probabilistic framework Stan (35), which natively models 
RNA sequencing data and performs association analysis in 
an integrative manner preserving uncertainty information 
between the two steps. This probabilistic model can be 
described by a joint probability density formula and a 
series of sampling statements (Supplementary Figure 1, 
see section on supplementary data given at the end of this 
article).

qRT-PCR validation

In order to validate the methodology used for the inference 
of differential transcription, qRT-PCR was used for an 
independent observation of gene transcript abundance. A 
total of nine differentially transcribed genes were selected 
for validation with qRT-PCR, based on false discovery rate 
(<0.05), log fold change (>2) and on the absence of clear 
outliers. The qRT-PCR validation was performed using 
1 µL of cDNA, 0.5 µL qRT-PCR primers (see below), 5 µL of 

Figure 1
Probabilistic Bayesian inference model. The 
parameter α represents the rates of change of 
each cell type category along the biological 
conditions. The parameter π represents the 
matrix of proportions for each cell type category 
and sample. The parameters σ, φ and δ define the 
noise model. The point estimate and credible 
intervals for both cell type proportions and trends 
of change are calculated from the posterior 
distribution.
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TaqMan Fast Advanced Master Mix (Applied Biosystems) 
and 3.5 µL of UltraPure distilled water (Gibco). The 
primers, including ART3 (Hs00922621_m1), CSDC2 
(Hs00411093_m1), DIO2 (Hs05050546_s1), FCGR1B 
(Hs00174081_m1), LYZ (Hs00426232_m1), OR51E2 
(Hs00258239_s1), SLC16A12 (Hs01584854_m1), SUSD5 
(Hs01394532_m1), and TRIM67 (Hs01595609_m1), were 
pre-designed and commercially available from Applied 
Biosystems. Samples were run on a 384-well plate using 
a Viia7 qRT-PCR machine (Applied Biosystems) under the 
following conditions: UNG incubation at 50°C for 2 min; 
polymerase activation at 95°C for 20 s; followed by 40 cycles 
of denaturation at 95°C for 1 s; anneal/extend at 60°C for 
20 s. Expression levels of target genes were normalised to 
the geometric mean of GAPDH (Hs00266705_g1, Applied 
Biosystems), TBP (Hs00427621_m1, Applied Biosystems) 
and POLR2A (Hs00427621_m1, Applied Biosystems) 
using the formula 2−ΔC(T). One-sided Student’s t-test was 
used for hypothesis testing; then, Bonferroni multiple-test 
correction was applied to the produced P values.

Results and discussion

Patient characteristics

The treated and naïve groups comprised 11 and 10 patients 
respectively; their clinical and pathological characteristics 
are shown in Table  1. Given that pre-operative risk 
assessment is frequently inaccurate (36, 37), being biased 
towards underestimation of tumour grade and stage, 
patients in the high-risk cohort were selected based on the 
stage, grade and volume of tumour in the prostatectomy 
specimen. All patients in the treated cohort had high-risk 
disease at the time of initial assessment, although the 
ultimate response to androgen deprivation was highly 
variable. On average, patients exposed to androgen 
suppression experienced a 3.3% increase in body weight/
BMI from baseline over the course of treatment.

Differentially transcribed genes represent three main 
functional groups

The RNA sequencing libraries had an average of  
55 million reads across the 21 samples. All samples had 
a Phred quality score exceeding 28 following filtering 
and trimming (25). As expected, the distribution of the 
multidimensional scaling (MDS) analysis (38) including 
both treated and naïve groups showed the improvement 
in clustering obtained through the removal of unwanted 

variation (RUVseq; Fig. 2A and B). However, the overall 
magnitude of differences between the two groups was low 
(i.e., log fold difference <3; Fig. 2B and C). No significant 
difference was found between the two treatment categories 
for BMI or CAPRA-S risk score distributions (adjusted  
P value = 1.0 and 1.0 respectively; Supplementary Fig. 1).

A total of 70 genes were identified as differentially 
transcribed (false discovery rate <0.05; Supplementary 
Table 1), characterised by a median fold change of 3.23. 
Of these, 49 genes were characterised by a fold change 
greater than 2. Among the differentially transcribed 
genes with fold change greater than 2, three recurring 
biological processes (from grouping analogous gene 
ontology annotations; GO (39); Supplementary Table 2) 
were identified: hormonal and fat homeostasis (n = 8), 
inflammation (n = 8) and neural plasticity (n = 4) (Fig. 2D). 
Several genes involved in cholesterol metabolism were 

Table 1 Clinical characteristics of study cohort.

Naïve Treated P value

Age (years)
 Median 66 65 0.79
 Range 49–72 63–72
PSA (ng/dL)
 Median 7.5 14.4 0.46
 Range 2.7–27 4.4–95
  <10 7 5 0.35
  10–20 2 2
  >20 1 4
Clinical Stage
 cT1 3 2 0.08
 cT2 7 4
 cT3 0 5
Biopsy grade
 ISUP2 2 1 0.16
 ISUP3 3 0
 ISUP4 2 3
 ISUP5 3 7
Pathological stage
 pT0 0 1 0.13
 pT2 0 3
 pT3 10 8
Prostatectomy grade
 ND 0 1 0.26
 ISUP1 0 2
 ISUP2 0 1
 ISUP3 3 1
 ISUP4 1 2
 ISUP5 6 5
Tumour volume
 Median 7.1 1 0.012
 Range 0.7-17.8 0-9.3
BMI (kg/m2)
 Mean 26.9 28.2 0.67
 s.d. 2.9 4

BMI, body mass index; PSA, prostate-specific antigen.
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found to be upregulated from the hormonal homeostasis 
gene set. One such gene encodes for cytochrome P450, 
family 1, member A1 (CYP1A1), which catalyses several 
reactions involved in the synthesis of cholesterol, steroids 
and other lipids, as well as drug metabolism (40). Another 
upregulated gene, fatty acid desaturase 2 (FADS2), is a 
known modulator of lipid composition in skin (41). 
Within the treated cohort, several genes were decreased 
in abundance such as iodothyronine deiodinase 2 (DIO2), 
which is associated with the biosynthesis of thyroid 
hormone (42) and cyclin A1 (CCNA1), which is involved 
in spermatogenesis (43). For inflammation, upregulated 
genes were enriched over downregulated genes (n = 7 vs 
1 respectively). The transcriptional changes with larger 
magnitude involved two paralog genes (i.e., IGKV1D–39 

and IGKV1–39) encoding for ‘v’ region of the variable 
domain of immunoglobulin light chains, mainly 
secreted by B lymphocytes and participating in antigen 
recognition (44). The only downregulated gene within 
the inflammation category was WAP four-disulfide core 
domain 1 (WFDC1), which is linked to negative regulation 
of the inflammatory response (45).

For neural development, the transcript abundance of 
most genes was decreased in treated patients, including 
several genes regulating synapse formation such as 
regulating synaptic membrane exocytosis 4 (RIMS4). 
Among nine differentially transcribed genes, a total 
of seven validated with qRT-PCR, after correcting for 
multiple hypothesis testing (i.e. adjusted P value <0.05; 
Supplementary Fig. 2).

Figure 2
(A) Heatmap of the top differentially regulated 
genes, with unsupervised hierarchical clustering 
for samples and genes. (B) Multidimensional 
scaling (MDS) plot of the treated and naïve 
cohorts before and after removal of the 
unwanted variation (K = 1). (C) Smear plot 
indicating the differentially transcribed genes in 
red. (D) Recurrent functional groups within the 
differentially transcribed genes.
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Enriched inflammatory signature

Overall, the gene enrichment analysis performed by 
EGSEA showed a pro-inflammatory signature for all 
query data sets (e.g. Hallmarks, Gene Ontology, KEGG 
and Immune Signatures; Table  2) (31). The pathways 
within the immune signature data set included  
IL6/JAK/STAT3 signalling, interferon gamma response, 
positive regulation of immune response and antigen 
processing and presentation. Specifically for the immune 
signature dataset, transcriptional changes pointed to 
the differentiation of immature immune cell types  
(i.e., immature dendritic cells and monocytes), as well as 
neutrophil and mast cell activation.

Consistent with the gene enrichment analyses, the 
differential tissue composition analysis based on our 
Bayesian inference model showed a positive association 
between overall immune cell abundance and treatment 
status (Fig.  3A). In the two approaches employed for 
differential tissue composition analysis, monocyte-derived 
cells dominated the immune population within adipose 
tissue across the treated and naïve cohorts. Signatures of 
macrophages, monocytes and granulocytes were enriched 
by our model within the immune cell population in 
treated patients compared to naïve. This inference was 
partially consistent with that of the Cibersort-DirichletReg 
approach (i.e. for monocytes and macrophages; Fig. 3B). 

The latter approach uniquely identified an association 
involving CD4 memory resting, NK cells resting and mast 
cells resting. Although a significant enrichment of CD8+ 
T-cells in treated patients was not observed using our 
statistical model and the Cibersort-DirichletReg approach, 
a positive association appears to exist when observing 
the distributions of the estimated cell type proportions 
(Supplementary Fig.  3). As expected, considering the 
absence of a robust adipocyte transcriptomic signature 
within the model, the fibroblast cell type appears to 
have captured the adipocyte transcriptomic profile 
(Supplementary Fig.  3). The differences observed in the 
average estimated proportions for immune cell types 
between Cibersort and our statistical method are in part 
due to the inclusion of non-immune cells (e.g. fibroblasts, 
endothelial and epithelial) in our model, while Cibersort 
models selectively estimate immune cells as composing 
the totality of the tissue.

Enriched obesity signature

The analysis of a previously published obesity 
transcriptional signature for adipose tissue (46) revealed 
a positive association with androgen deprivation 
treatment independent of BMI (false discovery rate 
of 8.4 × 10−3; Fig.  4). Within the ten top ranked genes 

Table 2 EGSEA results.

GeneSet Direction P value P adj

Hallmark signatures
Hallmark allograft rejection Up <1.0 × 10−16 <1.0 × 10−16

Hallmark kras signalling up Up <1.0 × 10−16 1.0 × 10−06

Hallmark inflammatory response Up <1.0 × 10−16 <1.0 × 10−16

Hallmark IL6 jak stat3 signalling Up 8.0 × 10−06 5.0 × 10−05

Hallmark interferon gamma response Up <1.0 × 10−16 <1.0 × 10−16

Gene ontology
GO regulation of innate immune response Up 2.0 × 10−06 3.8 × 10−05

GO innate immune response Up <1.0 × 10−16 9.0 × 10−06

GO positive regulation of defence response Up 4.0 × 10−06 8.4 × 10−05

GO positive regulation of immune response Up <1.0 × 10−16 9.0 × 10−06

GO immune system process Up 4.9 × 10−05 7.1 × 10−4

KEGG
hsa04612 Antigen processing and presentation Up <1.0 × 10−16 <1.0 × 10−16

hsa05152 Tuberculosis Up 1.7 × 10−05 1.6 × 10−4

hsa05164 Influenza A Up 2.2 × 10−05 2.0 × 10−4

hsa05332 Graft-versus-host disease Up <1.0 × 10−16 <1.0 × 10−16

hsa05140 Leishmaniasis Up <1.0 × 10−16 <1.0 × 10−16

Immune signatures
GSE7509 Genes downregulated in immature dendritic cells Up <1.0 × 10−16 <1.0 × 10−16

GSE2706 Genes downregulated in comparison of unstimulated DC Up <1.0 × 10−16 <1.0 × 10−16

GSE19888 Genes upregulated in HMC-1 (mast leukaemia) cells Up <1.0 × 10−16 <1.0 × 10−16

GSE34156 Genes downregulated in monocytes Up <1.0 × 10−16 <1.0 × 10−16

GSE37416 Genes upregulated in activated neutrophils Up 7.0 × 10−06 9.7 × 10−05
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present in the obesity signature, the majority were linked 
to inflammation (Supplementary Table  2), including Fc 
fragment of IgG-binding protein (FCGBP), lysozyme (LYZ), 
chemokine ligand motif 10 (CXCL10), myeloid cell nuclear 
differentiation antigen (MNDA), toll like receptor 8 (TLR8) 

and a member of the STAT family (STAT1), which is activated 
by various ligands including interferon alpha, interferon 
gamma (IFNγ), epidermal growth factor (EGF), platelet 
derived growth factor (PDGF) and interleukin 6 (IL6). The 
third top ranked gene (included in the obesity signature) 
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Figure 3
Differential tissue composition analysis. (A) Polar plot representing the overall cell type abundance (i.e. radius dimension) and the significant associations 
with androgen deprivation therapy (i.e. white for non-significant associations). Cell types are labelled if more abundant than 1%. CI = 95% credible interval 
of the association. (B) Boxplots of the inferred cell type proportions by our Bayesian probabilistic model and Cibersort, for the cell types that correspond 
or are part of significantly differentially abundant cell type categories (e.g. the differentially abundant category ‘granulocytes’ include eosinophils and 
neutrophils) between the two treatment categories (i.e., treated and naïve) according to our model. FDR = false discovery rate linked to an association 
being different non null.
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is a key regulator of hormonal homeostasis (DHRS9), 
which is able to convert 3-alpha-tetrahydroprogesterone 
to dihydroxyprogesterone and 3-alpha-androstanediol to 
dihydroxyprogesterone in the cytoplasm (47); also, it is a 
marker for regulatory macrophages (48). Regulatory genes 
for calcium homeostasis were also present, including S100 
calcium-binding protein A1 (S100A1) and stanniocalcin 2 
(STC2), which regulate renal and intestinal calcium and 
phosphate transport (49).

Conclusions

The prostate gland is enveloped in adipose tissue, and over 
the last decade a number of lines of evidence suggest that 
paracrine interactions between this fat depot and prostate 
epithelium play a role in prostate cancer development 
and/or progression. For instance, tumour cell invasion into 
the periprostatic fat compartment where direct cell-to-cell 
interaction can occur has been reported to be a stronger 
determinant of cancer recurrence than acquisition 
of the ability to invade across tissue boundaries (50). 
Periprostatic adipose tissue has been shown to elaborate 

a number of cytokines including IL6, osteopontin, and 
TNF-alpha, that promote prostate tumour cell migration 
and invasion (51, 52), and at least for IL6 correlates with 
downstream pathway activation in high-grade tumours 
(53). In addition, there is evidence of a positive feedback 
loop, with conditioned media from prostate cancer cells 
significantly increasing the secretion of these cytokines 
from adipose tissue explants (52).

The role of adipose tissue in prostate cancer 
progression is perhaps best understood in the context of 
obesity, where numerous clinical studies report positive 
associations between BMI and high-risk pathological 
findings at prostatectomy as well as adverse clinical 
outcomes post treatment (54). Obesity induces a 
persistent inflammatory and hormone-rich tissue 
microenvironment that contributes to high-risk disease 
(55, 56). ADT is a known cause of increased fat body mass 
(14, 15, 16); yet, the cellular and molecular processes 
that are altered in association with ADT, especially in 
the periprostatic adipose tissue microenvironment, 
have not been completely resolved. In this study, we 
showed that profound ADT is associated with a pro-
inflammatory adipose tissue microenvironment, as well 

Figure 4
GSEA enrichment plot showing the significant 
enrichment of the obesity signature among the 
most differentially transcribed genes.
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as with altered obesity-related gene transcription linked 
with cholesterol and hormonal homeostasis. Both 
differential tissue composition and gene enrichment 
analyses pointed to an enrichment of infiltrating immune 
cell types within the tissue as the predominant cause of 
this difference. Monocytes and macrophages had the 
greatest presence within the periprostatic adipose tissue, 
compared with other immune cells. The abundance of 
these immune cell types was positively associated with 
androgen deprivation, suggesting their infiltration of 
the tissue, which is consistent with in vivo studies (57). 
Macrophages have been shown to interact with adipose 
tissue in a paracrine manner, where TNF-α secretion from 
macrophages interferes with adipocyte insulin signalling 
and induces fatty acid lipolysis, which commences a 
vicious inflammatory cycle and contributes to insulin 
resistance (58). Furthermore, an elevated blood monocyte 
count is an independent prognostic predictor for poor 
prostate cancer outcome in cancer-specific and overall 
survival studies (59, 60). These finding are perhaps not 
surprising, given numerous reports describing the anti-
inflammatory properties of androgen receptor signalling. 
How this is mediated is not clear, although testosterone 
has been reported to attenuate both Th2 and Th17 
inflammatory responses (61, 62), as well as directly 
suppressing the section of monocyte chemoattractant 
protein-1 in adipocytes, a key cytokine that promotes 
monocyte infiltration (63).

There are a number of limitations to our study that 
merit enumeration, particularly the lack of orthogonal 
validation at the protein level for pathway and/or cell type 
tissue enrichment observed in our expression profiles. 
However, we note that previous studies have confirmed 
that alterations of inflammatory signalling identified 
expression data are accurately reflected by protein level 
changes in the abundance of key cytokines, including 
IL6 (64), and extensive validation studies have shown 
that the expression of key inflammatory cell markers are 
consistent with expression data from RNA-seq analysis 
(65) (www.proteinatlas.org). In addition, ideally we 
would use paired pre- and post-treatment samples from 
the same patients for analysis. However, this was not 
practical for clinical reasons, as collection of sufficient 
quantities of periprostatic adipose tissue for the type 
of exploratory analysis described is only possible at the 
time of prostatectomy. We have therefore tried to match 
patients as much as possible based on their pre-treatment 
clinical and pathological characteristics as described.

Taken together, our study demonstrates that androgen 
deprivation promotes an inflammatory and obesity-like 

microenvironment in periprostatic fat and suggests that 
the beneficial effect of ADT may be partially counteracted 
by metabolic and inflammatory side effects in the adipose 
tissue encompassing the prostate. This may be particular 
pertinent when the primary tumour is in situ, as tumour 
response within the prostate appears less profound 
compared to that observed for metastatic disease (66, 67).  
Further studies will need to investigate the immune 
infiltration profile associated with androgen deprivation, 
as well as the potential impact of anti-inflammatory 
therapies on local tumour response.

Online methods and raw data

The code used to conduct the analyses is available at 
https://github.com/stemangiola/ADT_fat. The sequenced 
reads raw files are available at https://ega-archive.org/ 
with the identifier EGAD00001004971.

Supplementary data
This is linked to the online version of the paper at https://doi.org/10.1530/
EC-19-0029.
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