
Submitted 25 February 2019
Accepted 31 May 2019
Published 9 July 2019

Corresponding author
Justin Bedő, cu@cua0.org

Academic editor
Joseph Gillespie

Additional Information and
Declarations can be found on
page 12

DOI 10.7717/peerj.7223

Copyright
2019 Bedő

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

BioShake: a Haskell EDSL for
bioinformatics workflows
Justin Bedő
Bioinformatics Division, The Walter and Eliza Hall Institute, Parkville, VIC, Australia
Department of Computing and Information Systems, The University of Melbourne, Parkville, VIC, Australia

ABSTRACT
Typical bioinformatics analyses comprise of long running computational workflows.
An important part of reproducible research is the management and execution of
these workflows to allow robust execution and to minimise errors. BioShake is an
embedded domain specific language in Haskell for specifying and executing computa-
tional workflows for bioinformatics that significantly reduces the possibility of errors
occurring. Unlike other workflow frameworks, BioShake raises many properties to
the type level allowing the correctness of a workflow to be statically checked during
compilation, catching errors before any lengthy execution process. BioShake builds
on the Shake build tool to provide robust dependency tracking, parallel execution,
reporting, and resumption capabilities. Finally, BioShake abstracts execution so that
jobs can either be executed directly or submitted to a cluster. BioShake is available at
http://github.com/PapenfussLab/bioshake.

Subjects Bioinformatics, Computational Science
Keywords Haskell, Workflow, EDSL, Bioinformatics, Reproducibility

BACKGROUND
Bioinformatics workflows are typically composed of numerous programs and stages
coupled together loosely by intermediate files. These workflows tend to be quite complex
and require much computational time, hence a good workflow must be able to manage
intermediate files, guarantee rentrability—the ability to re-enter a partially run workflow
and continue from the latest point—and also facilitate easy description of workflows.

We present BioShake: a Haskell Embedded Domain Speciic Language (DSL) (EDSL) for
bioinformatics workflows. The use of a language with strong types gives our framework
several advantages over existing frameworks (Amstutz et al., 2016; Di Tommaso et al., 2017;
Goodstadt, 2010; Köster & Rahmann, 2018; Leipzig, 2016; OpenWDL, 2012; Vivian et al.,
2017) (see Table 1 for a high-level comparison):
1. The type system is strongly leveraged to prevent errors in the workflow construction

during compilation—that is during development of the workflow (compile time) and
prior to actual execution of theworkflow (execution time).Workflows that pass the type
checking at compile time are guaranteed free of certain classes of errors that with other
workflow frameworks would ordinarily only be detected during execution. Catching
errors significantly earlier in the analysis process reduces debugging time, which is
especially advantages for bioinformatics as the workflows tend to have long runtimes.

How to cite this article Bedő J. 2019. BioShake: a Haskell EDSL for bioinformatics workflows. PeerJ 7:e7223
http://doi.org/10.7717/peerj.7223

https://peerj.com
mailto:cu@cua0.org
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.7223
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://github.com/PapenfussLab/bioshake
http://doi.org/10.7717/peerj.7223

Table 1 High level feature comparison of BioShake with other execution engines (Toil, Cromwell),
specification languages (WDL, CWL), and DSLs (NextFlow, Snakemake).Dashes indicate that feature is
not applicable.

Snakemake NextFlow Toil Cromwell WDL CWL BioShake

DSL X X – – X X

Embedded DSL – – X

Python X –
Strong static typing – X

Type inferencing – X

Extrinsic specification X – X

Intrinsic specification X X – X X X

Functional language – X

Container integration X X – –
Cloud computing integration X X X X – –
Cluster integration (Torque) X X X X – – X

Cluster integration (Slurm) X X X X – –
Cluster integration (SGE) X X X X – –
Cluster integration (LSF) X X X – –
Cluster integration DRMAA X – –
Direct execution X X X X – – X

To the best of our knowledge, this is the first bioinformatics workflow framework to
use strong typing and type inference to prevent specification errors during compile
time.

2. Naming of outputs at various stages of a workflow are abstracted by BioShake. Output
at a stage can be explicitly named if they are desired outputs. Thus, the burden of
constructing names for temporary files is alleviated. This is similar in spirit to Sadedin,
Pope & Oshlack (2012) who also allow abstraction away from explicit filenames.

3. BioShake builds on top of Shake, an industrial strength build tool also implemented as
an EDSL in Haskell. BioShake thus inherits the reporting features, robust dependency
tracking, and resumption capabilities offered by the underlying Shake architecture.

4. Unlike underlying Shake that expects dependencies to be specified (i.e., in a DAG the
arrows point from the target back towards the source(s)), BioShake allows forward
specification of workflows (i.e., the arrows point forward). As bioinformatics workflows
tend to be quite long andmostly linear, this eases the cognitive burden during workflow
design and improves readability.

5. Non-linear workflows are constructed using typical Haskell constructs such as maps
and folds. Combinators are available for the most common grouping of outputs
together for a subsequent stage. However, as the main data type is recursively defined,
outputs of a stage can always be referenced by subsequent stages without explicit
non-linear constructs (i.e., the alignments used for variant calling are available for a
subsequent variant annotation stage without explicitly introducing non-linearity).
BioShake, in essence, is an EDSL for specifying workflows that compiles down to an

execution engine (Shake). In this respect, it resembles other specification languages such

Bedő (2019), PeerJ, DOI 10.7717/peerj.7223 2/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.7223

as Common Workflow Language (CWL) (Amstutz et al., 2016) and Workflow Description
Language (WDL) (OpenWDL, 2012), but executes on top of Shake. Table 1 provides a high
level feature overview of BioShake when compared to several other workflow specification
language, workflow EDSLs, and execution engines. We will further elaborate on the unique
features of BioShake:

Strong type-checking The use of a language with strong types gives our framework
several advantages over existing frameworks (Amstutz et al., 2016; Di Tommaso et al., 2017;
Goodstadt, 2010; Köster & Rahmann, 2018; Leipzig, 2016;OpenWDL, 2012; Sadedin, Pope &
Oshlack, 2012; Vivian et al., 2017). Our framework leverages Haskell’s strong type-checker
to prevent many errors that can arise in the specification of a workflow. As an example,
file formats are statically checked by the type system to prevent specification of workflows
with incompatible intermediate file formats. Furthermore, tags are implemented through
Haskell type-classes to allow metadata tagging, allowing various properties of files—such
as whether a Binary Alignment Map (BAM) file is sorted—to be statically checked. Thus,
a misspecified workflow will simply fail to compile, catching these bugs well before the
lengthy execution. As tags are represented in the type system, they are assumed to hold and
are not validated at runtime (i.e., an output tagged as sorted and in Binary Alignment Map
(BAM) format is not verified to be sorted nor a valid Binary Alignment Map (BAM) file at
runtime). Consequently, no runtime overhead is incurred.

Intrinsic and extrinsic building Our framework builds upon the Shake EDSL
(Mitchell, 2012), which is a make-like build tool. Similarly to make, dependencies in
Shake are specified in an extrinsic manner (called implicit by Leipzig, 2016); that is, a build
rule will define its input dependencies based on the output file path. Our EDSL compiles
down to Shake rules, but allows the specification of workflows in an intrinsically, whereby
the processing chain is explicitly stated and hence no filename based dependency graph
needs to be specified. However, as BioShake compiles to Shake, both extrinsic and intrinsic
rules can be mixed, allowing a choice to be made to maximise workflow specification
clarity. For example, small ‘‘side’’ processing like generation of indices can be specified
extrinsically, removing the need for an explicit index step in the workflow specification.

Furthermore, the use of explicit sequencing for defining workflows allows abstraction
away from the filename level: intermediate files can be automatically named and managed
by BioShake, removing the burden of naming the intermediate files, with only desired
outputs requiring explicit naming.

The following examples illustrate various aspects of the BioShake EDSL. Examples 1 and
2 demonstrate the expression of a couple of workflows in the EDSL. Example 3 shows how
an end-user interface may be constructed for end-users rather than workflow designers.

Example 1. (Simple sequencing workflow)

The following is an example of a workflow expressed in the BioShake EDSL:
align→ fixMates→ sort →markDups→ call→ out ["output.vcf"]
From this example it is clear what the stages are, and the names of the files flowing be-
tween stages is implicit and managed by BioShake. The exception is the explicitly named

Bedő (2019), PeerJ, DOI 10.7717/peerj.7223 3/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.7223

output, which is the output of the whole workflow. Non-linearity is handled by construc-
tors that accept the extra inputs, but workflows can always refer backwards along→ to
retrieve prior build products (e.g., to fetch Binary Alignment Map (BAM) files used to
generate a set of variant calls), reducing the need for non-linearity. A full example of this
workflow is given in Appendix A: Full code for Example 1.

Example 2. (Scatter–gather workflow)

BioShake supports scatter-gather type workflows and provides functions to join and split
the output of stages. An example is provided in the BioShake repository with the following
workflow:
let
chunks = split (query→ chunk n)
in
withAll (map (λ c→ c→ blast → extract) chunks) concat → out ["seqs.txt"]
A FastA query file is sharded in n chunks, blast executed on each chunk concurrently with
the top sequences extracted and concatenated into the final named output. The split and
with All functions are provided by BioShake and splits the outputs of a stage into a list of
individual stages, and withAll is the inverse function.

Example 3. (Providing workflows to end-users)

Examples 1 and 2 are examples of workflows from a designer’s perspective not an end-
user’s perspective, however as BioShake is an EDSL it is ideally suited to providing end-
users with end-to-end workflows. A command line, graphical, or web interface can be de-
signed using other Haskell packages to allow users to input the location and structure of
their data, with the builds then being produced by BioShake. The interface, workflow, and
build system can then be compiled to a single binary for distribution to users. For exam-
ple, a generalisation of the example 1 workflow to multiple samples could be compiled to
an executable call with a command line interface
call [-t nthreads] [-o output VCF] fq1 fq2 ...

IMPLEMENTATION
Core data types
BioShake is built using a tagless-final style (Carette, Kiselyov & Shan, 2009) around the
following datatype:

data a→ b
where
(→):: a→ b→ a→ b
infixl 1→

Bedő (2019), PeerJ, DOI 10.7717/peerj.7223 4/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.7223

This datatype represents the conjunction of two stages a and b. As we are compiling to
Shake rules, the Buildable class represents a way to build thing of type a by producing
Shake actions:

class Buildable a
where
build:: a→ Action ()
Finally, as we are ultimately building files on disk, we use a typeclass to represent types

that can be mapped to filenames:
class Pathable a
where
paths:: a→ [FilePath]

Defining stages
A stage—for example aligning and sorting—is a type in this representation. Such a type
is an instance of Pathable as outputs from the stage are files, and also Buildable as the
stage is associated with some Shake actions required to build the outputs. We give a simple
example of declaring a stage that sorts bam files in Example 4.

Example 4. (Stage definitions)

Consider the stage of sorting a bed file using samtools. We first define a datatype to repre-
sent the sorting stage and to carry all configuration options needed for sorting:
data Sort = Sort

This datatype must be an instance of Pathable to define the filenames output from the
stage. Naming can take place according to several schemes, but here we will opt to use
hashes to name output files. This ensures the filename is unique and relatively short.
instance Pathable a⇒ Pathable (a→ Sort)
where
paths (a→ _) = let
inputs = paths a
in
[hash inputs ++ ".sort.bed"]
In the above, hash:: Binary a⇒ a→ String is a cryptographic hash function such as sha1
with base32 encoding. Many choices are appropriate here.
Finally, we describe how to sort files by making Sort an instance of Buildable:
instance (Pathable a, IsBam a)⇒ Buildable (a→ Sort)
where
build p@(a→ _) = let
[input] = paths a
[out] = paths p
in
cmd "samtools sort" [input] ["-o", out]

Bedő (2019), PeerJ, DOI 10.7717/peerj.7223 5/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.7223

Note here that IsBam is a precondition for the instance: the sort stage is only applicable
to Binary Alignment Map (BAM) files. Likewise, the output of the sort is also a Binary
Alignment Map (BAM) file, so we declare that too:
instance IsBam (a→ Sort)
The tag IsBam itself can be declared as the empty typeclass class IsBam a. See section 2.5
for a discussion of tags and their utility.

Compiling to Shake rules
The workflows as specified by the core data types are compiled to Shake rules, with Shake
executing the build process. The distinction between Buildable and Compilable types
are that the former generate Shake Actions and the latter Shake Rules. The Compiler
therefore extends the Rules monad, augmenting it with some additional state:

type Compiler = State T (S.Set [FilePath]) Rules
The state here captures rules we have already compiled. As the same stages may be

applied in several concurrent workflows (i.e., the same preprocessing may be applied
but different subsequent processing defined) the set of rules already compiled must be
maintained. When compiling a rule, the state is checked to ensure the rule is new, and
skipped otherwise. The rule compiler evaluates the state transformer, initialising the state
to the empty set:

compileRules :: Compiler ()→ Rules ()
compileRules p = evalStateT p mempty
A compilable typeclass abstracts over types that can be compiled:
class Compilable a
where
compile:: a→ Compiler ()
a→ b is Compilable if the input and output paths are defined, the subsequent stage a is

Compilable, and a→ b is Buildable. Compilation in this case defines a rule to build the
output paths with established dependencies on the input paths using the build function.
For convenience BioShake provides a compileAndWant function that both compiles a
workflow to Rules and requests Shake to build it.

These rules can then be executed by Shake using the (simplified type for clarity) function
bioShake :: Rules ()→ IO ()

Dynamic workflows
Dynamic workflows are those where the number or type of output files for a stage is
dependent on the input to the stage. The BioShake abstractions do not directly allow this,
however it is still possible by splitting the workflow into two static workflows with Haskell
logic in-between. Example 5 demonstates this approach.

Bedő (2019), PeerJ, DOI 10.7717/peerj.7223 6/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.7223

Example 5. (Dynamic workflows)

Suppose a workflow assembled contigs from FastQ files and then processed each contig sep-
arately, i.e., the workflow is dynamic and dependent on the number of contigs assembled.
This could be expressed as two static builds with the dynamic logic handled in Haskell:
let
make = bioShake ◦ compileAndWant
in
make (inputs→ assemble→ out ["assembly.fa"])
nContigs← fmap (length ◦ tail ◦ splitOn ">") (readFile "assembly.fa")
make (map (λ c→ c→ processContig) (shard "assembly.fa" nContigs))
After assembly.fa is produced by the first workflow the number of contigs is fixed and
the second workflow can shard the contigs into individual files and process them indepen-
dently.

Tags
BioShake uses tags to ensure type errors will be raised if stages are incompatible. Other
workflow systems such as CWL have limited ability to tag outputs and verify inputs
using file patterns, however this approach does not scale gracefully to many tags and tags
carrying additional metadata. As encoding tags into filenames inheriently imposes an
ordering between tags, parsing and generation of names is complicated, and with many
tags filesystem limitations on length can be encountered.

We have already seen in Example 4 the use of IsBam to ensure the input file format
of Sort is compatible. By convention, BioShake uses the file extension prefixed by Is as
tags for filetype, e.g.,: IsBam, IsSam, IsVCF. Other types of metadata are used such as if
a file is sorted (Sorted) or if duplicate reads have been removed (DeDuped) or marked
(DupsMarked). These tags allow input requirements of sorting or deduplication to be
captured when defining stages. It is easy to state implications, for example to consider files
to have duplicates marked if duplicates have been removed:

instance Deduped a⇒ DupsMarked a
Properties, where appropriate, can also automatically propagate down the workflow; for

example, once a file is DeDuped all subsequent outputs carry the DeDuped tag: instance
Deduped a⇒ Deduped (a→ b)

Finally, the tags discussed so far have been empty type classes, however tags can easily
carry more information. For example, BioShake uses a Referenced tag to represent the
association of a reference genome. This tag is defined

class Referenced
where
getRef:: FilePath
instance Referenced a⇒ Referenced (a→ b)
and allows stages to extract the path to the reference genome, automatically propagating

down the workflow allowing identification of the reference at any stage.

Bedő (2019), PeerJ, DOI 10.7717/peerj.7223 7/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.7223

EDAM ontology
EDAM (Ison et al., 2013) is an ontology containing terms and concepts that are prevalent
in bioinformatics. As it is a formal ontology, the terms are organised into a hierarchical tree
structure, with each term containing reference to parent terms. EDAM can be used with the
flat tagging structure introduced in the previous section using Template Haskell (TH)—a
metaprogramming language allowingHaskell code to be generated during compilation—to
establish the tree. This is different from other systems that support EDAM for symantic
annotation such as CWL as the ontology is represented at the type level and hence prevents
a class of errors.

BioShake provides the EDAM ontology in the EDAM module. This module provides
EDAM terms identified by their short name, along with some Template Haskell
(TH) for associating EDAM terms to types. For example, the FASTQ-illumina term
(http://edamontology.org/format_1931) is represented by the tag FastqIllumina and a type
can be tagged using the is template Haskell function, for example:

import BioShake.EDAM
data MyType = MyType
$(is ’’MyType ’’FastqIllumina)
The is function declares the given type to be instances of all parents of the EDAM term,

allowing tag matching at any level in the hierarchy. For instance, MyType in the above
example will also carry the Fastq tag as FastqIllumina is a child of Fastq. EDAM types
can be used similarly to tags as described in section ‘Tags’.

Abstracting the execution platform
In Example 4, the Shake function cmd is directly used to execute samtools and perform the
build, however it is useful to abstract away from cmd directly to allow the command to be
executed instead on (say) a cluster, cloud service, or remote machine. BioShake achieves
this flexibility by using free monad transformers to provide a function run—the equivalent
of cmd –but where the actual execution may take place via submitting a script to a cluster
queue, for example.

To this end, the datatype for stages in BioShake are augmented by a free parameter to
carry implementation specific default configuration –e.g., cluster job submission resources.
In the running example of sorting a bed file, the augmented datatype is data Sort c =
Sort c.

Reducing boilerplate
Much of the code necessary for defining a new stage can be automatically written using
Template Haskell (TH) leading to succinct definitions of stages, increasing clarity of code
and reducing boilerplate. BioShake has Template Haskell (TH) functions for generating
instances of Pathable and Buildable, and for managing the tags. Example 6 shows how
Template Haskell (TH) is used to simplify the stage definition presented in Example 4.

Bedő (2019), PeerJ, DOI 10.7717/peerj.7223 8/13

https://peerj.com
http://edamontology.org/format_1931
http://dx.doi.org/10.7717/peerj.7223

Example 6. (Dynamic workflows)

Template Haskell (TH) can simplify Example 4 considerably. First we have the
augmented type definitions:
data Sort c = Sort c
The instances for Pathable and the various tags can be generated with the Template
Haskell (TH) splice
$(makeTypes ’’Sort [’’IsBam, ’’Sorted] [])
This splice generates a Pathable instance using the hashed path names, and also declares
the output to be instances of IsBam and Sorted. The first tag in the list of output tags
determines the file extension. The second empty list allows the definition of transient tags;
that is the tags that if present on the input paths will hold for the output files after the
stage. Finally, given a generic definition of the build
buildSort nThreads _ (paths→ [input]) [out] =
run "samtools sort" [input] ["-@", show nThreads] ["-o", out]
the Buildable instances can be generated with the splice
$(makeThreaded ’’Sort [’’IsBam] ’buildSortBam)
This splice takes the type, a list of required tags for the input, and the build function. Here,
the build function is passed the number of threads to use, the Sort object, the input object
and a list of output paths.

RESULTS AND DISCUSSION
We have presented a framework for describing and executing bioinformatics workflows.
The framework is an EDSL in Haskell built on Shake, allowing us to leverage the robustness
of Shake and also the power of Haskell’s type system to prevent many types of errors in
workflow construction. Preventing errors before execution is particularly beneficial for
bioinformatics workflows as they tend to be long running and thus catching errors during
compile reduces the debugging time significantly.

Though this library is built around Shake as the execution engine, the core value
lies in the unique abstraction and use of types to capture metadata. It is feasible to
compile a specification to a different backend instead of Shake, such as Toil (Vivian et al.,
2017) or Cromwell (Cromwell, 2015) via CWL (Amstutz et al., 2016) or WDL (OpenWDL,
2012). This would allow leveraging of the cloud and containerisation facilities of Toil
and Cromwell. The abstraction used may also be useful in other domains where long
data-transformation stages are applied, such as data mining on large datasets.

Though many errors are currently caught by the type system, there are still classes of
errors that are not. Notably, the Pathable class instance maps stages to lists of files with
unknown length. Thus, the number of files expected to be exchanged between two stages
may differ, causing a runtime error. Lists of typed length could be used to prevent this
error, however this would increase the complexity for users. BioShake attempts to strike a
balance between usability and type safe guarantees.

Bedő (2019), PeerJ, DOI 10.7717/peerj.7223 9/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.7223

CONCLUSIONS
We have presented a unique EDSL in Haskell for specifying bioinformatics workflows.
The Haskell type checker is used extensively to prevent specification errors, allowing many
errors to be caught during compilation rather than runtime. To our knowledge, this is the
first bioinformatics workflow framework in Haskell, as well as the first formalisation of
bioinformatics workflows and their attributes in a type system from the Hindley–Milner
family.

A: FULL CODE FOR EXAMPLE 1
This is a simple pipeline to demonstrate how to specify pipelines using

the bioshake framework. It will accept pairs of fastq files from the

command line, align them against a reference sequence with BWA, then

call variants on all asamples using the platypus variant caller.

> import Bioshake

> import Control.Monad

> import Data.List.Split

> import Development.Shake

> import Development.Shake.FilePath

> import System.Environment

> import System.Exit

We will align reads using BWA, sort and filter with samtools, and

finally call with Platypus

> import Bioshake.BWA as B

> import Bioshake.Platypus

> import Bioshake.Samtools as S

First, define a datatype to represent our paired-end samples on disk.

> data Sample = Sample FilePath FilePath

> instance Show Sample where

> show (Sample a b) = takeFileName (dropExtensions a) ++ "-"

> ++ takeFileName (dropExtensions b)

The default instance of Compilabe suffices for files that already

exist on disk and that do not require building

> instance Compilable Sample

Bioshake uses type classes to encode properties about stages in

the pipeline. The first property we’re going to declare is that these

samples are paired end reads. We also will declare that the input files

are FastQ files.

> instance PairedEnd Sample

> instance IsFastQ Sample

Next, we need to declare which reference the type is going to be

associated with. This involves instantiating the Referenced class and

declaring the path to the reference and the short name of the reference:

Bedő (2019), PeerJ, DOI 10.7717/peerj.7223 10/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.7223

> instance Referenced Sample where

> getRef _ = "ref.fa"

> name _ = "SL1344"

Finally, we describe how to get the paths for a Sample, which in this

case is extracted from our Sample datatype:

> instance Pathable Sample where

> paths (Sample a b) = [a, b]

Command line arguments are navly parsed: we simply assume each pair

of arguments are paths to the two paired-end FastQ files.

> parseArgs = map (/[a, b] -> Sample a b) . chunksOf 2

> main = do

> args <- getArgs

> when (null args || length args ‘mod‘ 2 /= 0)$ do

> putStrLn "error: expecting paired fastq files as input"

> exitFailure

> let samples = parseArgs args

The number of threads used has to be specified to bioshake in two

ways: the number of threads used for each stage, and the maximum number

of concurrent threads in total. Threads per job can be specified by

giving a Threads instance to each stage, or at a higher level. Here

we give Threads 1, meaning stages run single threaded, and limit the

maximum number of concurrent threads to 2 in total.

> withArgs [] $ give (Threads 1)$ bioshake 2 shakeOptions $ do

bioshake, like shakeArgs, expects Shake Rules. We can therefore want

thing and define standard Shake Rules as normal. In this case we want

our output vcf file, which we’ll call "calls.vcf".

> want ["calls.vcf"]

In addition to that, we will bring into scope the rules for indexing

bamfiles (building .bam.bai from .bam) using samtools, and similarly for

the BWA indexing rules.

> B.indexRules

> S.indexRules

Finally, we compile our workflow down to Shake Rules.

> compileRules$

We have one simple workflow in this case. Alignment and processing is

first applied to each individual sample. The samples are then pooled and

called as a group using Platypus.

> let aligned = map (/s -> s :-> align

> :-> fixMates

> :-> sortBam

> :-> markDups

> :-> addRGLine (show s)) samples in

> compile$ withAll aligned :-> call :-> out ["calls.vcf"]

Bedő (2019), PeerJ, DOI 10.7717/peerj.7223 11/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.7223

ACKNOWLEDGEMENTS
I thank Tony Papenfuss for supporting this work and helpful discussions. I also thank Leon
di Stefano and Jan Schröder for helpful discussions.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Justin Bedő is supported by a WEHI Centenary Fellowship in Rare Cancer funded by the
Stafford Fox Medical Research Foundation. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the author:
Stafford Fox Medical Research Foundation.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Justin Bedő conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Data is available at GitHub: http://github.com/PapenfussLab/bioshake.

REFERENCES
Amstutz P, CrusoeMR, Nebojša Tijanić , Chapman B, Chilton J, Heuer M, Kartashov

A, Leehr D, Mnager H, NedeljkovichM, Scales M, Soiland-Reyes S, Stojanovic L.
2016. CommonWorkflow Language. Figshare. v1.0
DOI 10.6084/m9.figshare.3115156.v2.

Carette J, Kiselyov O, Shan C-C. 2009. Finally tagless, partially evaluated: tagless
staged interpreters for simpler typed languages. Journal of Functional Programming
19(05):509–543 DOI 10.1017/s0956796809007205.

Cromwell. 2015. Cromwell: Scientific workflow engine designed for simplicity &
scalability. Trivially transition between one off use cases to massive scale production
environments. GitHub. Available at https:// github.com/broadinstitute/ cromwell
(accessed on 25 September 2018).

Di Tommaso P, ChatzouM, Floden EW, Barja PP, Palumbo E, Notredame C. 2017.
Nextflow enables reproducible computational workflows. Nature Biotechnology
35:316–319 DOI 10.1038/nbt.3820.

Bedő (2019), PeerJ, DOI 10.7717/peerj.7223 12/13

https://peerj.com
http://github.com/PapenfussLab/bioshake
http://dx.doi.org/10.6084/m9.figshare.3115156.v2
http://dx.doi.org/10.1017/s0956796809007205
https://github.com/broadinstitute/cromwell
http://dx.doi.org/10.1038/nbt.3820
http://dx.doi.org/10.7717/peerj.7223

Goodstadt L. 2010. Ruffus: a lightweight Python library for computational pipelines.
Bioinformatics 26(21):2778–2779 DOI 10.1093/bioinformatics/btq524.

Ison J, Kalas M, Jonassen I, Bolser D, UludagM,McWilliamH,Malone J, Lopez R,
Pettifer S, Rice P. 2013. EDAM: an ontology of bioinformatics operations, types
of data and identifiers, topics and formats. Bioinformatics 29(10):1325–1332
DOI 10.1093/bioinformatics/btt113.

Köster J, Rahmann S. 2018. Snakemake—a scalable bioinformatics workflow engine.
Bioinformatics 34(20):3600–3600 DOI 10.1093/bioinformatics/bty350.

Leipzig J. 2016. A review of bioinformatic pipeline frameworks. Briefings in Bioinformat-
ics 18(3):530–536 DOI 10.1093/bib/bbw020.

Mitchell N. 2012. Shake before building. ACM SIGPLAN Notices 47(9):55
DOI 10.1145/2398856.2364538.

OpenWDL. 2012. OpenWDL: Community driven open-development workflow
language. Available at http:// openwdl.org (accessed on 25 September 2018).

Sadedin SP, Pope B, Oshlack A. 2012. Bpipe: a tool for running and managing bioinfor-
matics pipelines. Bioinformatics 28(11):1525–1526
DOI 10.1093/bioinformatics/bts167.

Vivian J, Rao AA, Nothaft FA, KetchumC, Armstrong J, Novak A, Pfeil J, Narkizian
J, Deran AD, Musselman-Brown A, Schmidt H, Amstutz P, Craft B, GoldmanM,
RosenbloomK, Cline M, O’Connor B, HannaM, Birger C, KentWJ, Patterson
DA, Joseph AD, Zhu J, Zaranek S, Getz G, Haussler D, Paten B. 2017. Toil enables
reproducible, open source, big biomedical data analyses. Nature Biotechnology
35(4):314–316 DOI 10.1038/nbt.3772.

Bedő (2019), PeerJ, DOI 10.7717/peerj.7223 13/13

https://peerj.com
http://dx.doi.org/10.1093/bioinformatics/btq524
http://dx.doi.org/10.1093/bioinformatics/btt113
http://dx.doi.org/10.1093/bioinformatics/bty350
http://dx.doi.org/10.1093/bib/bbw020
http://dx.doi.org/10.1145/2398856.2364538
http://openwdl.org
http://dx.doi.org/10.1093/bioinformatics/bts167
http://dx.doi.org/10.1038/nbt.3772
http://dx.doi.org/10.7717/peerj.7223

