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Abstract

Background: In the past decade, the identification of gene co-expression has become a routine part of the analysis
of high-dimensional microarray data. Gene co-expression, which is mostly detected via the Pearson correlation
coefficient, has played an important role in the discovery of molecular pathways and networks. Unfortunately, the
presence of systematic noise in high-dimensional microarray datasets corrupts estimates of gene co-expression.
Removing systematic noise from microarray data is therefore crucial. Many cleaning approaches for microarray data
exist, however these methods are aimed towards improving differential expression analysis and their performances
have been primarily tested for this application. To our knowledge, the performances of these approaches have never
been systematically compared in the context of gene co-expression estimation.

Results: Using simulations we demonstrate that standard cleaning procedures, such as background correction and
quantile normalization, fail to adequately remove systematic noise that affects gene co-expression and at times
further degrade true gene co-expression. Instead we show that a global version of removal of unwanted variation
(RUV), a data-driven approach, removes systematic noise but also allows the estimation of the true underlying
gene-gene correlations. We compare the performance of all noise removal methods when applied to five large
published datasets on gene expression in the human brain. RUV retrieves the highest gene co-expression values for
sets of genes known to interact, but also provides the greatest consistency across all five datasets. We apply the
method to prioritize epileptic encephalopathy candidate genes.

Conclusions: Our work raises serious concerns about the quality of many published gene co-expression analyses.
RUV provides an efficient and flexible way to remove systematic noise from high-dimensional microarray datasets
when the objective is gene co-expression analysis. The RUV method as applicable in the context of gene-gene
correlation estimation is available as a BioconductoR-package: RUVcorr.
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Background
With the advent of affordable high-throughput technolo-
gies, numerous gene expression studies involving large
numbers of samples have been conducted. This develop-
ment inspired ongoing research into analysis tools that
allow the systematic interrogation of gene organization
using expression data. Gene co-expression methods are
one of the better-known examples of such tools. They
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have been routinely used in the construction of biolog-
ical pathways (i.e. [1]), gene annotation [2, 3], and even
for assessing preservation of biological systems across dif-
ferent species [4]. Gene co-expression methods equate
dependence between expression levels of two genes with
the presence of a potential functional interaction. While
there are several statistically appropriate and arguably
better ways to measure such dependence, the Pearson
correlation coefficient (PCC) remains the most widely
adopted.
A weakness of the PCC is its inaccuracy when pairs of

observations are not independent. Even though this prob-
lem is well known in statistics [5–8], it is often overlooked
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in the context of high-dimensional gene expression stud-
ies where sampling and the data generation process can
produce dependencies. In the most extreme case, unac-
counted dependencies between samples lead to an almost
random sign in the PCC [9]. Consequently, in the pres-
ence of sample dependencies the PCC displays a high
false-positive rate as well as a high false-negative rate
of identified gene-gene relationships. Unfortunately, for
large gene expression studies dependencies between sam-
ples are the norm. These are introduced by systematic
noise, whose sources are often unknown.
The sources of systematic noise in gene expression

studies are plentiful, arising from biological and techni-
cal factors [10]. A much-discussed example is the batch
effect. Interestingly, batches themselves do not constitute
the actual cause, rather technical or biological differences
between batches result in systematic noise. The sheer
scale of large gene expression studies means the introduc-
tion of systematic noise is very hard to avoid. Systematic
noise is typically introduced through batch effects or
sources, such as the involvement of several research cen-
ters, different sample sources and/or platforms.Moreover,
it is generally unlikely for large gene expression stud-
ies that all sources of systematic noise are identified and
directly measured. Indeed, in our experience the accom-
panying sample documentation of large gene expression
studies is often partially or completely missing making an
a priori investigation of potential sources of noise even
more difficult.
Both a direct and an indirect approach for dealing

with systematic noise whenmeasuring gene co-expression
in high-dimensional gene expression studies exist. The
direct approach involves accounting for sample depen-
dencies during the estimation of gene co-expressions.
Examples include the mixed model based correlation
measures of Teng and Huang [9] as well as more recently
an approach by Jauhiainen et al. [11]. In contrast, the
indirect approach first attempts to remove the system-
atic noise and then applies the PCC (or other measures
of co-expression). A direct approach is generally prefer-
able, however to our knowledge no generally applicable
approach exists yet. The approach by Teng and Huang
relies on replicate samples, which might not always be
available, while the approach by Jauhiainen et al. is cur-
rently only working for small numbers of genes. Finally,
the indirect approach with its cleaning step and corre-
lation estimation step is more natural in the world of
gene expression studies, because it has the benefit of
flexibility. For example, more complex analytical tools,
such as gene network construction methods, can still
be applied.
A large number of methods for the removal of sys-

tematic noise in gene expression data have been pro-
posed and compared. However, to our knowledge, these

have never been systematically studied when the goal is
the estimation of gene co-expression. Indeed, many of
the existing methods, such as surrogate variable analy-
sis [12] and ComBat [13], are unsuitable in this context.
These methods depend on knowing the factor of interest,
as is the case for differential expression analysis. Other
tools, like distance weighted discrimination [14], crucially
use information on batches in order to clean the data.
Since information on batches is not always available for
large gene expression studies and may not reflect the
main sources of noise, such tools are likewise inadequate.
Therefore, until recently, researchers relied on procedures
focusing on the removal of scaling effects, such as quan-
tile normalization (QN) [15], or used raw data when
estimating gene co-expression. Such standard cleaning
approaches have in the past been criticized, as they tend
to degrade the correlation structure of gene expression
signals [16, 17].
The lack of suitable cleaning procedures that remove

systematic noise without the need for a factor of inter-
est and/or sample documentation, led Jacob et al. [18] to
develop naive RUV-random, an effective data driven pro-
cedure (“RUV” stands for “remove unwanted variation”).
Unlike procedures removing only scaling effects, naive
RUV-random can deal with multivariate noise behav-
ior, i.e. situations where genes are not equally affected
by systematic noise. We believe that this makes naive
RUV-random much better suited at removing unwanted
dependencies between samples that are introduced by sys-
tematic noise and can lead to inaccurate PCC estimates.
Like RUV-2 [10], naive RUV-random makes use of so-
called negative control genes. Negative control genes are
genes that are assumed to be corrupted by the systematic
noise, but that also, crucially, do not exhibit any biological
variation of interest. Any variation observed in the nega-
tive control genes can therefore be assumed to be noise,
and the negative controls can thus be used to learn the
structure of this noise. Unlike RUV-2, which is intended
for use only in differential expression analyses, naive RUV-
random is intended for more general use, including the
estimation of gene co-expression, which has however not
been investigated until now. Nevertheless, it should be
noted that, relative to RUV-2, naive RUV-random is fairly
sensitive to confounding between the biological factor of
interest and the systematic noise.
In this paper, we demonstrate that naive RUV-random

allows improved estimation of co-expression from gene
expression data via the PCC. In particular, we expose
some shortcomings of the frequently employed data
cleaning strategy of combining background correction
(BC) [19] and QN when the interest is gene co-
expression. To this end, we firstly conducted a simula-
tion study; the results of which can be replicated using
our R-package RUVcorr. The package also implements



Freytag et al. BMC Bioinformatics  (2015) 16:309 Page 3 of 17

the naive RUV-random method, modified for gene co-
expression analyses, and incorporates useful visualization
tools. The simulation study examines the behavior of the
cleaning strategies under the null hypothesis of no gene
co-expression and sets of genes with gene co-expression
that vary in their dependence with systematic noise.
Secondly, we apply our method and competing meth-
ods to five large, previously published data sets of gene
expression in normal human brains of foetuses, children
and adults [20–24]. Since these datasets differ in sample
size, design, platform, etc. we believe that they provide a
suitably thorough testing ground.
In the absence of a known truth for the real data,

we largely assess the performance of different cleaning
approaches by the consistency of their results across the
five data sets. Here, results refer to candidate epileptic
encephalopathy (EE) genes prioritized using a method
based on the PCC similar to the one used in the publica-
tion by Oliver et al. [25]. EEs are a group of devastating
epilepsies whose genetically heterogeneous basis has yet
to be fully understood. With the help of naive RUV-
random, we can identify the most promising genes in
the candidate list that should be the focus of further EE
studies. Importantly, some of the identified genes were
recently independently validated as true EE genes.
The remainder of this article is organized as follows. The

‘Results’ section presents findings from the simulation
study and the application to the five real datasets. In the
‘Discussion’ section we conclude by discussing the impli-
cations of our results and the necessary changes in the
approach to analyzing gene expression data when aiming
to comprehend gene organization. Finally, the ‘Methods’
section describes naive RUV-random in the context of
estimating gene co-expression as well as providing some
remarks on the practical application of the procedure.
Note that for simplicity instead of naive RUV-random we
simply use RUV-random for the remainder of this article.
We also give descriptions of the real datasets that were
used.

Results
Results of the simulation study
The simulations were conducted using the linear model of
biological signal plus systematic noise plus random noise,
which is proposed by the RUV framework. While real
data may not reflect this model perfectly, we propose that
these simulations will shed light on the properties of dif-
ferent cleaning approaches. In particular, we compared
using raw simulated data, simulated data cleaned with
background-correction (BC), simulated data cleaned with
BC and quantile-normaliztion (QN) and simulated data
cleaned with RUV-random. Each method was applied to
1000 simulations, each with 500 genes with known corre-
lation structure. (For more information of the simulation

design refer to Additional file 1). In order to evaluate
whether correlation estimates are close to the truth, we
use the percentage of estimates with the wrong sign (WS)
and a norm similar to the squared Frobenius norm:

FN2 = 2
∑n

i=1
∑n

j=i+1
(
arctanh(r̂i,j) − arctanh(ri,j)

)2

n(n − 1)
,

where n is the number of genes that are considered. The
term r̂i,j refers to the estimated PCC for genes i and j, while
ri,j refers to the true correlation. Note that this norm can
be interpreted as the squared average error of the Fisher
z-transformed correlation estimates.
We first examined the behavior of the different

approaches under the null hypothesis of no true correla-
tion between genes (Table 1). While cleaning simulation
data with BC and BC in combination with QN (BC+QN)
offered little improvement over the raw data, correlation
estimates were closer to the truth for simulation data
treated with RUV-random. We next investigated non-null
simulation scenarios where genes were moderately cor-
related with each other. We observed similar results as
under the null hypothesis (Table 2). Nearly 50 % of the
correlation estimates had the wrong sign for standard
approaches. In contrast RUV-random produced correla-
tions that had the wrong sign for less than 1 % of corre-
lation estimates. We also tried combining RUV-random
with the two standard cleaning approaches with little suc-
cess. Overall RUV-random applied to the raw simulation
data, without BC or QN, clearly yielded the best results
(see Additional file 1). However, it should be noted that
we did not simulate measured background noise. It is con-
ceivable that in some cases the removal of such measured
background noise could also be beneficial prior to the
application of RUV-random.
As BC and BC+QN exhibited inferior performance than

RUV-random for our simulations, we concentrated on the
properties of RUV-random. In particular, we explored the
performance of RUV-random when the absolute values of
correlations between genes were varied and when corre-
lations between signal and noise are introduced. Table 3
shows that the absolute value of the simulated gene-gene
correlations did not influence the performance of naive
RUV-random. However the ability to correctly estimate

Table 1 Performance of different cleaning approaches when
there is no genuine correlation between genes (based on 1000
simulation runs)

Method Raw BC BC+QN RUV-random

FN2 0.126 0.124 0.125 0.001

The performance was measured using a measure similar to the squared Frobenius
norm (FN2) measure (explained in the text), which should be close to 0. All
parameter choices and details of the simulation can be found in Additional file 1. All
standard deviations were < 0.001
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Table 2 Performance of different cleaning approaches when
there is moderate genuine correlation between genes (based on
1000 simulation runs)

Method Raw BC BC+QN RUV-random

%WS 48.2 48.1 48.0 0.7

FN2 0.423 0.420 0.414 0.005

The performance was measured using the proportion of estimates with the wrong
sign (WS). While FN2 refers to a squared Frobenius norm (FN2) measure (explained
in the text), which should be close to 0. All parameter choices and details of the
simulation can be found in Additional file 1. All standard deviations for FN2 were
< 0.001

gene-gene correlations deteriorated with increasing cor-
relation between signal, X, and systematic noise, W (see
Table 4), which is expected. Note that further simulation
scenarios concerning the choice of negative control genes
can be found in Additional file 1.

Results of the real data application
We generated the following four versions for each of the
five real datasets:

1. raw, non-normalized data (Raw)
2. background-corrected data (BC) [19]
3. data treated with a combination of

background-corrected and quantile-normalized
(BC+QN) [15]; this method is favored during the
pre-processing of many gene expression studies [26]
(Note that for the Colantuoni et al. study we applied
background-correction in combination with
loess-normalization (BC+LN) [27] instead.)

4. data cleaned using the outlined RUV-random
approach (RUV-random) (for details see Additional
file 1) (Note that for the Hernandez et al. study we
mostly used background-correction in combination
with RUV-random (BC+RUV-random) for reasons
explained below.)

Note that for both the Hawrylycz et al., Miller et al. and
Hernandez et al. studies we also included their normalized

Table 3 Performance of RUV-random for different average
absolute value of gene-gene correlations (based on 1000
simulation runs)

Average gene-gene correlation % WS FN2

0.2586 2.0 0.006

0.2905 1.4 0.005

0.3384 0.9 0.004

0.4225 0.5 0.008

The performance was measured using the percentage of estimates with the wrong
sign (WS). While FN2 refers to a squared Frobenius norm (FN2) measure (explained
in the text), which should be close to 0. All parameter choices and details of the
simulation can be found in Additional file 1. All standard deviations for FN2 were
< 0.001

Table 4 Performance of RUV-random when biological signal and
systematic noise are differently correlated (based on 1000
simulation runs)

Average Cor(W , X) %WS FN2

0.1127 8.3 0.138

0.1634 14.5 0.211

0.2015 21.6 0.281

0.2341 27.7 0.341

The performance was measured using the percentage of estimates with the wrong
sign (WS). While FN2 refers to a squared Frobenius norm (FN2) measure (explained
in the text), which should be close to 0. All parameter choices and details of the
simulation can be found in Additional file 1. All standard deviations for FN2 were
< 0.001

data in our comparison, as they use a data normalization
approach beyond BC+QN [24, 28].

Comparison using correlation densities
Since for real datasets the truth is unknown, it is diffi-
cult to evaluate the performance of different microarray
data cleaning procedures. However, genes with known
correlation structure provide one way to judge perfor-
mances. Using histograms or smoothed density plots of
the correlation of such genes we can check whether dif-
ferently cleaned versions of the data result in the expected
correlation structures. Firstly, we use a set of 1000 ran-
domly sampled genes that we expected to mostly have
correlations about 0. In fact, given a large enough set of
random genes the density of their correlations is expected
to be a roughly normal distribution centered around 0, i.e.
mode 0. Ploner et al. [17] made a similar assumption in
their work on the effect on low-level standardization of
correlation estimates; noting that any random sample of
pairs of genes ‘[...] will contain only a small percentage of
unequivocal biological relationships’. Secondly, we used a
set of genes involved in the polycomb repressor complex
2 (PRC2). These genes, EED, EZH2, RBBP4, RBBP7 and
SUZ12, are known to be tightly co-regulated, as they are
required for long term epigenetic silencing of chromatin
in all multicellular organisms. Thus, we expect strong
positive correlations between these genes.
When using raw data correlations between pairs of

random genes generally resulted in strongly positive cor-
relations (compare Fig. 1) implying that systematic noise
inflates gene co-expression estimates. The only excep-
tion was the Miller et al. dataset where the density of
the correlation values of pairs of random genes was only
slightly shifted to the right of zero. The application of BC
mostly resulted in positive correlations, even though for
most datasets these were decreased compared to the raw
data. The exception was the Kang et al. dataset where
we observed correlation values to increase further. The
BC+QN (or BC+LN) versions of all datasets, except the
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Fig. 1 (See legend on next page)
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(See figure on previous page)
Density curves of the correlation between random genes for differently cleaned versions of all datasets. a Correlation density curves as estimated
from the raw, BC, BC+QN and RUV-random versions of the Hawrylycz et al. data. The dashed line (purple) represents the density of the correlations
between random genes estimated from the version of the data normalized by the authors. b Correlation density curves estimated from the raw, BC,
BC+QN and RUV-random versions of the Miller et al. data. The dashed line (purple) represents the density of the correlations between random
genes estimated from the version of the data normalized by the authors. c Correlation density curves estimated from the raw, BC, BC+QN and
RUV-random versions versions of the Kang et al. data. d Correlation density curves estimated from the raw, BC, BC+LN and RUV-randomversions of
the Colantuoni et al. data. e Correlation density curves estimated from the raw, BC, BC+QN and RUV-random versions of the Hernandez et al. data.
The dashed line (purple) represents the density of the correlations between random genes estimated from the version of the data normalized by
the authors. f Correlation density curves estimated from the raw, BC, BC+QN and BC+RUV-random versions of the Hernandez et al. data. Note that
here we display BC+RUV-random instead of RUV-random. The histogram in the background of all panels represents the density generated when
using the raw version of each dataset

Kang et al. study, resulted in correlation density curves
tightly centered around 0.
RUV-random treated data resulted in correlation den-

sity curves that overall fitted our expectations best. In
particular, the density curves were often tighter and more
accurately centered around 0. The exception is the corre-
lation density curve generated with the RUV-random ver-
sion of the Hernandez et al. study. Because the curve was
shifted to the right, we combined BC and RUV-random
(BC+RUV-random) to clean this dataset. Interestingly,
the density curves produced by both BC+RUV-random
and BC+QN had roughly the same shape as the authors’
own normalization. The same also held in the case
of the Miller et al. study, where RUV-random pro-
duced a very similar density curve to the authors’ own
normalization.
Studying correlation density of PRC2 gene pairs sup-

ported that RUV-random is generally able to retrieve
genuine gene-gene correlations (compare Fig. 2). For most
datasets, we found density curves as estimated from the
RUV-random version of the datasets displaying density
curves that were situated in the positive domain in line
with our expectations. The exceptions are the Colantuoni
et al. and the Hernandez et al. datasets, which demon-
strated wide distributions spanning the entire domain but
with heavy right tails. In comparison the density curves
as estimated from BC+QN versions of the datasets nearly
always gave wider distributions. Even though the BC and
raw versions of all datasets showed the strongest positive
correlations, in most cases these density curves are very
similar to the density curves estimated from correlations
between random pairs of genes.

Comparison using empirical cumulative distribution
functions
A second option to evaluate the performance of different
cleaning strategies is to compare the empirical cumulative
distribution functions (ECDF) curves of the absolute value
of the gene-gene correlations of positive and negative con-
trol. If the cleaning procedure applied to the data works
well then we expect an easily visible difference between

the ECDF curves of the set of random genes and a set of
known EE genes. Like the PRC2 genes, we expect the EE
genes to be co-expressed as they are potentially part of the
same disease pathway.
Except for the Hawrylycz et al. dataset of developing

brain, RUV-random corrected data showed the biggest
difference between the ECDF curves of EE genes and
random genes amongst all investigated cleaning proce-
dures (see Figures in Additional files 2–6). However,
the disparity between the various cleaning procedures
strongly depended on the technology and the study
design. The application of RUV-random results in the
biggest improvements for the Kang et al. study, which
was generated using Affymetrix technology. There is
also a clear improvement in the signal from the RUV-
random corrected data compared to the other cleaning
procedures for the custom two-color microarray used
in the Colantuoni et al. study. The Hawrylycz et al.
dataset produced with an Agilent custom array and the
Hernandez et al. dataset produced with a commercial Illu-
mina array also showed bigger separation between the
ECDF curves of the random set of gene and the EE genes
for the RUV-random treated or BC combined with RUV-
random treated data. However, RUV-random did not
show any improvement over BC+QN for the Miller et al.
study, which was generated using a commercial Agilent
array.

Comparison using p-value distributions
As a third comparison tool histograms of p-values
obtained from testing the null hypotheses that the true
correlations between random pairs of genes are zero.
While we expect some of the correlations to be truly non-
zero, and therefore their p-values to be significant, there
should be many gene pairs that have 0 correlation. Ideally,
their p-values should be uniformly distributed.
The p-value histograms of the raw version of all datasets

showed extremely non-uniform distributions (compare
Figs. 3, 4, 5, 6 and 7), for the Kang et al. the Colantuoni
et al. and the Hernandez et al. studies the p-value his-
tograms of the respective BC versions of the data did not
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Fig. 2 (See legend on next page)
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(See figure on previous page)
Density curves of the correlation between PRC2 genes for differently cleaned versions of all datasets. a Correlation density curves as estimated from
the raw, BC, BC+QN and RUV-random versions of the Hawrylycz et al. data. The dashed line (purple) represents the density of the correlations
between random genes estimated from the version of the data normalized by the authors. b Correlation density curves estimated from the raw, BC,
BC+QN and RUV-random versions of the Miller et al. data. The dashed line (purple) represents the density of the correlations between random
genes estimated from the version of the data normalized by the authors. c Correlation density curves estimated from the raw, BC, BC+QN and
RUV-random versions versions of the Kang et al. data. d Correlation density curves estimated from the raw, BC, BC+LN and RUV-randomversions of
the Colantuoni et al. data. e Correlation density curves estimated from the raw, BC, BC+QN and RUV-random versions of the Hernandez et al. data.
The dashed line (purple) represents the density of the correlations between random genes estimated from the version of the data normalized by
the authors. f Correlation density curves estimated from the raw, BC, BC+QN and BC+RUV-random versions of the Hernandez et al. data. Note that
here we display BC+RUV-random instead of RUV-random. The histogram in the background of all panels represents the density generated when
using the raw version of each dataset

demonstrate any improvement. The application of RUV-
random resulted in p-value distributions that were closest
to the uniform distribution for all studies. However, for
the Hawrylycz et al. the Miller et al. and the Hernandez
et al. datasets BC+QN and RUV-random produced very
similar distributions.

Comparison using ranks of correlations
The fourth method for assessing performance focuses on
individual correlations between genes known to be co-
regulated. We used this approach because only a small
proportion of genes will genuinely interact with each
other, thus aggregate assessments can mask performance

Fig. 3 P-value histogram based on a t-test of the null hypotheses that the correlations between random pairs of genes in the Hawrylycz et al.
dataset are zero. The count of the first bin [ 0 − 0.01) can be found in the caption of each plot
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Fig. 4 P-value histogram based on a t-test of the null hypotheses that the correlations between random pairs of genes in the Miller et al. dataset are
zero. The count in the first bin [ 0 − 0.01) can be found in the caption of each plot

gains for this subset. To this end, we rank the correla-
tions between all pairs of 1000 randomly selected genes
and the EE genes (including the correlations between ran-
dom genes and EE genes) according to their absolute value
(highest to lowest). It is now possible to compare different
cleaning approaches against a reference, such as the ranks
calculated from the raw data. In particular, for every pair
of EE genes the difference between its rank as calculated
from the raw data and its rank calculated from a cleaned
version of the data can be determined. If the cleaning pro-
cedure works, we expect a proportion of the ranks of the
EE genes to be positive, indicating that their rank is lower
when using the cleaned data than when using the raw data.
We do not necessarily expect the ranks of all EE genes to
decrease, as we only assume that the EE genes form a net-
work and thus not all genes need to interact with each
other.
The difference between the ranks of EE gene pairs as

determined from the raw data and the cleaned versions
of the data supported our previous results (see Fig. 8).
For all datasets except the Miller et al. dataset, ranks

as determined by the RUV-random version of the data
experienced the strongest decrease in ranks compared to
ranks determined from the raw data. While not all pairs
of EE genes displayed a stronger correlation compared to
correlations between random pairs of genes after cleaning
with RUV-random a significant proportion did. This indi-
cates that the network of EE genes would have been more
easily discovered when using the RUV-random version of
the data.

Using prioritization to identify promising EE candidate genes
The final comparison tool we applied was in silico gene
prioritisation, which allowed us to assess which clean-
ing method leads to greater consistency between studies.
Gene prioritisation methods [29, 30] identify the most
promising genes from a list of candidates lacking adequate
support to corroborate their involvement in a specific dis-
ease pathogenesis. Establishing which genes are promising
is important in order to effectively allocate resources for
follow-up efforts, as it is often impossible to perform addi-
tional studies such as functional analysis or sequencing of
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Fig. 5 P-value histogram based on a t-test of the null hypotheses that the correlations between random pairs of genes in the Kang et al. dataset are
zero. The count in the first bin [ 0 − 0.01) can be found in the caption of each plot

many candidate genes in large cohorts for all candidates.
The underlying concept of gene prioritization is referred
to as “guilt-by-association”. Briefly, this concept supposes
that all genes that are genuinely involved in the disease
mechanism are part of the same or related biological net-
works. It should therefore be possible to identify disease
genes in healthy tissue via gene co-expression, assuming
that the co-expression occurs at the transcriptional level,
which may not always be the case. To this end, many gene
prioritization approaches utilize large, publicly available
gene expression datasets, most often derived from tran-
scriptomic analysis of lymphocyte derived RNA, the most
easily obtained source of human RNA.
Here, we use gene prioritization of EE candidate genes

in order to further illustrate the strength of the RUV-
random cleaning procedure. At the time of the investiga-
tion (September 2014), there were 33 confirmed EE genes
and 223 candidates, derived from two major sequencing
studies. For more information on the choice of known EE
and candidate EE genes see Additional file 1. We prior-
itized these candidates by applying a gene prioritization

approach, which is largely the same as the one applied by
Oliver et al. (for more details on the gene prioritization
approach refer to Additional file 1) but using differently
processed gene expression data. We compare the results
of the prioritization results on the various versions of the
datasets by assessing their consistency across different
studies.
We demonstrated that the application of RUV-random

(in case of the Hernandez et al. dataset BC+RUV-random)
leads to greater consistency between studies. With RUV-
random 7 of 160 shared gene candidates were prioritized
in all five datasets. The next best performing method,
BC+QN, only prioritized 3 genes in common between
all five datasets (using the raw data we were also able
to prioritize 3 candidates in all datasets). Note that for
the BC version of the Kang et al. dataset prioritiza-
tion was impossible, as we could not find a threshold
to define significant correlations. When we excluded the
Kang et al. dataset in order to also allow comparison
with BC, RUV-random prioritized 11 candidates, while
the next best method BC+QN only prioritized 9 genes in



Freytag et al. BMC Bioinformatics  (2015) 16:309 Page 11 of 17

Fig. 6 P-value histogram based on a t-test of the null hypotheses that the correlations between random pairs of genes in the Colantuoni et al.
dataset are zero. The count in the first bin [ 0 − 0.01) can be found in the caption of each plot

all four datasets. Furthermore, RUV-random treated data
leads to the biggest number of prioritized candidates in 3
of 5 datasets (see Table 5). In one of the two other datasets,
RUV-random only priortizes one gene less than the next
best method. More details on prioritization results can be
found in Additional file 1.

Discussion
The presence of systematic noise in large microarray gene
expression datasets makes reliable inference of gene co-
expression challenging. Frequently applied cleaning pro-
cedures, such as BC and QN, remove systematic noise
in such a way that genuine gene-gene interactions may
not be able to be retrieved from the data. Our simula-
tions indicated that nearly half of the gene-gene correla-
tion estimates, as computed via the PCC, had the wrong
sign in the presence of moderate systematic noise. These
results are supported by similar earlier findings for QN
by Qiu et al. [16] and BC by Ploner et al. [17]. In order
to overcome shortcomings of standard cleaning proce-
dures researchers (for examples see Kang et al. [20] and

Hawrylycz et al. [22]) often concentrate on a subset of
the genes deemed to be more reliable. This strategy does
not necessarily result in power reduction for global co-
expression analysis. However, it can be detrimental for
approaches like in silico prioritization, because genes per-
taining to the research question might be excluded.
Here we described the usage of RUV-random in the con-

text of estimating gene-gene correlations. RUV-random
in the context of estimating gene-gene correlations is
made available to others through the accompanying
BioconductoR-package RUVcorr. Our simulation
study demonstrated good performance in various sce-
narios, including scenarios where large proportions of
negative control genes are wrongly specified. The results
generated from the five datasets cleaned using RUV-
random supported the simulation results. Applications
of RUV-random to PRC2 genes known to have strong
gene-gene correlations showed improved performance
in comparison with standard normalization procedures.
Comparison with the original approaches used in the
studies, were not always possible as the normalization
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Fig. 7 P-value histogram based on a t-test of the null hypotheses that the correlations between random pairs of genes in the Hernandez et al.
dataset are zero. The count in the first bin [ 0 − 0.01) can be found in the caption of each plot

procedures applied were not suitable to correlation analy-
sis or the respective data was not available.
The impact of RUV-random depends on the technol-

ogy that produced the data as well as the amount of
systematic noise. Treatment with RUV-random improved
the Kang et al. dataset generated using the Affymetrix
technology the most, out of all five datasets. In con-
trast, there were no benefits, but also no losses, when
applying RUV-random to the Miller et al. study. This
may be explained by the exceptionally high quality of
the raw data. Creating such high quality data was pos-
sible because the researchers could draw on experience
with protocols and technology gained during the Hawry-
lycz et al. study. In particular, they were able to reduce
non-biological biases by using the same sample capturing
method throughout the study (personal correspondence
with the authors). Furthermore, randomization of sam-
ples across batches reduced sources of technical noise.
The impact of RUV-random was also negligible for the
Hernandez et al. dataset, which was generated using a

commercial Illumina array. In combination with BC RUV-
random did, however, produce convincing results for this
dataset.
While RUV-random was always an improvement com-

pared to BC, it did not necessarily give better results
than BC+QN for all examined datasets. However, it did
give the most consistent results across various differ-
ent microarray technologies. This makes this cleaning
procedure especially suited towards cross-study compar-
isons. This was also highlighted by the reproducibility of
the RUV-random prioritization results of a set of candi-
date EE genes across all five datasets. No other method
achieved such high reproducibility. Moreover, most of
the prioritized EE candidate genes have since been inde-
pendently replicated (see Additional file 1 for a full list).
This includes the gene DNM1; a gene that was recently
observed in five individuals with epileptic encephalopathy
to harbor de novo mutations [31].
RUV-random only works well when it is applied with

care to datasets with a minimum sample size of 100.
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Fig. 8 Scatterplots of the difference between ranks of EE gene pairs as obtained from the raw data and a different version of the data. The ranks
were determined using the absolute value of the correlations of gene pairs obtained from 1000 randomly selected genes and EE genes. Each panel
shows a different dataset
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Table 5 Number of EE candidate genes prioritized in each
version of each dataset. The prioritization method is discussed in
detail in Additional file 1

Study Raw BC BC+QN RUV-random

Hawrylycz et al. 84 80 75 83

Miller et al. 80 82 84 86

Kang et al. 48 -a 33 62

Colantuoni et al. 33 42 43 44

Hernandez et al. 137 58 65 67b

aPrioritization for the background-corrected Kang et al. dataset was not possible as
no cutoff value for significant correlations could be defined
bAs discussed earlier, we use the version of BC+RUV-random for this dataset

Sample sizes smaller than this are not suitable for co-
expression analysis in most cases. Investigators need to
thoroughly examine their parameter choices using appro-
priate control genes. On the one hand, this complexity
might discourage potential users. On the other hand,
these parameters permit enormous flexibility as they
let the investigator determine how aggressively the data
is cleaned. This will depend on the research question.
Furthermore, investigators should be aware that RUV-
random breaks down when the genuine biological signal
and the systematic noise are too correlated. However, at
present no method exists that can deal with this com-
plex situation. Since it is difficult or even impossible to
know whether this is indeed the case for a dataset in ques-
tion, this presents an important area for further research.
Another important research area is the application of
RUV-random to other types of data. In particular, it would
be interesting to apply RUV-random to RNA-seq data.
Unlike microarrays, RNA-seq data can reveal sequence
variations and detect novel transcripts. In addition it is
more comprehensive (subject to depth of sequencing),
theoretically able to analyse all expressed genes and other
RNA producing genomic regions. In principle, RNA-
seq data, summarized to reads per kilobase per million
should also be suitable for RUV-random correction, how-
ever there are still relatively few large RNA-seq datasets
suitable for gene co-expression analysis.
Finally, the present paper raises concerns about the

many already published papers and methods aiming to
infer gene co-expression frommicroarray data. Unless the
data is exceptionally free of systematic noise the results of
such inferences have little in common with the underlying
biological mechanisms. It is likely that this problem also
affects newer technologies, like RNA-seq. Therefore we
believe that the microarray community needs to change
their approach to data cleaning in general. Instead of cre-
ating one “cleaned” version of the dataset, datasets should
be cleaned with a particular objective in mind.

Methods
RUV focused on correlation estimation
The RUV procedure is based on the assumption that
the data can be represented as the following multivariate
linear model:

Y = Xβ + Wα + ε

with Y ∈ R
m×n, X ∈ R

m×p, β ∈ R
p×n, W ∈ R

m×k ,
α ∈ R

k×n and ε ∈ R
m×n. In other words, the gene expres-

sion on a log-2 scale of n genes for m samples, denoted by
the matrix Y, can be expressed as a linear combination of
the genuine signal, Xβ , some systematic noise, Wα, and
some random noise, ε (assumed to be εj ∼ N(0, σ 2

ε Im), for
j = 1, . . . , n). This model has been found to be effective
in many studies, see [10]. The parameter X is also referred
to as the factor of interest, where p denotes its dimen-
sionality, which is unknown. The matrix W contains the
k unobserved covariates that introduce systematic noise
(note that k is also unobserved). The matrices β and α

are unobserved coefficients that determine the influence
of their relevant components on a particular gene.
In 2012, Gagnon-Bartsch and Speed [10] provided esti-

mators for W and α in the case of known X. They exploit
the fact that some genes are known to be unrelated to the
factor of interest, so called negative controls:

Yc = Wαc + εc

where the index c indicates the columns of the negative
control genes. The matrix W is estimated by performing
a factor analysis on Yc. The coefficients β and α are then
estimated by regressing Y on X and Ŵ . Jacob et al. [18]
considered the case in which X is unobserved. In this case,
W is still estimated by performing a factor analysis on
Yc. However, since X is unobserved, it is no longer pos-
sible to estimate β and α by regressing Y on X and Ŵ .
Instead, to estimate α, Y is regressed on Ŵ alone. Then
Ŵ α̂ is subtracted fromY to produce cleaned dataset. Note
that, because Y is regressed on Ŵ alone, the resulting
estimate of α will be biased if X and W are correlated.
If indeed X and W are correlated, the net effect of this
bias is that some of the biological variation of interest will
be removed along with the noise. This is a serious con-
cern, particularly because the correlation of X and W is
generally unknown in practice. To partially mitigate this
problem, RUV-random uses ridge regression when esti-
mating α. While this does not eliminate the potential for
bias, it does allow the user to control how aggressively the
noise — and possibly the signal — are to be removed.
In the context of estimating gene co-expression we

found that it is advisable to mean center each gene across
samples. This is because the estimation of such an inter-
cept through RUV-random can lead to the introduction
of spurious correlations in some special cases. Note that
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the calculation of most correlation measures, like the
PCC and Spearman’s correlation coefficient, involves the
removal of such offsets in any case.
The RUV-random procedure for cleaning gene expres-

sion data when the interest lies in the calculation of
gene-gene correlations can be summarized in four simple
steps:

1. Center the data; Y ∗ = (Im − 1
mJm)Y , where

Jm ∈ R
m×m and Ji,j = 1 for all (i, j) and Im is the

m × m identity matrix.
2. Estimate Ŵ by factor analysis on Y ∗

c , the centered
expression values for the negative control genes. For
example, this can be achieved using singular value
decomposition (SVD) Note that this step requires the
choice of an estimate for k, the dimensionality of the
systematic noise.

3. Estimate α̂ by ridge regressing of Y ∗ on Ŵ ;
α̂ = (Ŵ ′Ŵ + ν)−1Ŵ ′Y ∗, where ν ≥ 0 is the ridge
parameter. The ridge parameter ν also needs to be
chosen by the researcher.

4. Finally, Ŵ α̂ can be removed from Y ∗ to obtain the
noise removed, centered gene expression data.

Some remarks on the practical application of RUV-random in
the context of gene-gene correlations
While the RUV-random procedure is easy to apply and
computationally efficient, the process requires its user
to make some choices concerning negative control genes
and parameters. These require judgement of the ana-
lyst and may not be straightforward. The most effective
way of making these choices is with the research ques-
tion of interest in mind. Here, we will briefly discuss
how to select negative control genes and ways to judge
whether the parameter choices are suitable. A more thor-
ough discussion on this issue, as well as the effects of
wrongly specifying ν and k̂, can be found in the work by
Gagnon-Bartsch et al. [32].
Negative control genes are genes that are genuinely

unassociated with the factor of interest and thus allow
researchers to learn about the true nature of systematic
noise in the data set. Ideally negative control genes
should be chosen using prior biological information. For
example, housekeeping genes are often a good choice
[10, 18, 32]. Housekeeping genes are genes that are
required for the maintenance of basic cellular activities,
such as metabolism. The expression levels of these house-
keeping genes are expected to be fairly constant. Pub-
lished lists of housekeeping genes are available [33]. One
method commonly used to discover housekeeping genes
is to identify genes whose observed expression levels are
fairly constant over a wide range of biological states. This
is the approach of Eisenberg and Levanon. In this paper
we attempt to discover negative controls using a similar

strategy. Details and a cautionary discussion are provided
in Additional file 1.
Judging whether parameter choices for k and ν are

suitable should also be performed with the research ques-
tion in mind. In particular, genes that are associated with
one’s research interest and are known to be correlated
with each other can be used as positive control genes. A
choice of parameters that results in strong correlations
between such positive control genes and weaker correla-
tions between a random set of genes is judged successful.
Researchers can determine this by looking at histogram
plots as well as plots of ECDF curves of these correla-
tions. Note that ECDF curves are often easier to interpret
when comparing correlation distributions of differently
sized gene sets. Additionally, Gagnon-Bartsch and Speed
[10] suggest the use of relative log expression (RLE) plots
for making reasonable parameter decisions. In the case
of large dataset applications of RUV-random, such as the
one encountered here, it is useful to modify the original
RLE plots (see Additional file 1). Finally, we found prin-
cipal component analysis (PCA) plots colored by known
sources of unwanted variation very helpful in ascertaining
whether all known systematic noise had been sufficiently
removed.

Five large microarray datasets on gene expression in the
human brain
The study of gene co-expression in postmortem human
brains critically informs our understanding of the molec-
ular mechanisms of neurological disorders. However, the
measurement of gene expression in postmortem brain tis-
sue is complicated by numerous factors [34]. While the
manner of death, agonal state, antemortem medication
and etc. influence gene expression, differences in tissue
handling and storage can also introduce complications.
Because of this, careful study design and robust methods
for gene expression data generation, including technical
controls, are very important, however difficult to achieve.
Hence, data cleaning is a crucial and necessary part of any
analysis of gene expression data gained from any tissue,
including human brain tissue where these effects may play
an even larger role.
In this paper we use five large datasets on the tran-

scriptome of the human brain to demonstrate the merits
of the RUV-random procedure.Consent from next-of-kin
was obtained in all cases for all studies and approval of all
studies was granted to the authors of the primary papers
that produced the data that was used in this paper. The
underlying study designs of these datasets vary consid-
erably (Table 6). One of the main differences between
the studies is the number of samples analyzed for each
brain. While the studies of developing and adult brains by
Hawrylycz et al. and Miller et al. concentrated on obtain-
ing a fine-scale atlas of the gene expression in few human
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Table 6 Study design underlying the four large microarray gene expression datasets

Study Age Range Platform # Brains # Samples Approx.
[youngest, oldest] # Genes

Hawrylycz et al. [24 years, 57 years] Agilent 64 K 10 4063 20 000
(custom array)

Miller et al. [15 PCW, 21 PCW] Agilent 4 1310 20 000
Human 8×60 K

Kang et al. [4 PCW, 82 years] Affymetrix Human 57 1340 17 500
Exon 1.0 ST

Colantuoni et al. [14 PCW, 80 years] Illumina 269 269 20 000
(custom array)

Hernandez et al. [1 year, 98 years] Illumina 397 913 18 000
HumanHT-12 V3.0

PCW stands for post conception weeks

brains, Colantuoni et al. analyzed only the prefrontal cor-
tex in hundreds of brains. In contrast, the study by Kang
et al. focused on obtaining samples from all major brains
regions of a moderate number of individuals. The study
of Hernandez et al. includes the largest number of brains,
but examined only the prefrontal cortex and cerebellum.
Another difference between the studies is their develop-
mental focus. The studies by Kang et al. and Colantuoni
et al. include brains from foetuses to adults over the age
of 80 years. Examined foetuses in the Kang et al. study
were as young as 4 post conception weeks (PCW) while
they were at least 14 PCW in the Colantuoni et al. study.
Hernandez et al. studied the gene expression in the brains
of adults as well as children (1 year to 89 years). Hawrylycz
et al. studied only adults (24 years to 57 years), whileMiller
et al. only studied foetuses (15 PCW-21 PCW). These dif-
ferences in design are likely to strongly affect the level of
systematic noise observed in the datasets.
Most importantly, gene expression was measured using

a different technology in each study, although all are
microarray-based. Since the type of platform not only
determines the amount of systematic noise but also influ-
ences the performance of cleaning procedures, the five
analyzed datasets offer a broad testing ground to compare
RUV-random to standard cleaning procedures. Note that
due to the differences in technology the pre-processing
protocols were adapted to the individual studies (for more
information see Additional file 1).

Additional files

Additional file 1: Supporting information. Further information
concerning centering, application of RUV, gene prioiritization, simulations
and results. (PDF 244 kb)

Additional file 2: ECDF curves of the absolute values of correlations
for the Hawrylycz et al. study. The panels show the ECDF curves as
estimated from the absolute values of the correlations of random genes
(black) and EE genes (red) using the Hawrylycz et al. dataset treated with
different cleaning procedures. (TIF 205 kb)

Additional file 3: ECDF curves of the absolute values of correlations
for the Miller et al. study. The panels show the ECDF curves as estimated
from the absolute values of the correlations of random genes (black) and
EE genes (red) using the Miller et al. dataset treated with different cleaning
procedures. (TIF 205 kb)

Additional file 4: ECDF curves of the absolute values of correlations
for the Kang et al. study. The panels show the ECDF curves as estimated
from the absolute values of the correlations of random genes (black) and
EE genes (red) using the Kang et al. dataset treated with different cleaning
procedures. (TIF 204 kb)

Additional file 5: ECDF curves of the absolute values of correlations
for the Colantuoni et al. dataset. The panels show the ECDF curves as
estimated from the absolute values of the correlations of random genes
(black) and EE genes (red) using the Colantuoni et al. dataset treated with
different cleaning procedures. (TIF 205 kb)

Additional file 6: ECDF curves of the absolute values of correlations
for the Hernandez et al. study. The panels show the ECDF curves as
estimated from the absolute values of the correlations of random genes
(black) and EE genes (red) using the dataset of developing brains of the
Hernandez et al. study treated with different cleaning procedures. (TIF 205
kb)

Additional file 7: Table of arrays removed during preprocessing in
each study. (CSV 2.80 kb)
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