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LUBAC prevents lethal dermatitis by inhibiting
cell death induced by TNF, TRAIL and CD95L
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The linear ubiquitin chain assembly complex (LUBAC), composed of HOIP, HOIL-1 and

SHARPIN, is required for optimal TNF-mediated gene activation and to prevent cell death

induced by TNF. Here, we demonstrate that keratinocyte-specific deletion of HOIP or HOIL-1

(E-KO) results in severe dermatitis causing postnatal lethality. We provide genetic and

pharmacological evidence that the postnatal lethal dermatitis in HoipE-KO and Hoil-1E-KO mice

is caused by TNFR1-induced, caspase-8-mediated apoptosis that occurs independently of the

kinase activity of RIPK1. In the absence of TNFR1, however, dermatitis develops in adulthood,

triggered by RIPK1-kinase-activity-dependent apoptosis and necroptosis. Strikingly, TRAIL or

CD95L can redundantly induce this disease-causing cell death, as combined loss of their

respective receptors is required to prevent TNFR1-independent dermatitis. These findings

may have implications for the treatment of patients with mutations that perturb linear ubi-

quitination and potentially also for patients with inflammation-associated disorders that are

refractory to inhibition of TNF alone.
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A proper balance between cell death, proliferation and
differentiation maintains homeostasis of the skin that is
critical to retain this organ’s vital role as an immunolo-

gical barrier against pathogens and as a physical barrier to water
loss and mechanical insults. If any of these processes are
deregulated, pathological conditions, such as skin infections,
autoinflammatory and autoimmune disorders or cancer can
occur1. Members of the tumour necrosis factor (TNF) and TNF
receptor (TNFR) superfamilies are essential mediators of cell
death and inflammation and play critical roles in innate as well as
adaptive immune responses in many tissues and cell types,
including in the skin and epidermal keratinocytes2.

Engagement of TNFR1 by TNF induces formation of the
TNFR1 signalling complex (TNFR1-SC), also referred to as
complex I of TNFR1 signalling, an event that triggers gene acti-
vation by nuclear factor (NF)-κB and transcription factors acti-
vated downstream of mitogen-activated protein kinases3,4.
TNFR1 signalling can, however, also result in cell death. This is
triggered by a secondary cytoplasmic complex, also called com-
plex II, which is formed by the recruitment of Fas-associated
protein with a death domain (FADD) and caspase-8 to receptor-
interacting serine/threonine-protein kinase 1 (RIPK1). In this
platform, caspase-8 is cleaved and thereby activated, inducing
apoptotic cell death5,6. Alternatively, when caspase-8 is inhibited
or either FADD or caspase-8 is absent, RIPK1 recruits RIPK3,
which in turn activates mixed lineage kinase domain-like protein
(MLKL), resulting in the induction of regulated necrosis, also
referred to as necroptosis7,8. However, complex II formation and
activity is minimised when complex I is properly assembled and
activated9–14.

The linear ubiquitin chain assembly complex (LUBAC) reg-
ulates the balance between gene activation and cell death upon
engagement of TNFR1 and certain other innate and adaptive
immune receptors including Toll-like receptors (TLRs), TNF-
related apoptosis-inducing ligand (TRAIL), NOD-like receptors
and T and B cell receptors15–20. LUBAC, composed of three
proteins, Heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1),
Shank-associated RH domain-interacting protein (SHARPIN)
and HOIL-1-interacting protein (HOIP), is the only E3 ligase
identified so far capable of generating linear ubiquitin linkages
de novo21–25. We previously showed that LUBAC prevents
complex II formation upon TNFR1 stimulation, thereby inhibit-
ing TNFR1-mediated cell death26–28. Mice deficient for SHAR-
PIN, known as chronic proliferative dermatitis mice (cpdm) and
referred to as Sharpincpdm/cpdm mice herein, suffer from severe
inflammation in the skin and other organs29–31, which is caused
by excessive TNFR1-mediated death of keratinocytes22,27,32. In
contrast, deficiency in HOIP or HOIL-1 results in embryonic
lethality26,28,33. The differences in the phenotypes of mice defi-
cient for the different LUBAC components is due to the fact that
in the absence of HOIP or HOIL-1 there is a complete lack of
linear ubiquitination in complex I, whereas in the absence of
SHARPIN it is merely reduced28. Thus, whereas HOIP and
HOIL-1 are both essential for LUBAC activity, SHARPIN only
contributes to it.

To explore the role of HOIP and HOIL-1 in the control of
epidermal cell death and skin homeostasis, we sought to inves-
tigate the effect of deleting them in keratinocytes. Surprisingly, we
found that keratinocyte-specific deletion of HOIP or HOIL-1
results in a lethal inflammatory skin disease, which is only par-
tially dependent on TNFR1-induced cell death. The TNFR1-
independent dermatitis is also a consequence of cell death that
can, intriguingly, be redundantly triggered by TRAIL or CD95L.
These findings identify a vital and previously unrecognised
physiological role of HOIP and HOIL-1 in preventing cell death-

induced inflammation, importantly beyond TNF as the only
endogenous inducer of this cell death.

Results
HOIP and HOIL-1 are essential to maintain skin homeostasis.
To understand the role of LUBAC in the skin, we generated mice
that lack HOIP or HOIL-1 selectively in epidermal keratinocytes
by crossing Hoip- and Hoil-1-floxed mice with mice expressing
the Cre recombinase under the control of the human keratin 14
(K14) promoter. The genotype of the mice was confirmed by PCR
(Supplementary Fig. 1a). At the protein level, deletion of HOIP or
HOIL-1 in keratinocytes was verified by western blot and
immunohistochemistry (Supplementary Fig. 1b, c). As expected,
HOIP deficiency abrogated linear ubiquitination at the TNFR1-
SC (Supplementary Fig. 1d) and reduced TNFR1-mediated NF-
κB activation in primary murine keratinocytes (PMKs) without
preventing it (Supplementary Fig. 1e). Mice homozygous for
keratinocyte-specific deletion of HOIP or HOIL-1 (HoipE-KO and
Hoil-1E-KO mice, respectively) were born at the expected Men-
delian frequencies and were macroscopically indistinguishable
from littermates up to postnatal day (P) 2 (data not shown). From
this day onwards, however, both HoipE-KO and Hoil-1E-KO mice
developed severely damaged and scaly skin, which, invariably,
resulted in the death of these mice between P4 and P6 (Fig. 1a).
No Hoip or Hoil-1 gene dosage effect was observed as
Hoipfl/wtK14Cre+ and Hoil-1fl/wtK14Cre+ mice developed nor-
mally into adulthood without showing any signs of skin disease
(data not shown).

Histological analysis of HoipE-KO and Hoil-1E-KO mice at P4
revealed increased epidermal thickness, parakeratosis, hyperker-
atosis and keratinocyte differentiation defects (Fig. 1b, c). These
pathologies were accompanied by abnormal myeloid cell infiltra-
tion and high levels of cell death as demonstrated by increased
cleaved caspase-3 and terminal deoxinucleotidyl transferase-
mediated dUTP-fluorescein nick end labelling (TUNEL) staining
(Fig. 1b, d, e and Supplementary Fig. 1f, g). Together, these
observations reveal that HOIP and HOIL-1 are essential to
prevent fatal dermatitis characterised by disruption of the normal
epidermal structure, inflammation and aberrant keratinocyte
death.

Lethal dermatitis is only partially mediated by TNFR1. The
inflammatory syndrome of Sharpincpdm/cpdm mice can be abro-
gated by the absence of TNF and TNFR1 or by the loss of the
kinase activity of RIPK122,27,32,34. We therefore first tested whe-
ther genetic ablation of TNFR1 could also prevent the morbidity
and mortality in HoipE-KO and Hoil-1E-KO mice. Unexpectedly,
however, inflammation was only delayed in Tnfr1KO;HoipE-KO

and Tnfr1KO;Hoil-1E-KO mice as they progressively developed
severe skin lesions resulting in a median survival of 70 days
(Fig. 2a and Supplementary Fig. 2a). Sick Tnfr1KO;HoipE-KO and
Tnfr1KO;Hoil-1E-KO mice presented with epidermal disruption
and thickening, parakeratosis, hyperkeratosis and inflammation
(Fig. 2b, c). Crucially, infiltration by myeloid and lymphoid cells
and cell death were significantly augmented in the epidermis of
adult Tnfr1KO;HoipE-KO mice compared to control animals
(Fig. 2b, d and Supplementary Fig. 2b–d).

Next, we addressed whether ablation of the kinase activity of
RIPK1 was sufficient to prevent inflammation in HoipE-KO mice.
Surprisingly, genetic ablation of the kinase activity of RIPK1 was
substantially less effective than loss of TNFR1 in preventing
dermatitis as Ripk1D138N;HoipE-KO mice died at around P8 from
severe skin disease (Fig. 2f, g). Thus lethal dermatitis caused by
keratinocyte-specific deficiency in either HOIP or HOIL-1, the
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two essential components of LUBAC28, is only partially
dependent on TNFR1 and, in the presence of TNFR1, almost
completely independent of the kinase activity of RIPK1.

Increased cell death precedes inflammation. We next investi-
gated the temporal relationship between aberrant cell death and
inflammation in HoipE-KO and Hoil-1E-KO mice. Abnormally
increased cell death in the epidermis of HoipE-KO and Hoil-1E-KO

mice was already apparent in utero at E18.5 and at birth (P0)
(Fig. 3a, b and Supplementary Fig. 3a, b). This implies that lack of
linear ubiquitination in keratinocytes results in aberrant cell death
in sterile conditions. HoipE-KO and Hoil-1E-KO mice displayed
abnormally increased immune cell infiltration at P2 but not at
birth (Fig. 3a, c and Supplementary Fig. 3c–e). Accordingly,
keratinocyte differentiation and epidermal thickness appeared
abnormal at P2 but not at E18.5 or P0 (Fig. 3a and Supplementary
Fig. 3f). Thus excessive cell death precedes the inflammatory
response suggesting that keratinocyte death upon loss of HOIP or
HOIL-1 may trigger lethal dermatitis.

To understand the mechanism of cell death induction in the
skin of HoipE-KO and Hoil-1E-KO mice, we analysed the formation
of the signalling platform known to trigger cell death downstream
of various death receptors35 by immunoprecipitating the adaptor
protein FADD in PMKs in the presence of the caspase inhibitor,

Z-VAD-fmk. This revealed that, even without an exogenous
stimulus, a FADD/caspase-8/RIPK1-containing complex was
readily detectable in HOIP-deficient but not in control PMKs
(Fig. 4a). Consistent with apoptotic signalling by such a complex,
the HOIP-deficient cells were less viable even in the absence of
exogenous stimuli (Fig. 4b). This loss in cell viability was
significantly reduced by inhibition of caspases and RIPK1 kinase
activity but not by blocking the kinase activity of RIPK3 (Fig. 4b).
Inhibition of TNF or genetic ablation of TNFR1 also increased
the viability of HoipE-KO PMKs (Fig. 4c, d). These results indicate
that in PMKs HOIP prevents aberrant RIPK1 kinase-dependent
apoptosis triggered by spontaneously produced autocrine TNF.

LUBAC loss in adulthood induces cell death-driven dermatitis.
To assess the impact of acute loss of HOIP in keratinocytes
in adult mice, we treated Hoipfl/flK14CreERTam mice with
4-hydroxytamoxifen (4-OHT) in a localised area of the skin. This
treatment resulted in rapid cell death induction, followed by
increased immune cell infiltration (Fig. 5a–c and Supplementary
Fig. 4a). This was accompanied by epidermal thickening, hyper-
plasia, hyperkeratosis as well as parakeratosis and defects in ker-
atinocyte differentiation (Fig. 5d and Supplementary Fig. 4b–e).
These findings demonstrate that HOIP is required to maintain
normal skin architecture and function in adult mice and that also
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Fig. 1 Deletion of HOIP or HOIL-1 in keratinocytes results in lethal dermatitis. a Representative images of mice of the indicated genotypes (n= 10 mice per
genotype) at P4. b Representative images of skin sections stained with H&E, the indicated antibodies or TUNEL from mice of the indicated genotypes
(n= 3 mice per genotype). Arrows: pyknotic nuclei, stars: immune cell infiltrates, arrowhead: parakeratosis and black bar: hyperkeratosis. Nuclei were
stained with DAPI (blue). White dashed lines indicate boundary of epidermis (above) and dermis (below). Scale bar, 50 µm. c Epidermal thickness
quantification at P4. Data are presented as mean values ± s.e.m. (n= 3 per genotype). ***P≤ 0.001. d Percentages of CD45+ cells in the skin of the
indicated genotypes at P4. Data are presented as mean values ± s.e.m. (n < 8 per genotype), *P≤ 0.05, ***P≤ 0.001. e Quantification of TUNEL- and CC3-
positive cells as represented in b. Data are presented as mean values ± s.e.m. (n= 3 mice per genotype), *P≤ 0.05, **P≤ 0.01, ***P≤ 0.001. Control mice
represent a pool of Hoipfl/fl;K14-Cre− and Hoipfl/wt;K14-Cre+ (white circles) or Hoil-1fl/fl;K14-Cre− and Hoil-1fl/wt;K14-Cre+ (grey circles). P: postnatal day
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in the adult skin cell death precedes inflammation in the absence
of HOIP.

Aberrant apoptosis is responsible for lethal dermatitis. Since
aberrantly increased cell death was the first abnormal event we
could detect in the epidermis of HoipE-KO and Hoil-1E-KO mice
and because it is also observed in the absence of TNFR1 in adult
mice, we next evaluated genetically whether and, if so, which
form(s) of aberrant cell death cause the early and the late
dermatitis.

Consistent with the apoptotic cell death observed in vitro,
genetic ablation of Ripk3 in Hoil-1E-KO or the loss of Mlkl in
HoipE-KO mice failed to prevent aberrant cell death and skin
inflammation and did not delay the postnatal lethality (Fig. 6b, c,
e and Supplementary Fig. 5).

Since caspase-8 deficiency is embryonically lethal due to
sensitisation to RIPK3- and MLKL-induced necroptosis9,10,36–39,
it is not possible to generate viable Casp8KO;Hoil-1E-KO mice. We
therefore first evaluated the effect of Casp8 heterozygosity in Hoil-
1E-KO and Ripk3KO;Hoil-1E-KO mice. Heterozygosity of Casp8 was
able to extend the survival of Hoil-1E-KO and Ripk3KO;Hoil-1E-KO
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mice to around P8 and day 20, respectively (Fig. 6e and
Supplementary Fig. 6a–d).

We next determined the effect of complete absence of caspase-8.
Remarkably, both MlklKO;Casp8KO;HoipE-KO and Ripk3KO;Casp8KO;
Hoil-1E-KO mice reached adulthood without any signs of skin disease

(Fig. 6a and Supplementary Fig. 6e, f). Epidermal structure and
keratinocyte differentiation were completely normal in Ripk3KO;
Casp8KO;Hoil-1E-KO mice, and these animals neither exhibited
aberrant cell death nor immune cell infiltration in their skin
(Fig. 6b–d and Supplementary Fig. 6g). Ripk3KO;Casp8KO;Hoil-1E-KO
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mice survived without developing any signs of skin inflammation
well beyond the 70-day time point at which the Tnfr1KO; Hoil-1E-KO

mice succumb to severe dermatitis (Fig. 6e), although they had to be
sacrificed at later times because of lymphadenopathy and spleno-
megaly (Supplementary Fig. 6h) caused by the combined deficiency
in caspase-8 and RIPK3 or MLKL, as previously reported10,38,40.
Collectively, these results demonstrate that caspase-8-mediated
apoptosis is responsible for the lethal dermatitis in mice lacking
HOIP or HOIL-1 in keratinocytes and that RIPK3/MLKL-mediated
necroptosis does not contribute to the disease.

RIPK1 kinase is required for TNFR1-independent dermatitis.
Since aberrant cell death is the cause of dermatitis in Tnfr1KO;
HoipE-KO and Tnfr1KO;Hoil-1E-KO mice, we aimed to further
characterise this type of cell death. In order to evaluate the
contribution of necroptosis to the pathology of Tnfr1KO;HoipE-KO

mice, we generated MlklKO;Tnfr1KO;HoipE-KO mice. These mice
developed less severe skin lesions at day 70 and their survival was
significantly prolonged (Fig. 7a–c). Thus, in the absence of
TNFR1, necroptosis contributes to skin inflammation.

To investigate the involvement of the kinase activity of RIPK1
in the TNFR1-independent disease caused by LUBAC deficiency
in the skin, we next fed Tnfr1KO;Hoil-1E-KO and control mice
from E14.5 until day 100 with the RIPK1 inhibitor GSK’547A41.
As a control, Sharpincpdm/cpdm and HoipE-KO mice were also fed
with GSK’547A. In line with the genetic analysis of HoipE-KO

mice (Fig. 2f, g) and previous reports with Sharpincpdm/cpdm

mice34, this treatment delayed disease development and death of
HoipE-KO mice up to P8 and prevented dermatitis in Sharpincpdm/

cpdm mice (Supplementary Fig. 7a, b). Strikingly, pharmacologic
inhibition of the kinase activity of RIPK1 rescued the majority of
Tnfr1KO;Hoil-1E-KO mice from dermatitis for the duration of the
treatment with only three of the ten treated mice developing small
punctate scales (Fig. 7c–e and Supplementary Fig. 7c). Thus the
lethal dermatitis caused by keratinocyte-specific HOIL-1 that
occurs in the absence of TNFR1 is mediated by RIPK1 kinase-
dependent apoptosis and necroptosis.

TNF, TRAIL and CD95L drive cell death and dermatitis.
Finally, we sought to identify the instigator(s) of the TNFR1-
independent cell death that is responsible for the fatal dermatitis

in HoipE-KO and Hoil-1E-KO mice. Consistent with our previous
findings in other cell types17,42, PMKs derived from Tnfr1KO;
Hoil-1E-KO mice were more sensitive than control cells to
induction of cell death by TRAIL, CD95 (Fas/APO-1) ligand
(CD95L) or Polyinosinic:polycytidylic acid (Poly(I:C)) (Fig. 8a).
We, therefore genetically ablated the death domain (DD) of
CD95 specifically in keratinocytes or deleted TRAIL-R or
TLR3 systemically in Tnfr1KO;Hoil-1E-KO mice. However, Cd95E-
DD;Tnfr1KO;Hoil-1E-KO, Trail-rKO;Tnfr1KO;Hoil-1E-KO and
Tlr3KO;Tnfr1KO;Hoil-1E-KO mice all suffered from skin lesions
that were indistinguishable in severity from those seen in the
Tnfr1KO;Hoil-1E-KO mice (Supplementary Fig. 8).

Reasoning that these death receptors might be able to drive
disease in a redundant manner in Tnfr1KO;Hoil-1E-KO mice, we
next assessed the impact of their combined loss on the onset of
dermatitis. Co-deletion of TRAIL-R and TLR3 in Tnfr1KO;Hoil-
1E-KO mice resulted in slightly milder skin lesions at day 70
(Fig. 8b, c), yet these mice still succumbed to inflammatory skin
disease with a median survival of 77 days (Fig. 8d). Strikingly,
however, combined loss of TRAIL-R with keratinocyte-specific
deletion of the DD of CD95 resulted in prevention of dermatitis
in Tnfr1KO;Hoil-1E-KO mice reflected by the significantly reduced
severity score of skin lesions and prolonged survival (Fig. 8b–d).
We therefore conclude that the cell death-driven inflammatory
disease caused by HOIL-1 deficiency in keratinocytes is induced
by multiple death receptor-ligand systems, namely the TNF/
TNFR1, TRAIL/TRAIL-R and CD95L/CD95 systems. Thus, cell
death induction via either of these receptors is sufficient to cause
disease (Supplementary Fig. 9) in the absence of linear
ubiquitination caused by HOIL-1 deficiency.

Discussion
Our study shows that both HOIP and HOIL-1 are essential to
maintain skin homeostasis by preventing skin inflammation
caused by death receptor-induced cell death. Intriguingly, the
dermatitis in HoipE-KO and Hoil-1E-KO mice is different from that
in Sharpincpdm/cpdm mice, both with regards to severity and the
mechanisms responsible for driving it. Whereas the dermatitis in
HoipE-KO and Hoil-1E-KO mice is driven by cell death induced by
mechanisms beyond TNF/TNFR1, deletion of one copy of the Tnf
gene completely prevented dermatitis in Sharpincpdm/cpdm mice22.
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This uncovers a physiological role for HOIP and HOIL-1, which
is more complex regarding LUBAC function than the one we and
others previously identified for SHARPIN22,27,32. Crucially, this
additional complexity relies on cell death-inducing systems other
than the TNF/TNFR1 system.

Curiously, while inhibition of the kinase activity of RIPK1
restores viability of HOIP-deficient PMKs in vitro, neither
pharmacologic inhibition nor genetic impairment of RIPK1’s
kinase activity in HoipE-KO mice prevented keratinocyte death
and consequent dermatitis. It therefore appears that the regula-
tion of cell death in vivo is more complex than revealed by the
study of PMKs ex vivo. It is interesting to note in this context that
apoptosis dependent on the kinase activity of RIPK1 was also

described to occur upon inhibition or absence of TAK1, the NF-
κB essential modulator (NEMO) or IKKα/IKKβ following TNF
stimulation11,43,44.

We and others previously showed that TNF-induced cell
death can cause inflammation and inflammation-associated
diseases22,45. The results we present here provide additional
evidence in support of cell death as an aetiology of
inflammation-associated diseases. Importantly, however, we
extend this concept to endogenous factors capable of inducing
inflammatory cell death beyond TNF. Crucially, we discover
that these factors can act in concert with TNF to induce
inflammatory cell death. This means that patients with a disease
aetiology similar to the one we report here may benefit from a
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therapy that combines the inhibition of TNF, or TNF-induced
death, with that of the kinase activity of RIPK1 and/or of other
death-inducing cytokines, most importantly CD95L and
TRAIL. It is noteworthy that patients with LUBAC-inactivating
germline mutations, such as those with HOIL-1, HOIP and
OTULIN mutations, suffer from immunodeficiency and
autoinflammation46–50. Intriguingly, whereas TNF-inhibitory
treatment only temporarily ameliorated the pathology in one of
the HOIL-1-deficient patients who received it, the benefit to the
OTULIN-deficient patients identified so far was sub-
stantial47,49,50. Our observation that TNF is not the sole driver
of cell death-driven inflammation and the suggestion of
potentially effective combinatorial therapeutic options, based
on simultaneous genetic interference with different death
receptor-ligand systems in our model of LUBAC deficiency in

the skin, may have implications for the future treatment of
patients harbouring mutations that perturb normal LUBAC
activity.

TNF inhibition is effective in treating several autoinflammatory
and autoimmune disorders, including rheumatoid arthritis,
psoriasis and Crohn’s disease51–53. However, a significant fraction
of patients with these diseases fails to respond to anti-TNF
treatment. It is tempting to speculate that autoimmune patients
with a cell death aetiology of their disease may benefit from
combining the inhibition of TNF with that of RIPK1 and/or
CD95L and TRAIL. This concept could possibly extend to
patients with a cell death-driven autoimmune or otherwise
inflammation-associated disease in which TNF inhibition, at least
when applied alone, has so far failed, including amyotrophic
lateral sclerosis and multiple sclerosis54,55.

a b

c
H

&
E

K
6

K
14

/K
10

Control

P4

Control

Control

T
U

N
E

L 
po

si
tiv

e 
ce

lls
 (

%
)

*

NS

0

5

10

15 ***

NS

C
C

3 
po

si
tiv

e 
ce

lls
 (

%
)

0

2

4

6

Ripk3KO;Hoil-1E-KO

Ripk3KO;Hoil-1E-KO

Ripk3KO;Casp8KO;Hoil-1E-KO

D70

Control
Ripk3KO;Casp8KO;

Hoil-1E-KO

Ripk3KO;Casp8KO;
Hoil-1E-KO

D70

Ripk3KO; Casp8KO;
Hoil-1E-KO

d

C
D

45

Control

e

Days

P
er

ce
nt

ag
e 

su
rv

iv
al

0 200 400 600
0

20

40

60

80

100
MS PGenotype

****

***

****

**

128

138

4

4

8

28

221

222

Hoil-1E-KO

HoipE-KO

MlklKO;Casp8KO;HoipWT/FL

MlklKO;Casp8KO;HoipE-KO

Ripk3KO;Casp8KO;Hoil-1E-KO

Ripk3KO;Casp8KO;Hoil-1WT/FL

Ripk3KO;Casp8WT/KO;Hoil-1E-KO

Casp8WT/KO;Hoil-1E-KO

Control

Fig. 6 Aberrant apoptosis drives lethal dermatitis in HoipE-KO and Hoil-1E-KO mice. a Representative images of mice of the indicated genotypes, (n= 15 mice
per genotype). b Representative images of skin sections stained with H&E or with the indicated antibodies in mice with the indicated genotypes (n= 3 mice
per genotype). Arrowhead: pyknotic nucleus. Nuclei were stained with DAPI (blue). Scale bars, 50 µm. c Quantification of TUNEL- and cleaved caspase-3
(CC3)-positive cells in skin sections from mice of the indicated genotypes. Data are presented as mean values ± s.e.m. (n= 4 mice per genotype). *P≤
0.05, ***P≤ 0.001, NS: not significant. d Representative images of skin sections from mice of the indicated genotypes (n= 4 mice per genotype) stained
with antibody against CD45 (red) at D70. Nuclei were stained with DAPI (blue). White dashed lines indicate boundary of epidermis (above) and dermis
(below). Scale bar, 50 µm. e Kaplan–Meier survival curve of mice with the indicated genotypes. Comparisons between HoipE-KO (n= 10) and MlklKO;
Casp8KO;HoipE-KO (n= 4) and, Hoil-1E-KO (n= 13) and Casp8KO/WT;Hoil-1E-KO (n= 4), Ripk3KO;Casp8KO/WT;Hoil-1E-KO (n= 11) or Ripk3KO;Casp8KO;Hoil-1E-KO

(n= 15) mice were submitted for statistical analysis. MS: median survival, **P≤ 0.01, ***P≤ 0.001, ****P≤ 0.0001. Ripk3KO;Casp8KO;Hoil-1fl/wtK14cre+
(n= 13) and MlklKO;Casp8KO;Hoipfl/wtK14cre+ (n= 4) mice were used as controls. Control mice represent a pool of Ripk3KO;Hoil-1fl/fl;K14-Cre− and
Ripk3KO;Hoil-1fl/wt;K14-Cre+ or Ripk3KO;Casp8KO;Hoil-1fl/fl;K14-Cre− and Ripk3KO;Casp8KO;Hoil-1fl/wt;K14-Cre+ mice ( a–d). P: postnatal day, D: day

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06155-8

8 NATURE COMMUNICATIONS |  (2018) 9:3910 | DOI: 10.1038/s41467-018-06155-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Methods
Mice. To generate HoipE-KO and Hoil-1E-KO mice, Hoipfl/fl26 and Hoil-1fl/fl28 mice
were crossed with mice expressing the Cre recombinase under the control of the
human K14 promoter (obtained from Geert van Loo)56, strain AZO-Nn4Cre
(K14). The K14CreERTam57, MlklKO28, Ripk3KO58, Casp8KO59, Trail-rKO60 and
Ripk1D138N61 mice have been previously described. Tnfr1KO, Tlr3KO, Cd95-DDfl/fl

mice (C57BL/6-Fastm1Cgn/J) and Sharpincpdm/cpdm (C57BL/Ka) mice were pur-
chased from The Jackson Laboratories. To induce deletion of HOIP in epidermal
keratinocytes of adult mice, Hoipfl/flK14CreERTam mice were treated as previously
described62. Briefly, a small shaved area of the dorsal neck was treated with 50 μL of
4-OHT 20 mgmL−1 dissolved in ethanol every other day for a total of 1, 2, 3 or 4
treatments, as indicated. As a vehicle treatment, a small dorsal area close to the tail
was shaved and treated with ethanol. Hoipfl/wtK14CreERTam mice were used as
tamoxifen controls. Mice were analyzed 2 days after the last treatment or as
indicated in the figure legends. Timed matings were performed as previously
described26. All mice were genotyped by PCR analysis. Colonies were fed ad libi-
tum. All animal experiments were conducted under an appropriate UK project
license in accordance with the regulations of UK home office for animal welfare
according to ASPA (animal (scientific procedure) Act 1986).

Pharmacological inhibition of RIPK1 kinase activity. Pregnant females were fed
with rodent chow containing 100 mg kg−1 day−1 GSK3540547A (GSK’547A)
(GlaxoSmithKline LLC) from 14 days post coitum and continued the special diet
throughout the nursing period. At weaning age, Sharpincpdm/cpdm and Tnfr1KO;
Hoil-1E-KO mice and littermate controls were continuously treated with GSK’547A
for another 100 days.

Immunostaining and quantification. Four-μm-thick formalin-fixed paraffin-
embedded skin sections were stained following standard protocols. Briefly, sections
were boiled in 10 mM sodium citrate buffer (pH 6.0) in a microwave. Slides were
blocked in buffer containing Tween 20 0.5% and bovine serum albumin 0.2%. For
CD45 staining, slides were boiled in Retrievagen A (BD) and blocked with buffer
without Tween. Next, slides were incubated with the primary antibody overnight at
4 °C. The following antibodies were used: anti-K14 (1/1000, PRB-155P), anti-K10
(1/100, MMS-159S), anti-loricrin (1/500, PRB-145P) and anti-K6 (1/500, PRB-
169P) (Covance); anti-Ki-67 (1/100, Abcam); anti-CD45 (1/100, BD Biosciences);
anti-cleaved caspase-3 (1/250, 9661, Cell Signaling); anti-HOIP (custom-made,
Thermo Fisher Scientific); and anti-HOIL-121. Slides were incubated with the
following secondary antibodies: Alexa Fluor 488 Goat anti-Rabbit IgG, 594 Goat

anti-Rabbit IgG (Invitrogen), or goat anti-rat horseradish peroxidase (HRP;
Cambridge Bioscience) at room temperature for 1 h. Where an HRP-conjugated
antibody was used, the TSA™ Plus Cyanine 3 System (Perkin Elmer) was applied
according to the manufacturer’s instructions. Sections were counterstained with
4,6-diamidino-2-phenylindole (DAPI; Roche). For HOIP and HOIL-1 staining,
conventional immunohistochemistry (antibody dilution 1/100) was performed on
BOND-III (Leica Microsystems) and BenchMark Ultra (Ventana-Roche Medical
System) according to a protocol previously described63. For TUNEL staining,
which was performed in combination with cleaved caspase-3 staining, the
ApopTag Red In Situ Apoptosis Detection Kit (Merck Millipore) and streptavidin
conjugate Cy2 (Jackson Immuno Research), respectively, were used according to
the manufacturer’s instructions. Sections were analyzed by fluorescent microscopy.

At least ten different images (×40) per slide were acquired. Quantification was
performed by an experimenter who was blinded to the genotype of the samples by
using the ImageJ Software on monochrome images as the percentage of cells
positive for the specific staining in relation to the total number of cells (DAPI-
positive) within the epidermis.

Epidermal thickness quantification. The epidermal thickness was measured in
five different positions per microscopic field for at least ten different fields per
mouse. Quantification was performed by an experimenter who was blinded to the
genotype of the samples by using the ImageJ Software.

Dermatitis scoring criteria. Mice were assessed macroscopically based on two
main clinical criteria. Each region of the body, comprising head, neck, back and
flank, affected by lesions, was given a score of 1 and the sum of these provided
information of how expanded the lesions were. The other criteria were the char-
acteristics of the lesion: punctuated small crusts, coalescent crusts, and ulceration,
with a score of 1–3, respectively. The sum of both criteria represented the total
severity score of the lesions. Scoring was performed by two independent
researchers.

Isolation, culture and viability of PMKs. PMKs were obtained from HoipE-KO

newborn pups, Tnfr1KO;HoipE-KO and Tnfr1KO;Hoil-1E-KO adult tails according to
established protocols64. Briefly, skin was incubated with 0.25% Trypsin in Hank’s
Balanced Salt Solution without calcium and magnesium (Stratech Scientific Ltd)
overnight at 4 °C. On the following day, the dermis and epidermis were separated.
Cell suspensions were cultured in Eagle’s minimal essential medium (Lonza)
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without calcium with 8% chelate foetal calf serum and penicillin–streptomycin
(Sigma). PMKs were seeded in plates pre-coated with collagen I (Life technologies)
for subsequent experiments. PMKs were cultured in medium supplemented with
20 µM Z-VAD-fmk (Abcam), 10 µM Necrostatin-1s (Cambridge Bioscience), 1 µM
RIPK3 inhibitor (GSK2399872B) or 50 µg mL−1 Etanercept (Enbrel®) (Pfizer and
Pentaglobin from Biotest) for 4 days, with supplemented medium replaced every
day. On the last day, cell viability was measured using the CellTiter-Glo Lumi-
nescent Cell Viability Assay Kit (Promega) following the manufacturer’s instruc-
tions. Alternatively, PMKs were treated for 24 h with the following ligands as
indicated: 50 ng mL−1 mouse iz-TRAIL, 50 ng mL−1 CD95L-Fc, or 100 µg mL−1

Poly(I:C) (Invitrogen).

Western blotting and immunoprecipitation (IP). Western blotting was per-
formed as previously described21. Briefly, PMKs were lysed in IP-lysis buffer
(30 mM Tris-HCl [pH 7.4], 120 mM NaCl, 2 mM EDTA, 2 mM KCl, 1% Triton X-
100, EDTA-free proteinase inhibitor cocktail (Roche) and 1× phosphatase-
inhibitor cocktail 2 (Sigma) at 4 °C for 20 min. Lysates were denatured with
reducing sample buffer and dithiothreitol at 95 °C for 10 min. Proteins were
separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis
(NuPAGE) and analyzed by western blotting with antibodies (all primary anti-
bodies were used at a 1/1000 dilution) against HOIP (custom-made, Thermo Fisher
Scientific), HOIL-121, Sharpin (14626–1-AP, ProteinTech), actin (A1978, Sigma),
tubulin (T9026, Sigma), FADD (Assay Design, AAM-121, RIPK1 (610459, BD),
cleaved caspase-8 (9429, Cell signaling), MLKL (MABC604, Millipore), TNFR1
(ab19139, Abcam), phosphorylated IκBα (9246, Cell Signaling), IκBα (9242, Cell
Signaling) and linear ubiquitin (MABS199, Millipore). Isolation of native TNFR1-
SC and FADD IP were performed as previously described26. Briefly, PMKs were
cultured in the presence of 20 µM Z-VAD-fmk (Abcam; broad spectrum caspase
inhibitor) and, in the case of TNFR1-SC analysis, stimulated with 0.5 μg mL−1

3xFlag-2xStrep-TNF for the indicated times. Control cells were left untreated.
Cellular lysates were subjected to anti-Flag IP using M2 beads (SIGMA; Schnell-
dorf, Germany) for 16 h. For FADD IP, lysates were incubated with anti-FADD

antibody (sc-5559, Santa Cruz) and protein G Sepharose Beads (GE Healthcare) at
4 °C for 4 h.

Flow cytometry. Cell suspensions obtained from skin samples were fluorescently
labelled with Fixable Viability Dye eFluor® 780 (eBioscience). Samples were then
stained with antibodies against the following cell surface markers: CD45-APC,
CD45-AF700, CD3-PerCP/Cy5.5, CD4-FITC, CD8-PE/Cy7, GR1-FITC, GR1-PE/
Cy7, F4/80-PE, F4/80-BV786, CD11b-Percp/Cy5.5 (Biolegend), and CD19-BV650
(Biolegend). Data were acquired with a LSRFORTESSA X-20 (BD) or Accuri (BD)
with subsequent analysis using the FlowJo software.

Statistics. Data were analyzed with the GraphPad Prism 6 software (GraphPad
Software) or Microsoft Excel. Data shown in graphs represent the mean values ± s.e.m.,
as indicated in the figure legends. Preliminary data sets were used to determine the
group size necessary for adequate statistical power. Statistical analyses were performed
by unpaired two-tailed Student’s t test. For multiple grouped comparisons, two-way
analysis of variance was applied. Statistical significance in survival curves was deter-
mined using a log-rank test. A P value of >0.05 was considered not significant (NS),
whereas P ≤ 0.05 was indicated with one asterisk (*), P ≤ 0.01 with double asterisks
(**), P ≤ 0.001 with triple asterisks (***) and P ≤ 0.0001 with four asterisks (****). In all
cases, comparisons were made between the indicated knockout (KO) mice and the
respective littermate controls.

Data availability
All data are available from the authors upon request. Additional information on this
manuscript can be found in the Supplementary Information.
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left untreated or treated for 24 h with TRAIL, CD95L or Poly(I:C). Data are presented as mean values ± s.e.m. (n= 7 mice per genotype). **P≤ 0.01, ***P≤
0.001. Control mice represent a pool of Tnfr1KO;Hoil-1fl/fl;K14-Cre- and Tnfr1KO;Hoil-1fl/wt;K14-Cre+mice. b, c Representative images (b) and severity score of
dermatitis (c) of mice of the indicated genotypes assessed at D70. Tnfr1KO;Hoil-1E-KO (n= 6), Trail-rKO;Tlr3KO;Tnfr1KO;Hoil-1E-KO (n= 20) and Cd95E-DD;Trail-
rKO;Tnfr1KO;Hoil-1E-KO (n= 19), *P≤ 0.05, ****P≤ 0.0001. d Kaplan–Meier survival curve of mice with the indicated genotypes. Comparisons between
Tnfr1KO;Hoil-1E-KO mice with mice with the indicated genotypes were submitted for statistical analysis. MS: median survival. ****P≤ 0.0001; NS: not
significant. Tnfr1KO;Hoil-1E-KO (n= 21), Trail-rKO;Tlr3KO;Tnfr1KO;Hoil-1E-KO (n= 21) and Cd95E-DD;Trail-rKO;Tnfr1KO;Hoil-1E-KO (n= 28)
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