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Abstract 
Pseudoenzymes were first described more than 50 years ago, when it was 

recognised that a subset of proteins that are structurally homologous to active 

enzymes lack amino acids necessary for catalytic activity. Recently, interest in 

pseudoenzymes has surged as it has become apparent that they constitute ~10% of 

proteomes and perform essential metabolic and signalling functions that can be 

experimentally distinguished from catalytic outputs of enzymes. Here, we highlight 

recent structural studies of pseudoenzymes, which have revealed the molecular 

basis for roles as allosteric regulators of conventional enzymes, as molecular 

switches and integrators, as hubs for assembling protein complexes, and as 

competitors of substrate availability and holoenzyme assembly. As structural studies 

continue to illuminate pseudoenzyme molecular mechanisms, we anticipate that our 

knowledge of the breadth of their biological functions will expand in parallel. 
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Introduction 

Genomic sequencing of many organisms confirms that nearly all enzyme families 

include pseudoenzyme homologues, which are predicted to be enzymatically inactive 

due to the loss of key catalytic amino acid residues that perform a role in co-factor or 

substrate binding. Pseudoenzymes are already known to be conserved in ~20 

different protein families	 [1], including well-studied examples of pseudokinases, 

pseudophosphatases and pseudoproteases [2-7]. In these families, incremental 

changes in catalytic and substrate-binding sites created new evolutionary trajectories 

that led to the evolution of pseudoenzymes from enzyme templates sharing a similar 

fold [8,9]. Although an absence of conserved catalytic residues is not proof of 

catalytic deficiency, very high sequence and/or structural conservation suggests that 

pseudoenzymes have been functionally selected across all branches of life, and 

preserved to regulate cell biology in a catalytically-independent manner. Although 

pseudoenzymes comprise a significant percentage of proteomes, we understand little 

about individual classes relative to their enzyme counterparts. However, since much 

of what we know about pseudoenzymes arose from structural studies, and the fold of 

proteins provides clues to functions, this review will focus on key examples that help 

illustrate the general pseudoenzyme principles underlying specialised non-catalytic 

functions. Indeed, as the field grows and matures, it will be interesting to monitor 

whether different types of pseudoenzymes have diverged structurally from sequence-

related enzyme homologues in order to fulfil specific biological niches.  Such 

information will help reveal the direction of evolutionary information flow between 

enzymes and pseudoenzymes, and have utility for evaluating pseudoenzymes as 

new targets or anti-targets for pharmaceutical intervention	[10]. 
 

Four classes of biological pseudoenzyme mechanism  
In terms of predicted and experimentally-defined mechanisms, pseudoenzymes fall 

into four major classes (Figure 1), which include many members of the protein kinase 

superfamily, whose ubiquity in model organisms, and relative ease of assay, has 

made them popular amongst experimentalists. Several specific examples of 

pseudoenzyme classes, including the specific ‘subtype’ to which they belong, are 

listed in Table 1, alongside a description of their (known) biological function. The first 

of these, for which multiple examples are established in the protein kinase, 

phosphatase and ubiquitination fields, still retain a recognisable enzyme-like 
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architecture, but have evolved an ability to regulate a catalytically active partner that 

generates a biological output in signalling or metabolism (Figure 1a). The second 

class acts as “switches” that integrate signals in the form of post-translational 

modifications or binding to metabolic ligands, which trigger interconversion between 

inactive and active conformations (Figure 1b). The third category appears to have 

gained new functions as protein interaction modules through structural specialisation, 

where they can act as cellular scaffolds to nucleate the assembly of protein 

complexes or regulate the localization or trafficking of a binding partner (Figure 1c). 

The fourth category has repurposed canonical features of a protein fold that is shared 

with active enzyme relatives so that they can act as competitors for either substrate 

binding (as catalytic ‘traps’) or higher order complex assembly (Figure 1d). 

 
How has structure illuminated the molecular mechanisms of pseudoenzymes? 

Building upon a flood of genomic data, structural studies have provided key insights 

into the mechanisms by which pseudoenzymes operate as protein (and ligand) 

interaction domains to elicit biological responses. Additionally, pseudoenzyme 

structures have been instrumental in clarifying the molecular basis for deficient 

catalytic activity, whether it be: loss of canonical catalytic residues; loss of cofactor 

binding; loss of allosteric regulatory potential; occlusion of the active site by 

sequences divergent from those in an active enzyme counterpart; or active site 

blockade by non-canonical appendages. Importantly, while conventional enzymes 

are best understood for their catalytic functions, structural studies of pseudoenzymes 

are also providing an avenue to help understand non-catalytic functions of 

catalytically active enzymes, and in so-doing, are uncovering new strategies for 

therapeutic intervention. 
 

1. Allosteric Activators 

A conceptually simple mechanism that helps explain the prevalence of 

pseudoenzymes in biology is the finding that, upon binding, a pseudoenzyme can 

often impact upon the catalytic activity of a conventional, often related, enzyme (or 

non-enzyme) protein. The best-characterised examples of such allostery involve 

pseudoenzymes regulating a structurally-related enzyme counterpart. Good 

examples include the pseudokinase/kinase pairings KSR/RAF and HER3/EGFR 

(Figure 2a) [11-15], and the secretory pathway pseudokinase FAM20A, which has 
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the interesting ability to bind ATP in an ‘inverted’ conformation in the absence of 

cations	 [16]. Underscoring the biological importance of this pseudoenzyme, FAM20A 

stimulates the catalytic activity of FAM20C, the physiological casein kinase, and 

mutations in both FAM20A and FAM20C are linked to defective biomineralisation and 

disease in eukaryotes [17]. As pointed out by others	 [18], ancestors of both FAM20A 

and FAM20C are abundant in prokaryotes and slime moulds, suggesting a very 

ancient origin for this mode of allosteric enzyme activation. The regulation of the 

apoptotic protease Caspase-8 by the pseudoprotease FLIP (Figure 2b) [19] provides 

another example of allosteric modulation by an evolutionary-directed 

pseudoenzyme/enzyme couple. Interestingly, multiple cases of domain duplication 

have led to tandem pseudoenzyme-enzyme domain architectures within the same 

polypeptide—for example, kinases like JAK1-3 and TYK2 [12], the ATPase EccC 

(addressed in scaffolds section below) and the GTPase p190RhoGAP—in which two 

pseudoenzyme folds with very low sequence identity to active GTPases are 

sandwiched between neighbouring catalytic GTPase and GAP domains [20]. 
 

Further examples of allosteric regulation between inactive and active enzyme 

homologues have been uncovered in the ubiquitin system, particularly among Really 

Interesting New Gene (RING) protein homologues that comprise the largest class of 

ubiquitin ligases. There are numerous examples of RING heterodimers where one 

component has a functional binding site for a ubiquitin-conjugating (E2) enzyme, and 

one inactive RING cannot bind E2. Perhaps the best known is MDM2-MDMX, where 

the active RING MDM2 can form a functional complex with MDMX to promote 

ubiquitination of p53. MDMX plays this role because it retains a conserved C-terminal 

hydrophobic residue present in active RINGs, which is essential for stabilisation of 

the catalytic complex [21]. Additional examples include the BRCA1–BARD1 RING 

complex [22]; and Polycomb Repressive Complexes (Figure 2c), in which an active 

RING1a/b component is able to partner with one of 6 different PCGF inactive RINGs 

(PCGF1–6). In addition to stabilising the catalytic complex, varying pseudoenzyme 

PCGF RINGs participate in substrate recognition and can modulate the intrinsic 

catalytic rate of their respective complexes [23,24]. In contrast to ubiquitin 

conjugation by RINGs, ubiquitin removal by the BRCC36 deubiquitinase is controlled 

by pseudoDUBs of the KIAA0157 family. KIAA0157 is essential for assembly of a 

heterotetrameric BRCC36–KIAA0157 complex, in which BRC366 becomes 
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catalytically active and the catalytic sites of BRCC36 are ideally arranged to act upon 

their preferred Lys63-linked ubiquitin substrate (Figure 2d; [25]). 

The frequency of pseudoenzymes regulating structurally-similar enzymes has 

been proposed to arise from gene duplications that liberate the second gene from 

selective pressures that normally ensure it catalyzes a chemical reaction, therefore 

encouraging regulatory specialisation [8,9]. Interestingly, many enzymes are now 

appreciated to possess ‘pseudoenzyme’ modes of allostery, where the catalytic 

potential of the enzyme is overridden in favour of a pseudoenzyme-like 

conformational output that supports a specific biological function. Recent examples 

include a non-enzyme scaffolding function of Caspase-8 in the immune system [26], 

and a non-catalytic function for the conformationally-flexible canonical kinase Aurora 

A through N-Myc regulation in neuroblastoma [27].   
 

2. Signal integrators/molecular switches 

Modification of, or ligand binding to, pseudoenzymes can enable them to act as 

“receivers” of information from upstream regulators to control a downstream output. 

Structural and biochemical studies of the nucleotide-binding pseudokinase, Mixed 

lineage kinase domain-like (MLKL; Figure 3a), are illustrative of how post-

translational modification, in this case phosphorylation of the pseudokinase domain 

activation loop by the upstream activator kinase, RIPK3, can toggle a molecular 

switch to induce a downstream effector function [28,29]. MLKL phosphorylation is 

proposed to induce a conformational change in the pseudokinase domain that 

relieves a suppressive interaction between the pseudokinase domain and the N-

terminal four-helix bundle domain (Figure 3a). Release of the latter permits MLKL 

oligomerisation, membrane translocation and death of a cell by the regulated cell 

death pathway, necroptosis [30].  

In addition to covalent modifications, molecular switch functions could 

analogously be imparted upon ligand binding to pseudoenzymes. For example, 

structural studies of ADCK3 (COQ8A), considered a pseudokinase because of a 

contorted active site that confers a preference for ADP over ATP [31], have revealed 

the importance of nucleotide binding to its function. While precise details are still 

emerging, nucleotide binding to ADCK3 promotes assembly of a functional 

Coenyzme Q biosynthetic holoenzyme and, furthermore, induces conformational 
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changes that expose putative lipid binding pockets adjacent to the substrate-

occluding N-terminal helices [32].  

Ligand binding has also been shown to exert subtle switching effects on 

pseudoenzymes that are not always clear from crystal structures. In the case of 

RNaseL, binding of nucleotide to the pseudokinase domain and/or the cyclic 

nucleotide second messenger, 2′,5′-oligoadenylate (2-5A), to a channel between the 

N-terminal ankyrin repeat and pseudokinase domains promotes activity of the C-

terminal nuclease domains within the RNaseL homodimer (Figure 3b; [33]). Because 

apo and ligand-bound crystal structures are not obviously different, based on solution 

scattering data it was proposed that the role of nucleotide binding was to lock the 

pseudokinase domain into a closed conformation to facilitate nuclease activity [33]. 

These data suggest that ATP binding by the related Ire1, which contains a 

conventional protein kinase domain rather than a pseudokinase domain [34], may 

similarly serve a conformational role to augment nuclease activity. While these 

examples are illustrative of the propensity of some pseudoenzyme functions to be 

tuned by modification or ligand binding, not all pseudoenzymes are expected to 

undergo conformational switching; biochemical studies suggest that fewer than half 

of all pseudokinases retain binding to conventional nucleotides [35,36].  
 

3. Scaffolds for assembly of protein complexes  
Several multimeric complex structures have provided insights into how 

pseudoenzymes assemble more than one partner simultaneously to create higher 

order scaffolds or “hubs”. The pseudokinase PAN3 provides an interesting case in 

point. PAN3 forms an asymmetric dimer [37], which scaffolds the assembly of a 

higher order complex with the mRNA deadenylation enzyme, PAN2, which itself 

contains a pseudo-ubiquitin C-terminal hydrolase (UCH) domain (Figure 3c). Beyond 

simply scaffolding complex formation, PAN3 abuts the PAN2 RNase domain within 

the complex and promotes RNase activity, whilst the pseudokinase ATP-binding site 

recruits poly(A) substrates to the holoenzyme [38].  

The Tribbles (TRIB) family of proteins (and the homolog SgK495/STK40) also 

employ an atypical pseudokinase domain to bring a catalytic enzyme into proximity of 

its substrate. In this case, a ternary complex is formed between TRIB1, COP1 

ubiquitin ligase and the C/EBP substrate, which is appropriately positioned for 

ubiquitination [35,39,40]. The structure of TRIB1 has demonstrated that its C-terminal 
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tail, which binds COP1, can also self-associate with the pseudokinase domain in cis 

[35], likely through a mutually exclusive mechanism [41]. While the structural 

mechanism is still not clear, it appears that formation of a Substrate–TRIB1–COP1 

holocomplex must involve an evolutionary imprinted conformational change in the 

TRIB1 pseudokinase, which is likely to have been conserved in other eukaryotic 

Tribbles proteins. Another pseudokinase, KSR2, serves as a hub to orchestrate RAF 

communication with the effector kinase, MEK1. KSR2 is able to activate the RAF 

kinases via a “back-to-back” dimer interface (Figure 2a), but also bind to MEK1 

through a “face-to-face” interaction to promote phosphorylation of MEK1 by RAF [42]. 

In some cases, including the EccC family of hexameric ATPases (see below) 

and the RBR ubiquitin ligases, pseudoenzyme domains are embedded in the context 

of tandem arrays with conventional enzyme counterparts, where they have evolved 

dual functions as both hubs and as allosteric regulators. In RBR ubiquitin ligases, a 

benign-catalytic region that lacks a catalytic cysteine residue (BRcat; also known as 

IBR for in-between-RING), lies adjacent to a catalytic RBR RING domain, [43]. 

Structures of autoinhibited and active RBR ligases (Parkin and HOIP, respectively) 

have demonstrated important roles that BRcat plays in each state. In inactive Parkin, 

the BRcat stabilises an autoinhibited conformation that blocks the active site, 

whereas in active HOIP the BRcat contacts the E2-Ub conjugate and binds an 

additional ubiquitin that stabilises the catalytically competent complex [44-46].    

The EccC protein, a type VII secretion ATPase of bacterial pathogens, is 

composed of an array of three linked ATPase domains, two of which are 

pseudoenzymes lacking Walker A Glu residues, permitting them to bind, but not 

hydrolyse ATP (Figure 3f; [47]). EsxB, a secreted substrate of EccC, is instrumental 

in the ordered assembly and activation of the active complex. EsxB binding by the 

terminal pseudoATPase domain simultaneously promotes release of autoinhibition 

between the ATPase domain and central pseudoATPase, and drives multimerization 

and activation of the hexameric holoenzyme (Figure 3d; [47]). 

Like GTPases, pseudoGTPases are also abundant throughout nature 

[1,48,49], and structural studies have yielded important insights into their scaffolding 

and allosteric functions, which have arisen in place of enzymatic functions. For 

example, crystallographic and cellular data have enhanced our understanding of how 

pseudoGTPases such as the kinetochore-regulating scaffold CENP-M, which is 

unable to bind GTP, functions to assemble and regulate a multi-protein complex that 
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recruits CENP-T/W proteins to the kinetochores of metazoan chromosomes [50]. In 

addition, the recent structures of two ‘cryptic’ pseudoGTPase domains (pG1 and 

pG2) from p190RhoGAP confirms the presence of highly degraded G-motifs, which 

normally mediate GTP binding and catalysis in GTPases. Interestingly, cellular data 

supports a regulation role for these pseudoenzyme domains in modulating 

p190RhoGAP catalytic activity towards its RhoA substrate [20].  
 

4. Competition for substrate or complex assembly 

Lastly, examples of pseudoenzymes that act as competitors in various guises have 

been identified (Figure 4). The structural capacity of some pseudoenzymes to 

sequester substrates is vividly illustrated by the pseudo-chitinase YKL-39 (Figure 4a; 

[51,52]). YKL-39 lacks the essential Glu within the DxxDxDxE catalytic motif, 

meaning the protein can bind chito-oligosaccharides with a nanomolar affinity, but not 

hydrolyse them, and thus sequester them away from catalytically-active counterparts 

(or immunological receptors) to prevent processing. Although structures are yet to be 

reported, another competitive mode of action is illustrated by several 

pseudophosphatases (Figure 4b), which bind substrates with high affinity to 

antagonize conventional enzymes. In the case of EGG-4 and EGG-5, interaction with 

the phosphorylated activation loop of the protein kinase MBK-2 prevents regulatory 

dephosphorylation [53,54]. A related mode of action is exemplified by the 

pseudophosphatase STYX, which has been shown to compete with the dual-

specificity phosphatase DUSP4 for binding to the canonical protein kinases, ERK1 

and ERK2 [55]. As a result, STYX binding precludes DUSP4 engagement and 

ERK1/2 dephosphorylation and inactivation, which is likely to be important in cells, 

where compartmentalization of the ERK module regulates transforming potential [56]. 

Because these substrate “traps” could evolve from simple loss of catalytic functions, 

we anticipate this group is abundant in nature. This idea is supported by the 

impressive array of pseudophosphatase domains within both the myotubularin and 

receptor tyrosine phosphatase families in higher eukaryotes [3,6]. 

In addition to substrate competition, enzyme sequestration represents another 

mode of pseudoenzyme action. This is exemplified by a naturally-occurring, 

catalytically-defective variant of aldehyde dehydrogenase-2 (ALDH2), termed 

ALDH2*2, which can compete with the catalytically-active counterpart, ALDH2*1, to 
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‘poison’ complex assembly into an active homo-tetramer, thus inhibiting activity 

(Figure 4c; [57]). 
 

Conclusions 

In this review, we have sought to illustrate the diversity of mechanisms underlying 

pseudoenzyme functions as revealed from recent structural studies. An underlying 

theme is that pseudoenzymes behave as protein interaction modules, whether in the 

guise of allosteric regulators, signal integrators, nucleators of protein complex 

assembly or as substrate competitors with conventional enzymes. It is also becoming 

clear that pseudoenzymes can often perform several of these functions 

simultaneously. We expect that future multidisciplinary studies will reveal new and 

unexpected modes of action of pseudoenzymes, which will in turn lead to an 

expansion of knowledge pertaining to the repertoire of non-catalytic functions that are 

performed by conventional enzymes. 
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Figure Legends 

 

Figure 1. Modes of pseudoenzyme function 

Pseudoenzymes (green) exert their effects on signal transduction or metabolism 

through interactions with other proteins, including client enzymes (grey), or 

substrates (yellow).  

(a) Allosteric binding of a pseudoenzyme can positively or negatively regulate the 

catalytic activity of a client protein. This client is classically a related enzyme, 

however it could be an unrelated, potentially non-enzyme, protein. 

(b) Pseudoenzyme domains can act as receivers for post-translational modifications 

(star), such as (de)ubiquitylation, (de)phosphorylation or proteolytic cleavage, which 

can promote conformational switching and effector functions.  

(c) As protein interaction domains, pseudoenzymes can nucleate the assembly of 

protein complexes to bring enzyme and substrate pairs into proximity (top), or 

regulate protein localization, stability or quality control in a particular trafficking 

pathway or organelle (bottom).  

(d) Pseudoenzymes can compete with conventional (active) enzymes to prevent 

assembly of higher order protein complexes (top), or sequester substrates to protect 

them from enzymatic processing (bottom). 
 

Figure 2. Allosteric regulation of active enzymes  
 (a) Stabilisation of active kinases by pseudokinase partners. Shown are complexes 

between pseudokinase KSR–kinase BRAF (based on superposition of KSR2 onto 

the BRAF homodimer; PDBs 5kkr and 3og7; [58] and [59] respectively) and the 

crystal structure of HER3 pseudokinase bound to the EGFR kinase domain (PDB 

4riw). Bound ATP is shown as spheres. 

(b) Regulation of Caspase-8 activity by a pseudocaspase partner. Structure of the 

complex between proCaspase-8 (grey) and pseudoprotease FLIP (green) (PDB 

3h11; [19]). The intersubunit linker of Caspase-8, which undergoes proteolysis upon 

activation, is not visible in the crystal structure but is represented by a dotted line. 

(c) Active–inactive RING heterocomplexes regulate RING activity. Model of the 

putative RING1b-Bmi1–E2-Ub substrate complex, based on the structure from PDB 

4r8p; [23]. Ubiquitin is modelled by superposition of primed E2-Ub conjugate from 
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PDB 4ap4; [60]. The non-E2 binding Bmi1 pseudo-RING domain stabilises the E2-Ub 

conjugate in the closed conformation primed for attack by a substrate lysine from the 

histone substrate (not shown).  

(d) DUB regulation within a DUB-pseudoDUB complex. Structure of the complex 

between BRCC36 (grey surface) and the KIAA0157 pseudoDUB (green cartoon) 

(PDB 5cw3; [25]).  A putative Lys63-linked Ub substrate is positioned by superposition 

into the active sites of BRC366 (based on PDB 2znv; [61]), which demonstrates the 

compatibility of the tetrameric BRCC36–KIAA0157 complex with its preferred 

substrate. Pseudoenzymes are shown as green ribbons diagrams, and active 

enzyme partners in grey thoughout. 
 

 

Figure 3. Assembly of signalling complexes 

(a) The MLKL pseudokinase. MLKL is thought to exist in a basal state (left) where the 

N-terminal four-helix bundle domain is sequestered by the C-terminal pseudokinase 

domain (green). Upon phosphorylation of the pseudokinase domain activation loop, 

MLKL is proposed to undergo a conformational change (middle; PDB 4btf; [28]), 

leading to exposure of the four-helix bundle, oligomerisation, membrane 

translocation, permeabilisation of plasma membranes and cell death (right). 

(b) RNase L pseudokinase. RNase L is a homodimeric assembly containing ankyrin 

repeat domains linked to dual pseudokinase (PsK)-ribonuclease domains. The 

pseudoenzyme domain (green) contains non-canonical adaptions in both N and C-

lobes, which prevent catalytic activity [62]. RNAse L drives the IFN-induced antiviral 

response in humans, and is activated by the 2,'5'-oligoadenylate (2-5A) second 

messenger, which binds in a cleft between the ankyrin repeats and pseudokinase 

domain. Crystal structures of RNase L (PDBs 4o1o and 4o1p) demonstrate how 2-5A 

and the pseudokinase region to drive the RNase domain (yellow) into an enzyme 

conformation compatible with catalysis [33].  

(c) PseudoDUB and pseudokinase modules orient activity of the PAN2/3 complex. 

The PAN2/3 complex is shown with the dimer of PAN3 in cartoon representation, and 

PAN2 as a surface (PDB 4q8j; [38]). The pseudokinase domains of PAN3 are shown 

in green, with the nucleotide-binding site (proposed to bind to polyA tails) indicated 

with spheres. The PseudoDUB domain of PAN2 (green) makes extensive contacts 



	 19 

with the RNase domain that contains the deadenylase active site (indicated with a 

black sphere).   

(d) Oligomerisation of an active hexameric ATPase via pseudo-ATPase modules. 

EccC is comprised of an N-terminal active ATPase (grey) with two N-terminal 

pseudo-ATPase domains (green). The C-terminal pseudo-ATPase domain of EccC 

binds to peptides, which themselves emanate from dimeric substrates, and hence 

promote association of the active EccC ATPase hexamer [47]. 
 

Figure 4. Competition for substrate or enzyme binding 

(a) Sequestration of chito-oligosaccharides by the pseudochitinase, YKL-39. The 

crystal structure of YKL-39 has been solved bound to chito-oligosaccharides of 

varying residue length [51,52], the longest being polymeric GlcNAC6 (yellow) (PDB 

4p8x). 

(b) Pseudophosphatases that bind to phosphorylated canonical kinases occlude 

conventional phosphatases. Left, binding of the pseudophosphatase, EGG-4 or 

EGG-5, shields the activation loop of the kinase MBK-2 from dephosphorylation 

[53,54]. Right, pseudophosphatase STYX regulates ERK activation by competing 

with the conventional phosphatase, DUSP4, for substrate binding [55]. 

(c) Pseudodehydrogenase can block assembly higher order enzyme or signalling 

complexes. Left, schematic of how the catalytically-defective variant, ALDH2*2, might 

compete with the active paralog, ALDH2*1, to prevent assembly of, and allosteric 

activation within, an ALDH2*1 homo-tetramer [57]. Right, homo-tetrameric structures 

of ALDH2*2 (green; PDB 1zum) and ALDH2*1 (grey; PDB 1nzz). 
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Table 1: Diversity of biological functions mediated by pseudoenzyme families  
 

Function Pseudoenzyme type Examples References 

Allosteric regulation of an active 
enzyme 
 

Pseudokinase 
 

The pseudokinases, KSR1/2, HER3, STRADα and 
FAM20A, promote activity of their conventional active 
kinase interaction partners. In contrast, the pseudokinase 
domains of the JAK family, such as JAK2 and TYK2, 
negatively regulate the catalytic activity of the adjacent 
conventional active tyrosine kinase domain. 
 

[2,12,14-
16,42,63,64] 
 
 

 Pseudoprotease 
 

Pseudoprotease, cFLIP, binds and inhibits the 
conventional cysteine protease, Caspase-8 
 

[65] 

 Pseudo-deubiquitinase 
(PseudoDUB) 
 
 

PseudoDUB, KIAA0157, facilitates assembly of 
heterotetramer with conventional DUB, BRCC36, and 
DUB activity 
 

[25] 

 PseudoGTPase 
 

PseudoGTPases, Rnd1 or Rnd3/RhoE, bind p190RhoGAP 
to regulate the catalytic activity of the conventional 
GTPase, RhoA 
 

[66-68] 

  PseudoGTPase domains in p190RhoGAP potentially 
regulate its RhoGAP activity towards the conventional 
GTPase, RhoA 
 

[20] 

 Pseudo-E3 Ub ligase Pseudo-E3s, RING proteins MDMX, BARD1 and 
PCGF1-6, can partner with active RING proteins to 
regulate substrate recognition and enhance catalysis 
 

[21–24] 

Signal integrator/molecular switch Pseudokinase Phosphorylation of the MLKL pseudokinase domain by [28,30] 
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 the conventional protein kinase, RIPK3, leads to exposure 
of, and cell death by, its N-terminal executioner domain 
 
 

 

  Nucleotide binding by the pseudokinase domain induces 
activation of the adjacent nuclease domain within the 
RNaseL homodimer 
 

[33] 

Protein Interaction modules: 
nucleate assembly of protein 
complexes 

Pseudokinase 
 

Pseudokinases, Trib1, Trib2, Trib3 and SgK40, each 
mediate assembly of a complex comprising a substrate 
(C/EBPα) and the E3 Ubiquitin ligase, COP1 

[35,39] 

    
 Pseudokinase/ 

pseudoDUB 
 

The pseudokinase PAN3 recruits polyA substrates via its 
ATP binding site; PAN3 promotes RNase activity of 
PAN2, which itself contains a pseudoDUB domain 
 

[37,38] 

 PseudoATPase 
 

Substrate binding via the tandem pseudoATPase domains 
in EccC promotes assembly of an active homohexamer 
 

[47] 

Regulation of localization, 
processing and trafficking 
 

PseudoGTPase 
 

PseudoGTPase, light intermediate domain (LIC), binds 
the dynein motor to cargo.  

[69] 

 Pseudoprotease 
 

Pseudoproteases, the iRhom proteins, regulate trafficking 
and stability of single pass transmembrane proteins at the 
plasma membrane 
 

[4,70-73] 

 Pseudophosphatase Pseudophosphatase STYX anchors ERK1/2 kinase in the 
nucleus 
 

[74,75] 

Competition for holoenzyme 
assembly 

Pseudochitinase Pseudochitinase YKL-39 binds chitooligosaccharides, but 
does not catalyse their conversion 
 

[51,52] 
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Substrate sequestration 
 

Pseudophosphatase 
 

Pseudophosphatase EGG-4/EGG-5 binds to the 
phosphorylated activation loop of the kinase, MBK-2 
 
 

[53,54] 
 

  Pseudophosphatase STYX competes with conventional 
phosphatase DUSP4 for binding to ERK1/2 kinase 
 

[55] 

 Pseudo-oxidoreductase 
 

Pseudoenzyme ALDH2*2 “poisons” assembly and 
allosteric activation within a homotetramer of the 
catalytically-active counterpart, ALDH2*1  
 

[57] 

	



Allosteric regulation of active enzyme Signal integrator/molecular switch

Nucleate assembly of protein complexes Competition for holoenzyme assembly or substrates

(a) (b)

(c) (d)

Regulate localisation, processing or trafficking 

Assemble
signalling complexes

Post-translational
modification

Substrate sequestration

Competition for complex assembly

Active
enzyme

Active
enzyme

Holoenzyme Inactive complex



Ub-K63
substrate

model

KIAA0157 
BRCC36

DUB stabilisation of active 
site via oligomerisation

KSR-RAF

Kinase allosteric stabilisation 
of active site 

Caspase stabilisation of active 
site across dimer

Caspase8-FLIP

RING E3-ligase stabilisation 
of E2-Ub conjugate 

(a) (b)

(c) (d)

Bmi1 E2

Donor
Ub

RING1b

HER3-EGFR



Active 

Pseudo

Pseudo

Substrate-binding

EccC

Substrate

Hexamer 
assembly

Catalytic
site

RNaseL
PsK

RNase

Ankyrin
repeatPsK

nucleotide-
binding

2-5A
binding

MLKL PsK P

P

P

P

pMLKL4-helix
bundle

(a) MLKL phosphorylation-based switch (b) Nucleotide-based RNase activation

(c) PAN2/3 deadenylase complex assembly (d) EccC ATPase assembly

PAN3
PsK

PAN2
UCH-like

PAN2
catalytic-site

PAN3 PsK
nucleotide-binding

P

P

P

P

P



MBK-2
kinase

EGG-4/EGG-5
pseudo-

phosphatase

ERK-1/2
kinase

STYX

DUSP4

(b)  Substrate occlusion(a)  Substrate sequestration

YKL-39

Chito-oligo-
saccharide

(c) Block holoenzyme assembly
ALDH2*2 ALDH2*1

ALDH2*1 ALDH2*1

catalytically-defective
hetero-tetramer

active homo-tetramer ALDH2*1 “wild-type”
homo-tetramer

ALDH2*2 variant
homo-tetramer

PP
P

P P
P




