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Abstract 

The past two decades have seen an exponential increase in the number of monogenic 

autoinflammatory disorders described, coinciding with improved genetic sequencing 

techniques. This group of disorders has evolved to be heterogeneous and certainly more 

complex than the original four ‘periodic fever syndromes’ caused by innate immune over-

activation. This review aims to provide an update on the classic periodic fever syndromes as 

well as introducing the broadening spectrum of clinical features seen in more recently 

described conditions.   
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Since the coinage of the term ‘autoinflammatory disease’ in 1999 (1), over 40 syndromes 

have been added to this category of immunological disorders by the International Union of 

Immunological Societies (IUIS) and the International Society for Systemic 

Autoinflammatory Diseases (ISSAID) (2, 3). Originally used to describe a discrete group of 

conditions characterised by innate immune dysregulation without markers of adaptive 

immune dysfunction, such as high titres of autoantibodies or self-reactive T-cells (1), it now 

encompasses an increasingly heterogeneous group of disorders that have features of both 

innate and adaptive dysregulation, as well as immune deficiency. There is therefore a need 

for clinicians to recognise that autoinflammatory diseases can present beyond the periodic 

fever. This review provides a brief overview of autoinflammatory disorders from a symptom-

based perspective and details a few issues adult physicians face in the diagnosis of these 

conditions.  

1 Periodic fever  

The traditional autoinflammatory disorders, familial Mediterranean fever (FMF), mevalonate 

kinase deficiency (MKD), tumour necrosis factor receptor associated periodic syndrome 

(TRAPS) and cryopyrin associated periodic syndrome (CAPS), are characterised by periodic 

or cyclic fever with a constellation of symptoms that prompt consideration of a specific 

diagnosis (Figure 1). Indeed, diagnostic algorithms have been developed to aid clinicians in 

determining when molecular testing should be considered for a child presenting with a 
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periodic fever (4, 5). Clinical variables of participants in the Eurofever project have been 

collated (6) and proposed classification guidelines have recently been published, taking into 

account both clinical features and molecular testing (7).  

1.1 Familial Mediterranean Fever 

FMF was the first described and is the most common monogenic autoinflammatory disease 

(8, 9). The majority of cases of FMF are caused by autosomal recessive mutations in exon 2 

or 10 of MEFV that result in a decrease in the activation threshold of the inflammasome 

forming protein pyrin (10-12). In health, pyrin is activated by an event downstream of RhoA 

inactivation, induced by bacteria such as Clostridium difficile and Burkholderia cenocepacia. 

In response, pyrin forms an inflammasome and induces inflammatory cell death (pyroptosis) 

and the release of active cytokines IL-1β and IL-18 (11, 13). The recent linking of pyrin with 

an effector mechanism of Yersenia pestis has provided interesting theories about the high 

prevalence of carrier rates in certain ethnic populations, and the possibility that FMF 

associated variants may have provided a survival advantage during plague epidemics (14, 

15).   

FMF is characterised by periodic fevers of 12-72 h duration associated with 

polyserositis and high acute phase reactants. Over half of patients with FMF have their first 

episode of serositis prior to the age of 10 years and the vast majority before the age of 20 

years (16, 17). Poorly controlled inflammation, either overt or subclinical, may result in 

accumulation and renal deposition of serum amyloid A (SAA) leading to chronic renal 

insufficiency.  
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A number of clinical diagnostic criteria for FMF exist, including the Tel-Hashomer, 

Livneh simplified (18) and the Yalçinkaya-Ozen criteria (19). The performances of these 

criteria were retrospectively compared using a cohort of patients with childhood-onset and 

genetically confirmed FMF registered with the Eurofever project. In this select population, 

the Yalçinkaya-Ozen criteria yielded higher sensitivity, but lower specificity compared with 

the other diagnostic criteria (20). The response to colchicine is included as a major criterion 

in the Tel-Hashomer and a minor criterion in the Livneh criteria (18). The therapeutic 

effectiveness of the microtubule polymerization inhibitor colchicine in this population has 

been reported for decades (21), with a number of more recent publications documenting in 

vitro evidence of effect on pyrin inflammasome formation (11, 12, 22).  

Renal amyloidosis remains the leading cause of increased mortality in adults with FMF 

even after the introduction of routine colchicine therapy (23, 24). Whether this is the result of 

poor adherence to treatment or true ‘colchicine-resistance’ is unclear (25, 26). The response 

of patients with colchicine-resistant FMF (CR-FMF) to the neutralizing anti-IL-1β antibody 

canakinumab suggests that IL-1β is a key cytokine in this disorder (27). The recent 

randomized controlled CLUSTER trial strengthened this idea, with the demonstration of the 

effectiveness of canakinumab at controlling flares and disease control compared with 

standard of care in CR-FMF (28). 

1.2 Mevalonate Kinase Deficiency 

MKD, also known as hyper-IgD syndrome (HIDS), is an autosomal recessive disorder caused 

by loss-of-function mutations in MVK encoding mevalonate kinase, resulting in 

approximately 10% residual enzyme function (29). Mevalonate kinase plays an important 
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role in the production of isoprenoids from acetate and is involved in a number of cellular 

processes including cholesterol synthesis (30). In recent years, mevalonate kinase and its 

pathway have been shown to have the physiological role of maintaining pyrin in an inactive 

state, and MKD may be considered a pyrin dependent disorder (11).  

MKD is characterised by fever duration of 3-7 days occurring every 4-8 weeks with 

symptom onset typically early in life (median 6 months) (31). Flares are associated with 

hepatosplenomegaly, lymphadenopathy, arthralgia and gastrointestinal symptoms and are 

possibly triggered by infections, vaccinations, or stress (31). Mevalonate aciduria (MA), on 

the severe end of MKD spectrum with almost no detectable enzyme activity, is associated 

with developmental delay, ataxia and failure to thrive and is considered a metabolic disorder.  

 Despite its conventional name, the utility of serum IgD levels in the diagnosis of 

MKD has been criticized. A high serum IgD level is not specific for the diagnosis of MKD 

nor does the level of IgD correlate with disease severity in patients with MKD (32, 33). In 

contrast, urine mevalonic acid has clinical utility. A diagnosis of MKD is unlikely with 

normal urine mevalonic acid excretion during a flare, most recently shown to have a negative 

predictive value of 98% (34). However, with a positive predictive value of 71% for positive 

urine mevalonic acid, MVK sequencing is still required for the diagnosis of MKD (34).  

Although the frequency of episodes decreases with age, the majority of patients with 

MKD still experience symptoms in adulthood (31). Prior to the introduction of biologic 

therapy acute episodes were treated symptomatically with non-steroidal and steroidal anti-

inflammatory medications. Initial small prospective trials suggested that on-demand anakinra 

therapy commenced within 24 hours of symptom onset reduced the severity and duration of 
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the attack (35). More recently the use of canakinumab in MKD was addressed in the 

CLUSTER study, with 57% of patients with MKD experiencing complete response (as 

determined by absence of attack in a 4-month period) with a high dose of canakinumab (28). 

Those patients who did not achieve a complete response experienced reduced frequency and 

severity of attacks.  

1.3 Tumor necrosis factor receptor associated periodic syndrome 

TRAPS is an autosomal dominant condition caused by heterozygous mutations in 

TNFRSF1A.  

Typical attacks are prolonged, lasting several weeks to near-continuous, and the majority are 

associated with fever, abdominal pain, rash and periorbital oedema. The incidence of 

amyloidosis in a European cohort study of 158 patients with TRAPS was 10% (36).  

It was previously thought that disease associated mutations result in defective shedding 

of the TNF-receptor TNFR1, but the pathogenesis of TRAPS is proving to be more 

complicated than increased signalling through this receptor to the NF-κB pathway. This is 

highlighted with the eventual failure of etanercept, a dimeric fusion protein that binds TNF, 

to completely abate symptoms of individuals with TRAPS (37, 38). Likewise, the 

administration of infliximab, a chimeric anti-TNF monoclonal antibody, has resulted in 

severe inflammatory reactions in this population (39, 40). The therapeutic benefit afforded by 

IL-1β targeted therapy raises the possibility of cytoplasmic aggregates of abnormal receptor 

triggering inflammasome activation (28, 41).  
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1.4 Cryopyrin-associated periodic syndrome 

CAPS encompasses a spectrum of clinical manifestations caused by gain-of-function 

mutations in NLRP3, from familial cold urticarial syndrome (FCAS), Muckle-Wells 

syndrome (MWS) to neonatal onset multisystemic inflammatory disease (NOMID). FCAS is 

characterized by episodic fever as well as cold induced urticaria and conjunctival injection 

(42). Individuals with MWS may have complications such as late onset sensorineural hearing 

loss and renal amyloidosis in addition to more persistent features of FCAS (43). Individuals 

with NOMID are on the severe end of the CAPS spectrum, with a broad range of symptoms 

stemming from widespread inflammation, with classic features including chronic aseptic 

meningitis as well as dermatological and articular manifestations. From the clinical 

manifestations described, it is understandable that these three conditions were originally 

considered to be distinct disease entities. However, subsequent genetic evaluation of 

symptomatic families determined the cause of all three syndromes to be heterozygous 

mutations in NLRP3 (43-46).  

The pathophysiological basis of CAPS is augmented NLRP3 inflammasome formation 

(47). Unlike FMF, where patients have a lowered threshold for pyrin inflammasome 

formation, patients with CAPS have constitutive NLRP3 inflammasome formation. 

Peripheral blood mononuclear cells (PBMCs) from patients with CAPS demonstrate 

spontaneous secretion of IL-1β. The introduction of IL-1β targeted therapy, whether in the 

form of recombinant IL-1 receptor antagonist anakinra (48-50), human monoclonal antibody 

specific for IL-1β canakinumab (51) or anti-IL-1 dimeric fusion protein rilonacept (52), has 

completely altered the morbidity and mortality previously associated with this condition. 
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Today in Australia, anakinra is available on the Pharmaceutical Benefits Scheme for 

moderate to severe CAPS. 

2 Dermatological presentation 

Although each of the periodic fever syndromes described may have dermatological 

manifestations, there are certain monogenic autoinflammatory diseases in which the skin 

involvement is likely to be a prominent feature.  

 The initial manifestation of Blau syndrome, a granulomatous inflammatory condition 

caused by heterozygous mutations in NOD2, is usually dermatological in the form of a fine 

maculo-(micro)papular rash (53, 54). This rash, however, may be overlooked and almost all 

children have polyarticular arthritis by the time they present to a paediatric rheumatologist 

(55). Uveitis develops next, making up the triad of symptoms classically seen in Blau 

syndrome (55, 56). All symptoms tend to present prior to the age of 5 years. Despite the 

impressiveness of the ‘boggy’ arthritis, the skin rash is important in the diagnosis of this 

condition as biopsy is more sensitive at detecting non-caseating granulomatous inflammatory 

infiltrate in patients who are eventually diagnosed with Blau Syndrome than biopsy of 

affected synovium (55).  

 Although caused by mutations in MEFV, the recently described Pyrin Associated 

Autoinflammation with Neutrophilic Dermatosis (PAAND) is clinically distinct from FMF, 

characterized by pustular acne, pyoderma gangrenosum, recurrent fevers, myalgia and 

arthralgia (57). PAAND is caused by heterozygous mutations in the 14-3-3 binding sites of 

pyrin (57, 58), although a recent case description suggests a homozygous form exists (59). 
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The 14-3-3 family of proteins is required to keep pyrin in its autoinhibited conformation, and 

mutations disrupting this interaction result in an auto-activated pyrin (11, 57, 58).  

Similarly, patients with Pyogenic Arthritis-Pyoderma gangrenosum-Acne (PAPA) 

syndrome, have pyoderma gangrenosum as a key manifestation. Unlike PAAND, however, 

the presentation of pyogenic arthritis usually precedes the dermatological manifestations (60). 

PAPA syndrome is caused by heterozygous mutations in PSTPIP1 and although it is 

understood that the inflammatory manifestations in PAPA syndrome are pyrin dependent (61, 

62), the exact mechanism of disease is unclear. The optimal treatment regimen for these 

patients is also uncertain, with case reports of both anti-IL-1β therapy and anti-TNF therapy 

having some efficacy (63). 

 Two rare dermatological conditions, multiple self-healing palmoplantar carcinoma 

(MSPC) and familial keratosis lichenoides chronica (FKLC), have recently been linked to 

activating heterozygous mutations in NLRP1 (64).  Uncontrolled inflammasome activation 

and subsequent paracrine signalling in the skin was proposed as the patho-mechanism of 

malignant transformation in these patients. The clinical response to targeting IL-1β or 

NLRP1 was not examined in this small cohort. Interestingly, soon after this publication, a 

more systemic disease attributed to increased NLRP1 activity was described (65). Three 

individuals were initially considered to have systemic onset juvenile idiopathic arthritis, but 

all had the distinct feature of skin dyskeratosis and features of autoimmunity. The disparate 

disease presentations, and whether an important genotype-phenotype correlation exists has 

not been explored. Recently, a specific endogenous inhibitor of NLRP1, DPP9, has been 

This article is protected by copyright. All rights reserved.



identified and it will be interesting to see whether treatment options based on this protein are 

developed (66-69).   

An autosomal recessive form of generalised pustular psoriasis (GPP) has also been 

described. Homozygous missense mutations in IL36RN, causing deficiency in IL-36 receptor 

antagonist (IL-36Ra, DITRA), lead to unregulated signalling through the IL-36 receptor (70). 

There are a broad range of therapeutic agents that have shown some efficacy in symptom 

management, including biologics targeting IL-1β, TNF, IL-17 and IL-12/23 (71-81). 

Therapeutic targeting of the IL-36 receptor specifically is currently being investigated (82).  

3 Bone involvement 

Deficiency of IL-1Ra (DIRA) is a rare neonatal disorder characterized by multifocal sterile 

osteomyelitis, pustular dermatosis as well as biochemical evidence of systemic inflammation. 

It is caused by homozygous truncation mutations in or complete deletion of ILRN encoding 

IL-1Ra (83, 84). The prompt and complete clinical and biochemical response to anakinra in 

DIRA is not surprising as the therapy is essentially replacing the deficient protein in patients.  

 Early onset multifocal osteomyelitis is certainly not unique to DIRA. The initial 

description of Majeed Syndrome included cousins with chronic recurrent multifocal 

osteomyelitis, congential dyserythropoietic anaemia and neutrophilic dermatosis. The 

eponymous syndrome was determined to be caused by homozygous mutations in LPIN2, 

encoding LIPIN2, a phosphatidate phosphatase (85-87). Although the exact mechanism of 

inflammatory disease is unclear, the clinical response to IL-1β targeted therapy suggests that 

this is a key cytokine in disease pathogenesis (88).  
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4 Gastrointestinal presentation 

Similar to the disorders presented above, those that present with dominant gastrointestinal 

manifestations tend to do so in very early life. This is certainly true for disorders associated 

with homozygous mutations in IL10, IL10RA or IL10RB resulting in deficiencies in IL-10, 

IL-10Rα or IL-10Rβ respectively (89, 90). IL-10, acting via its receptor comprising of IL-

10Rα and IL-10Rβ, exerts a STAT3-mediated regulatory effect on inflammation (91-93). 

Individuals with deficiencies in this pathway present with severe and early onset 

inflammatory bowel disease that is often refractory to treatment with immunomodulatory 

agents (94).  

 The first two publications describing NLRC4-associated autoinflammatory diseases 

(NLRC4-AIDs) reported enterocolitis as a key clinical feature of the condition, along with 

macrophage activation syndrome (MAS) (95, 96). Caused by gain-of-function heterozygous 

mutations in NLRC4, this condition was distinct from other inflammasomopathies (for 

example CAPS, FMF and PAAND) in that the key driving cytokine was determined to be IL-

18. Indeed, there has been a report of the successful use of recombinant human IL-18 binding 

protein (rhIL18BP) in a patient with NLRC4-associated MAS (97) and a Phase 3 clinical trial 

(NCT03113760) is currently underway looking at rhIL18BP in NLRC4-associated MAS. 

Since these first reports, the phenotypic spectrum of patients with NLRC4-AIDs has 

broadened significantly, with the report of a large pedigree with dominantly inherited cold-

induced urticaria and arthritis without gastrointestinal manifestations or MAS, and another of 

a patient with possible immunodeficiency in addition to inflammatory manifestations (98-

100).  
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5 Vasculitis 

The original back to back publications describing patients with Deficiency of ADA2 

(DADA2) described two distinct syndromes associated with loss-of-function mutations in 

CECR1 (now known as ADA2). The first documented 19 subjects of Georgian Jewish 

heritage with polyarteritis nodosa (101), the second 9 individuals with early onset stroke, 

vasculopathy and febrile episodes (102). Most individuals presented in the first decade of life. 

Since this time, a number of reports published suggest that the phenotypic spectrum is broad, 

and the penetrance of disease is variable, with cytopaenias, lymphoproliferative disease and 

immune deficiencies being reported (103-107). Although an interferon gene signature has 

been noted in these patients (108, 109), the response to TNF inhibition has been impressive 

(101, 110, 111) and is now recommended therapy (112).  

 Gain-of-function mutations in TMEM137 encoding the cytosolic innate immune 

sensor STING result in an autoinflammatory diseases characterised by peripheral vascular 

inflammation, nail dystrophy and interstitial lung disease termed STING associated 

vasculopathy with onset in infancy (SAVI) (113). Like DADA2, patients with SAVI have an 

interferon gene signature but in this disorder, it appears to be causing, at least in part, clinical 

disease as evidenced by the response to JAK/STAT inhibition (113-115). Interestingly, some 

clinical manifestations may persist despite treatment. For example, the lividinous rash in one 

case did not respond to ruxolitinib, suggesting that the interferon pathway may not be the 

only pathway involved in disease (116).  

This article is protected by copyright. All rights reserved.



6 Neurological presentation 

A number of autoinflammatory disorders have the dominant clinical feature of intracranial 

calcification and developmental delay. The classic ‘interferonopathy’, Aicardi-Goutières 

syndrome (AGS), was described as a disorder of the CNS mimicking intrauterine infection, 

associated CSF lymphocytosis and bilateral basal ganglia calcifications (117). The genetic 

causes of AGS determined to date involve the processing or sensing of cytoplasmic nucleic 

acid (118-122). Patients may also present with chilblains or variable degrees of autoimmunity 

or autoantibody positivity. Likewise, USP18 deficiency is also associated with intracranial 

calcification as well as microcephaly, cerebral haemorrhage and hepatosplenomegaly (123). 

This autosomal recessive disorder is caused by defective downregulation of interferon 

signalling. Similarly, mutations in POLA1 that cause X-linked reticulate pigmentary disorder 

(XLPDR) are associated with upregulated interferon gene signature and intracranial 

calcifications in addition to hyperpigmentation, abnormal hair, amyloid deposits and 

hyperkeratosis (124). Although not a key manifestation, intracranial calcifications are also 

seen in some patients with SAVI and Systemic Lupus Erythematosus (125, 126), suggesting 

that this feature may be linked to interferon upregulation.  

7 Immunological overlap 

Over the past 5 or so years, a number of conditions have been described that have brought in 

to question the original definition of autoinflammatory disorders. The presence of 

autoinflammation in patients with evidence of autoimmunity and/or immunodeficiency 

highlights that the divide between the innate and adaptive immune system is not strict. (103). 

A complex immunological phenotype is seen in PLCγ2-associated antibody deficiency and 
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immune dysregulation (PLAID) and autoinflammation and PLAID (APLAID), caused by 

mutations in PLCG2 (127, 128). PLCγ2 is a phospholipase involved in immune signalling 

pathways and intracellular calcium release (129). The initial description of PLAID 

investigated three families with dominantly inherited cold-induced urticaria, antibody 

deficiency and autoimmunity (128). APLAID, on the other hand, was diagnosed in 

individuals with prominent inflammatory manifestations involving the skin, gut, bronchioles 

and uvea (127). The immune deficiency manifests in the form of hypogammaglobulinemia 

resulting in recurrent bacterial infection (127). In both PLAID and APLAID, there have been 

reports of non-caseating granuloma on skin biopsy. Despite the distinct clinical entities, it is 

unclear if a genotype-phenotype exists or if there are broader clinical phenotypes associated 

with PLCγ2 variants.  

 The immune features of monogenic disorders involving the linear ubiquitination of 

components the NF-κB pathway are similarly complex. Homozygous mutations in either 

HOIL1 or HOIP, resulting in loss-of-function of the linear ubiquitin chain assembly complex 

(LUBAC), result in a syndrome of amylopectinosis, autoinflammation as well as 

immunodeficiency (130, 131). In investigating the range of immunological manifestations in 

these individuals, Bossoin et al. performed ex vivo stimulation experiments on a range of 

cells and determined that the NF-κB pathway was differentially affected depending on the 

cell type examined (131). Although B cells and fibroblasts from patients with HOIL-1 

deficiency had an attenuated NF-κB response to stimulation, monocytes had an enhanced 

response to stimulation. This has provided key insight in to how a variety of immunological 

manifestations can exist in one individual, and how a mutation in a single gene may 
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differentially affect a pathway depending on the cell type. The immunological spectrum seen 

in autoinflammatory disorders is represented in Figure 2.  

8 Diagnosis of monogenic autoinflammatory diseases in the adult 

Monogenic autoinflammatory diseases generally present in childhood and as such the index 

of suspicion for this diagnosis in a patient presenting in adulthood is not high. There is a 

paucity of data on the incidence these disorders in the adult population. The experience of a 

single American adult autoinflammatory clinic was published in 2016 (132). Of the 266 

patients suspected of a monogenic autoinflammatory diseases, 13 were diagnosed with FMF, 

5 with CAPS, 6 with TRAPS and 1 with HIDS. Four of the 5 CAPS cases and the single 

HIDS case had symptoms since very early childhood and experienced a large diagnostic 

delay. In cases not fitting in to the classic periodic fevers, there may be even more of a delay, 

as shown in the initial description of PAAND. Most individuals were diagnosed in adulthood 

but had symptoms onset in childhood (57). Likewise, despite the early onset of NLRC4-AID, 

the initial description documented an affected adult. The father of the index case was 

determined to have a de novo variant in NLRC4 and presented later in life with a severe 

febrile episode complicated by acute respiratory distress syndrome, disseminated 

intravascular coagulation and subarachnoid haemorrhage associated with elevated ferritin and 

soluble IL-2R. On further questioning, however, the patient had been admitted with fever, 

diarrhea and failure to thrive during the first year of life without a specific diagnosis, and the 

recurrent fevers had persisted through to adulthood.  

 Having said this, symptom onset may indeed occur in adulthood. An Italian tertiary 

centre published results of 195 patients referred to an autoinflammatory clinic with the 
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possible diagnosis of periodic fever syndrome (133). Over half (64.6%) were adults and of 

these, 24 (12.7%) were genetically defined as FMF (12 individuals), TRAPS (6), MKD (3) or 

CAPS (3). Interestingly, a number of these individuals experienced symptom onset in the 

third decade of life. Furthermore, with improvements in genetic sequencing techniques and 

widespread use of next-generation sequencing, monogenic autoinflammatory disorders 

caused by somatic mutations have been diagnosed in individuals with symptom onset in 

adulthood. An individual presenting with symptoms typical of CAPS from the age 56 years 

was diagnosed with a somatic NLRP3 mosaicism restricted to myeloid cells (134). Similarly, 

8 adults with symptoms consistent with CAPS other than onset in mid-adulthood harbored 

pathogenic mutations in NLRP3 with an allele frequency of 5.1% to 21.2% in DNA from 

whole blood (135). This highlights the importance of considering the possible diagnosis, and 

if the index of suspicion is high, enquiring further if initial genetic testing does not detect a 

pathogenic variant.  

9 Conclusion 

The field of autoinflammatory diseases has expanded such that consideration of the diagnosis 

should be made even in patients presenting beyond the periodic fever, including by clinicians 

other than paediatric rheumatologists and immunologists. Newer and widely available genetic 

sequencing techniques, either through diagnostic laboratories or collaboration with research 

projects, may allow for diagnosis in patients who present later in life, or with an atypical 

clinical presentation. Figure 3 categorises autoinflammatory disease based on their 

presenting or primary clinical feature and the cytokine or pathway implicated in disease. 

Although these conditions are rare and as such comprehensive data on incidence and 
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prevalence is difficult to ascertain, appropriate diagnosis may lead to the institution of 

effective targeted biologic therapy and reduction in long term complications of uncontrolled 

inflammation, such as amyloidosis.  
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Figure 1: Clinical symptoms associated with periodic fever syndromes. Schematic 

representation of symptoms in the four key periodic fever syndromes.   
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Figure 2: Spectrum of immunological overlap seen in autoinflammatory disorders. 

AGS Aicardi-Goutières syndrome, AIADK autoinflammation with arthritis and dyskeratosis, 

AIFEC autoinflammation with infantile enterocolitis, AILJK autoimmune interstitial lung, 

joint, and kidney disease, APLAID autoinflammation, antibody deficiency, and immune 

dysregulation syndrome, DADA2 deficiency of ADA2, DIRA interleukin 1 receptor 

antagonist deficiency, DITRA interleukin 36 receptor antagonist deficiency, EOIBD early 

onset inflammatory bowel disease, FMF familial Mediterranean fever, H+ syndrome 

histiocytosis-lymphadenopathy plus syndrome, HA20 haploinsufficiency of A20, HS 

hidradenitis suppurtiva, HYDM1 hydatidiform mole, recurrent 1, JIA juvenile idiopathic 

arthritis, MKD mevalonate kinase deficiency, MSPC multiple self-healing palmoplantar 

carcinoma, ORAS otulin-related autoinflammatory syndrome, PAAND pyrin associated 

autoinflammation with neutrophilic dermatosis, PAPA syndrome pyogenic sterile arthritis, 

pyoderma gangrenosum, and acne syndrome, PFIT autoinflammatory periodic fever, 

immunodeficiency, and thrombocytopenia, PLAID PLCG2 associated antibody deficiency 

and immune dysregulation, PRAAS proteasome-associated autoinflammatory syndrome, PRP 

pityriasis rubra pilaris, SAVI STING-associated vasculopathy, infantile-onset, SIFD 

sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental 

delay, SPENCDI spondyloenchondrodysplasia with immune dysregulation, TRAPS tumor 

necrosis factor receptor-associated periodic syndrome, XLPDR X-linked pigmentary 

disorder, reticulate, with systemic manifestations. (137-140) 
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Figure 3: Main clinical manifestation and cytokine/pathway implicated in disease. Autoinflammatory disorders as listed in IUIS and 

Infevers database classified based on main clinical feature and pathway implicated in disease.  

 

AGS Aicardi-Goutières syndrome, AIADK autoinflammation with arthritis and dyskeratosis, AIFEC autoinflammation with infantile 

enterocolitis, AILJK autoimmune interstitial lung, joint, and kidney disease, APLAID autoinflammation, antibody deficiency, and immune 

dysregulation syndrome, DADA2 deficiency of ADA2, DIRA interleukin 1 receptor antagonist deficiency, DITRA interleukin 36 receptor 

antagonist deficiency, EOIBD early onset inflammatory bowel disease, FMF familial Mediterranean fever, H+ syndrome histiocytosis-

lymphadenopathy plus syndrome, HA20 haploinsufficiency of A20, HS hidradenitis suppurtiva, HYDM1 hydatidiform mole, recurrent 1, JIA 

juvenile idiopathic arthritis, MKD mevalonate kinase deficiency, MSPC multiple self-healing palmoplantar carcinoma, ORAS otulin-related 

autoinflammatory syndrome, PAAND pyrin associated autoinflammation with neutrophilic dermatosis, PAPA syndrome pyogenic sterile 

arthritis, pyoderma gangrenosum, and acne syndrome, PFIT autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia, 

PLAID PLCG2 associated antibody deficiency and immune dysregulation, PRAAS proteasome-associated autoinflammatory syndrome, PRP 

pityriasis rubra pilaris, SAVI STING-associated vasculopathy, infantile-onset, SIFD mes, periodic fevers, and developmental delay, SPENCDI 
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spondyloenchondrodysplasia with immune dysregulation, TRAPS tumour necrosis factor receptor-associated periodic syndrome, XLPDR X-

linked pigmentary disorder, reticulate, with systemic manifestations. 

*Response to canakinumab suggests IL-1β implicated in disease. ^Associated with congenital dyserythropoietic anaemia. #Variable additional 

features including vasculitis and hepatosplenomegaly. &Response of vascular events to TNF inhibition suggests this is a key cytokine however 

not all features respond, and the pathway implicated in disease is thus far unclear. + Associated with inflammatory skin disease.  
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