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Abstract 
Single cell genomics is set to revolutionise our understanding of how epigenetic silencing works; 
by studying specific epigenetic marks or chromatin conformations in single cells, it is possible to 
ask whether they cause transcriptional silencing or are instead a consequence of the silent state. 
Here we review what single cell genomics has revealed about X chromosome inactivation, 
perhaps the best characterised mammalian epigenetic process, highlighting the novel findings 
and important differences between mouse and human X inactivation uncovered through these 
studies. We consider what fundamental questions these techniques are set to answer in coming 
years and propose that X chromosome inactivation is an ideal model to study gene silencing by 
single cell genomics as technical limitations are minimised through the co-analysis of hundreds 
of genes. 
 
Abbreviations 
NGS, Next Generation Sequencing; scRNA-seq, single cell RNA sequencing; XCI, X chromosome 
inactivation; Xa, active X; Xi inactive X; mESC, mouse embryonic stem cells; histone H3 lysine 4 
trimethylation, H3K4me3; Xm, maternal X; Xp, paternal X; Xic, X inactivation centre; ZGA, zygotic 
genome activation; BS-seq, bisulphite sequencing; COOL-seq, Chromatin Overall Omic-scale 
Landscape Sequencing; NOMe-seq, Nucleosome occupancy and DNA methylation sequencing; 
HiC, genome-wide chromosome conformation capture; PBAT-seq, post bisilfute adaptor tagging 
sequencing; NMT-seq, NOMe-seq plus transcriptome sequencing 
 
 
Introduction 
Our understanding of life and the complexities of the biological processes that underlie it are 
tightly linked to the technology of the time. This truth has perhaps never been more apparent 
than with the development of Next Generation Sequencing (NGS) technology and our entry into 
the Genomic Era slightly more than a decade ago. NGS has allowed us to probe the genome in 
more detail than ever before, in a rapid, affordable and accessible manner. Both the quantity of 
data being produced, and our biological understanding are growing at a pace never seen before. 
However, a significant caveat to what we have learned from genomics is that due to the large 
amount of genomic material required to perform the techniques, we are necessarily assaying the 
contents of a pool of cells, thus gaining average measurements across cell populations. As a 
consequence, we are potentially missing important heterogeneity between cells (Figure 1). 
Recently, technology has emerged to redress this issue with modifications to existing genomics 
approaches that allow for sample inputs of just a single cell. 
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Studying cell populations at the single cell level is not new, with techniques such as microscopy 
and Fluorescence Activated Cell Sorting (FACS) being applied with great success for many 
decades, and likely for many more to come; however, the arrival of single cell genomics promises 
a transformative change in our ability to understand biology at the level of the single cell. The 
first single cell genomics technique arrived in 2009 with the publication of single cell RNA 
sequencing (scRNA-seq) [1] and has become by far the most adopted of the single cell sequencing 
methodologies. scRNA-seq has been applied to a multitude of questions across many disciplines 
of biology resulting in key discoveries, including heterogeneity of transcription within cell types 
[2-4] and the identification of novel cell subtypes [5-7]. Moreover scRNA-seq has allowed detailed 
transcriptional analysis of rare and hard to obtain cell types, particularly cells of the human pre-
implantation embryo [8]. Now single cell genomic techniques exist for sequencing of genomic 
DNA [9], detection of the epigenome [10-12], mapping of modified histones [13] and chromatin 
structure [14-18]. More recently methods have been developed that combine single cell genomic 
technologies to facilitate the detection of the genomic DNA, transcriptome and epigenome from 
within a single cell [19-24]. This exciting advancement, known as multi-omics, will elevate the 
power of single cell sequencing from profiling of cellular features to understanding the intricate 
mechanisms of gene regulation and how this contributes to cell fate decisions in both normal 
development and disease. There are significant technical challenges to be considered before 
embarking on a single cell experiment and indeed when analysing the results. Some of these we 
discuss below and have also been documented in a number of excellent reviews [25-28]. 
 
scRNA-seq has already been applied to further our understanding of X chromosome inactivation 
(XCI). This review details the current progress in applying single cell sequencing to the study of 
XCI and how these technologies may be applied in the future to answer outstanding questions in 
the field. We focus on XCI since it is a powerful model, which provides information on how 
epigenetic silencing occurs chromosome-wide. 
 
XCI: Basic concepts and outstanding questions 
In diploid mammals, the inherent X-linked dosage imbalance between XX females and XY males 
is corrected by the almost complete silencing of a single female X chromosome [29]. This process, 
known as XCI, represents the best characterised epigenetic silencing events. Because the 
silencing of hundreds of genes can be studied in parallel, XCI provides an excellent system in 
which to study epigenetic repression more broadly, particularly through the application of 
genomics. Most of what we know about XCI has been learned by studying the mouse as a model 
system and this introduction will focus solely on the mouse; however, recent studies utilising 
scRNA-seq report that human XCI differs in some fundamental ways and this will be discussed in 
detail later in the review (Figure 2).  
 
In vivo, XCI occurs in different variations in the murine pre-implantation and post-implantation 
embryo [30]. The four to eight cell embryo displays an imprinted form of XCI, where the paternal 
X chromosome is selectively silenced [31]. Imprinted XCI persists in extraembryonic tissues 
throughout development, but the silenced paternal X chromosome undergoes reactivation in the 
embryonic inner cell mass of the blastocyst, and for a brief developmental period these cells carry 
two active X chromosomes (Xa)[32-35]. The second variation of XCI occurs in the epiblast of the 



pre-implantation embryo and results in the seemingly random silencing of either the maternal or 
paternal X chromosome and once established this silencing is stable through mitosis with all 
future daughter cells inheriting the same inactive X chromosome (Xi) as the parent cell [36, 37]. 
In vitro, mouse embryonic stem cells (mESCs) retain the XaXa status of the inner cell mass from 
which they are derived, but upon differentiation in culture these cells undergo random XCI [38, 
39]. 
 
XCI is initiated by induction of the Xist noncoding RNA that spreads to coat the future Xi in cis 
[40, 41], leading to exclusion of RNA PolII [42]. Xist silencing depends on its binding partner 
Spen [43-45] and rapidly results in loss of active histone marks including acetylation [46] and 
histone H3 lysine 4 trimethylation (H3K4me3) [47] and acquisition of the repressive histone marks 
H2AK119ub1 [48-51], H3K27me3 [52-54] and H3K9me2/3 [47, 55-58]. The Xi localises to the 
silent territory at the nuclear periphery and adopts a distinct bipartite structure in three-
dimensional space that lacks the more complex three-dimensional organisation typical of active 
chromosomes [59-61]. DNA hypermethylation of CpG islands (CGIs) on the Xi occurs late in the 
ontogeny of XCI and is required to maintain the silent state [46, 62] along with recruitment of 
Smchd1 [63, 64] and Setdb1-mediated H3K9me3 [58, 65]. 
 
The above details only the major events of this well characterised process, however there are 
several open questions that the application of single cell sequencing could shed light upon. 
Several recent publications have employed scRNA-seq to study XCI and have begun to answer 
some of these questions. For the remainder of this review we will discuss the progress made by 
these publications and what could further be achieved with single cell technology. 
 
Lessons from scRNA-seq in mouse cells 
To date, the publications that offer insight into mouse XCI from single cell sequencing segregate 
broadly into two groups: those that investigate the pre-implantation mouse embryo and 
therefore shed light on imprinted XCI; and those that study the early gastrulation embryo and 
inform on random X inactivation. Pleasingly, these studies tend to confirm previously established 
principles of XCI, still, some intricacies of the process are beginning to emerge. As with other 
single cell studies of cell populations, scRNA-seq has revealed heterogeneity in XCI between 
equivalent cells during mouse embryonic development both in vivo [66, 67] and in vitro [68] 
(Figure 1). X reactivation was found to begin as early as embryonic day (E) E3.5 [67], however 
reactivation was not complete in all cells until E5.5. Inactivation was equally heterogeneous with 
XCI being complete in some cells by E5.5, but still incomplete in others at E6.5 or even E7.5 [66]. 
It remains unclear whether this heterogeneity is due to a delay in development or in XCI itself, 
and to answer this question it will be necessary to develop robust methods to accurately measure 
developmental timing of single cells, possibly through transcriptomic staging.  Another important 
consideration when determining heterogeneity from scRNA-seq data are the technical 
limitations of the technique. Due to the very low input of material, scRNA-seq data suffers from 
stochastic drop-out of transcripts, which may be misinterpreted as biological transcriptional 
heterogeneity. Moreover, as scRNA-seq captures the transcriptome of a cell at a specific time-
point, biological phenomena such as transcriptional bursting or allelic asynchrony of transcription 
will also confound predictions of heterogeneity [69]. 
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Interestingly, imprinted XCI appears less heterogeneous [2, 70] with the majority of cells showing 
complete XCI by the 16-cell stage persisting to the E3 blastocyst [67]. This difference in 
heterogeneity between random and imprinted XCI may simply reflect a more homogeneous 
starting point in the germ cell chromatin or perhaps the limited cell numbers that exist at this 
early developmental time. Alternatively, the mechanisms that establish imprinted XCI may be 
more tightly co-regulated between cells resulting in more uniform and complete gene silencing. 
A fundamental question for the field now is what, if any, impact does cellular heterogeneity of 
random XCI have on the developing embryo and does this reflect developmentally rare cell 
populations of the pre- and post- implantation embryo?  
 
scRNA-seq experiments are also beginning to shed light on the more mechanistic features of XCI. 
It has been controversial whether imprinted XCI is established de novo or whether a pre-
inactivated Xp is inherited and then propagated [33-35, 71]. However, scRNA-seq of the pre-
implantation embryo with allelic discrimination shows clearly that both the Xm and Xp undergo 
zygotic genome activation prior to inactivation of the Xp, suggesting that imprinted XCI is indeed 
established de novo. So far genetic studies and now even single preimplantation embryo genetic 
studies have been informative in revealing some of the differences between imprinted and 
random XCI [72-74]. It will be interesting to extend these and similar studies to single cell 
genomics studies, to determine the precise differences in the requirements of imprinted and 
random XCI. scRNA-seq data from an embryo carrying an Xist deletion on the Xp demonstrated 
that Xist is required for the initiation of imprinted XCI, and would suggest that at least the 
requirement for Xist is shared between random and imprinted XCI [70].  
 
Silencing on the X chromosome is thought to start and then spread out from the Xist locus, known 
as the X inactivation centre (Xic) [75, 76]. Single cell data has been able to resolve that in vivo 
imprinted XCI [2, 70] and random XCI in vitro [66] spreads out from the Xic (Figure 1). Still, in at 
least one of these reports the spreading was not completely linear [2] and another suggested 
that spreading occurred from gene-rich to gene-poor regions [66], implying spreading is a more 
intricate process. More recently there was found to be a seemingly ordered timing of reactivation 
of X-linked genes in the blastocyst as well [77]. Although not yet available, a multi-omics 
approach that allows the simultaneous detection of both the transcriptome and the higher order 
chromatin state within a single cell will reveal what role three-dimensional architecture plays in 
the spreading of X chromosome silencing. Additionally, striking differences in XCI timing were 
observed between mouse strains, suggesting mechanistic differences in how XCI is established 
exist between genotypes [19, 70]. Both studies also found chromosome specific escape genes, 
thereby suggesting not only heterogeneity in the establishment, but also the functional result of 
XCI.  
 
Based on studies from 2008-2011, it was purported that XCI status is directly linked to the 
pluripotency network due to an anti-correlation between XCI and pluripotency factors in bulk 
expression analysis [78, 79]. Further, Pou5f1, Sox2 and Nanog binding sites in Xist intron 1 were 
linked to its regulation [78, 79], suggesting that loss of pluripotency gene expression is 
functionally required for the induction of XCI. In contrast to this however, the increased 



resolution afforded by scRNA-seq has shown that in differentiating mESCs, although initiation of 
random XCI was globally correlated with loss of pluripotency factor expression, this was not the 
case in all individual cells [68]. Similarly, in another single cell transcriptomic publication, 
although Pou5f1 expression was found to correlate with X reactivation it was negatively 
correlated during XCI, and Nanog and Sox2 showed no correlation with XCI at all [67]. Together, 
these observations suggest XCI and pluripotency factors may not be functionally linked. Another 
publication offers yet another perspective on the relationship between XCI and pluripotency, 
suggesting two active X chromosomes stabilise the pluripotent state by inhibiting the MAPK and 
Gsk3 signaling pathways, resulting in maintained pluripotency gene expression and slower 
differentiation kinetics when compared to both XO and XY karyotypes [80]. Currently, the more 
critical experiments support this third model, however a functional analysis with a single cell read 
out may be required to finally resolve the issue. 
  
scRNA-seq in mouse has provided a number of insights into the mechanism of XCI, yet it remains 
to be seen whether new factors involved in XCI will be validated by this approach. Intriguingly, 
two papers report the expression of a number of transcription factors that correlate with XCI in 
single differentiating mESCs [68] and single cells from the post gastrulation embryo [67]. Perhaps 
most excitingly is the correlation of both Dnmt3a and Zfp57 [67], as they have been shown to 
interact to maintain DNA methylation at imprinting control regions [81, 82] and Dnmt3a is 
thought to regulate Xist [83, 84].  
 
Lessons from scRNA-seq in human cells 
The ability to profile the transcriptome of a single cell offers a number of unique advantages that 
have opened the study of human XCI in vivo. Primarily, the very low input required for scRNA-seq 
makes it feasible to assay rare or hard to obtain cell populations, such as the human embryo. 
Secondly, the random nature of XCI means it is not possible to discern monoallelic expression in 
bulk RNA-seq data, as reads derive from multiple cells where either the Xm or Xp may be 
inactivated. This problem is typically overcome in mouse by skewing XCI through genetic deletion 
of Xist or making use of skewing that occurs between distantly related mouse strains; however, 
these solutions are not available in humans, making the ability to obtain the transcriptome of a 
single cell particularly useful to the study of random XCI in human. Accordingly, the first efforts 
to address XCI in the human pre-implantation embryo were reported in 2016, and excitingly 
suggested that human mechanisms differ substantially to that of the mouse [8] (Figure 2). As 
expected from previous studies [85-87], no evidence was found for the existence of imprinted 
XCI in human, but rather an alternative mechanism of dosage compensation was discovered by 
which expression from both active X chromosomes was partially reduced, in a process termed 
dampening. Dampening was not only observed in cells of the trophectoderm, where imprinted 
XCI occurs in mouse, but also in cells derived from the primitive endoderm and epiblast. Following 
zygotic genome activation by embryonic day 4, expression from the female X chromosome was 
approximately 1.8x that of the male. Dampening was established from embryonic day 5 and 
increased in effect until the study ended at embryonic day 7, where X-linked gene expression in 
the female was reduced to about 1.3x that of the male. Such a mechanism is exciting as it does 
not occur in mouse, although is a feature of sex chromosome dosage compensation in C. elegans 
[88], yet dampening in human female embryos remains controversial. Two recent publications 
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have offered a reanalysis of the Petropolous et al. data that employ stricter thresholds to 
characterise biallelic expression and find no evidence of dampening, but instead that 
transcriptional output from the X is reduced due a transition to monoallelic gene expression, 
indicative of XCI [89, 90]. As an obligate Xi is not genetically forced in these human data, as it 
might be in mouse models, it will be crucial to determine if the monoallelic expression observed 
here is indeed due to XCI and not allelic asynchrony. Dampening was also observed in naïve 
human pluripotent stem cells in culture [91], so although controversial the possibility of Xa 
dampening and the mechanisms that control it, merit further research. Of particular interest will 
be how female cells transition from dampening to random XCI and the factors that control this. 
Interestingly XIST may have a role in dampening as, unlike mouse, XIST is expressed from the Xa 
in the epiblast when the X chromosome is biallelic but dampened [8]. Moreover, during in vitro 
reprogramming of primed human pluripotent stem cells to the naïve state, XIST is initially 
expressed during random XCI and lost when the X chromosome is reactivated, however XIST 
expression returns in naïve cells where dampening occurs [91], so a role for XIST in the process 
is conceivable. 
 
scRNA-seq is also revealing significant levels of escape from X inactivation in human cells (Figure 
1). A large study that analysed the transcriptomes of 940 immune cells from 4 different females 
found that only 78% of measurable X-linked genes were uniformly inactivated in all samples, with 
the remaining genes variably escaping XCI [92]. Interestingly, the escaping genes are 
heterogeneous between identical cell types from different individuals as well as different cell 
types from the same individual. Moreover, escape genes were typically only expressed at 33% 
the level of their Xa counterparts, raising interesting questions about how much heterogeneity is 
tolerable in human XCI and perhaps gene dosage more generally, and how the epigenetic 
landscape of the X changed to allow expression of escape genes from an otherwise inactivated 
chromosome? Excitingly, high levels of escape from XCI suggests that inactivated alleles might be 
artificially reactivated, presenting an exciting opportunity for gene therapy where diseases are 
caused by heterozygous mutation of X-linked genes, such as Rett syndrome. 
 
Single cell epigenomics and the future of single cell XCI research 
Single cell multi-omics promises a lot, however the techniques are technically challenging, 
primarily due to having only a single DNA molecule from which to amplify within a cell, rather 
than potentially many RNA molecules for each gene available for scRNA-seq. Accordingly, there 
are some significant technical limitations that must be acknowledged prior to undertaking any 
single cell epigenomic technique. Primary for consideration is the fact that the entire genome is 
never captured due to stochastic technical drop out, thereby limiting the ability to truly assess 
presence or absence of an epigenetic mark. This is of particular concern for peak-based 
techniques such as DNaseI hypersensitivity, ATAC-seq and ChIP-seq that rely on the presence or 
absence of a read for data analysis. Techniques where features within the read provide the 
information, as opposed to the read itself, such as BS-seq and NOMe-seq, allow easy 
identification of regions where data is missing and therefore allow all reads to become 
informative. There are also a number of computational approaches that aim to tackle technical 
drop out including averaging over genomic bins [11, 12, 93], average over multiple cells [94] and 
applying machine learning [95], although there are also caveats to these approaches. Currently, 



BS-seq and NOMe-seq, or multi-omics approaches that combine both (scNMT-seq and scCOOL-
seq) appear to represent the most profitable single cell epigenomics techniques, however they 
also suffer with a large degree of technical noise, low mapping rates and high numbers of PCR 
duplicates. 
 
Despite the current technical limitations, as XCI is a largely epigenetic process this is a necessary 
research area for the field and one that warrants an investment in technology development. 
Single cell epigenomic data pertaining to XCI is currently sparse with only a single paper 
addressing this question [19]. Using a novel multi-omics technique known as single cell COOL-seq 
that combines NOMe-seq with post bisulfite adapter tagging [96], Guo and colleagues were able 
to profile DNA methylation and nucleosome occupancy with allele specificity in the same cells 
from mouse pre-implantation embryos, finding higher levels of DNA methylation on the paternal 
X chromosome even after the effects of more rapid DNA demethylation of the paternal 
pronucleus were no longer apparent on autosomes, suggestive of imprinted XCI. This proof of 
concept study lacked the cell numbers required for statistical power; however, there was clearly 
heterogeneity in the DNA methylation and nucleosome positioning of the imprinted Xi. 
Unfortunately, COOL-seq does not currently allow RNA-seq from the same cell, but this would 
presumably be possible by separating the nucleus for scCOOL-seq from the cytoplasm for RNA-
seq, as has been done for other multi-omics techniques [24, 97]. This would allow interrogation 
of how heterogeneity in epigenetic marks contributes to heterogeneity in XCI, with particular 
interest for escape genes. It will be exciting to see how much heterogeneity in the epigenome 
can be tolerated while still allowing effective gene silencing. 
 
Several multi-omics approaches have been reported that allow the gathering of epigenomic and 
transcriptomic information from the same single cell (Table 1), see these reviews for what is 
available [25, 26, 28]. Currently, none of these approaches have been applied to the study of XCI, 
however they have the power to address some fascinating questions surrounding XCI and indeed 
epigenetic gene silencing more generally. For example, what repressive epigenetic marks, if any, 
are deposited prior to gene silencing and can we attribute causality to any of these marks (Figure 
1)? Are there intricate differences in both the spreading of repressive marks and silencing of 
genes during the establishment of XCI? These questions are answerable by single cell multi-omics 
and are of fundamental importance in defining epigenetic marks as either the effectors or merely 
the consequence of gene silencing, both of the X chromosome and genome wide.  
 
Many of the XCI discoveries made using transcriptomics have been validated in single cells by 
fluorescence in situ hybridisation (FISH), however single cell epigenomics will allow for single cell 
resolution of chromatin accessibility and 3-dimensional nuclear architecture, which are less easily 
assayed by traditional microscopy techniques. An interesting feature of the Xi is that it forms a 
bipartite structure of two seemingly unstructured mega domains, though these domains may 
indeed be structured but appear unstructured in bulk analysis due to extreme heterogeneity 
(Figure 1). Single cell genome-wide chromosome conformation capture (Hi-C) has been employed 
to study the male active X chromosome, however allele specific single cell Hi-C in female cells 
would be required answer this question [14]. Indeed, single cell resolution Hi-C may enable a 
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clearer understanding of how nuclear folding relates to gene expression generally, in what is 
often a hard to interpret field. 
 
Concluding remarks 
In their essence, many of the key questions surrounding XCI are also fundamental to epigenetic 
gene silencing more broadly. It remains uncertain what the functions of the various epigenetic 
marks are and what is the order of their establishment in the formation of a repressive chromatin 
state and gene silencing. Multi-omics approaches that deliver transcriptomic and epigenomic 
data from the same cell allow the single cell field to move beyond profiling heterogeneity and 
towards answering mechanistic questions pertaining to XCI and epigenetic silencing in general. 
Multi-omics approaches are still in their infancy and suffer from the limitation of technical 
dropout more so than the individual single cell genomics techniques, however as it involves the 
silencing of hundreds of genes in parallel the study of XCI has the potential to overcome this issue 
and reveal new mechanistic features of epigenetic gene silencing, just as the field has done for 
many years previously. 
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Figure legends 
 
Figure 1.  Alternative conclusions from single cell and bulk cell analysis for some key facets 
of XCI 
a. Single cell resolution allows the detection of heterogeneity in XCI between cells. The Xa and 
Xi are indicated. b. Single cell resolution allows the detection of variable escape genes that are 
below detection limits in bulk analysis. Variable (orange dots) and constitutive (blue dots) escape 
genes are indicated. c. Single cell resolution reveals spreading, both of epigenetic marks and gene 
silencing, whereas bulk analysis shows only the overall trend. The green line depicts the spread of 
silencing. d.  Single cell resolution might reveal structured heterogeneity in the conformation of 
the Xi, whereas bulk analysis suggests lack of structure within bipartite lobes. Chromosome 
conformation of the Xi is depicted as grey triangles. e.  The order of deposition of epigenetic marks 
to gene silencing in single cells will help define these marks as either the cause or consequence of 
silencing, however this relationship is masked in bulk cell analysis. Active genes (arrows), silent 
genes (bars), active epigenetic marks (green dots) and repressive epigenetic marks (red dots) are 
indicated. Note that this figure depicts possible, rather than actual, misinterpretations of bulk cell 
data. 
 
Figure 2. Differences in XCI between human and mouse 
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Major differences between human and murine XCI have been reported, including imprinted XCI 
of the Xp in mouse but not human, and possible Xa dampening in human but not mouse. Active X 
(big arrows), dampened X (small arrows), inactive X (bars), and Xist spreading (green) are 
indicated in both mouse (blue circles) and human (peach) cells. Zygotic genome activation (ZGA). 
 
Table 1. Currently available single cell genomic techniques 
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