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Abstract

Background: Elucidation of regulatory networks, including identification of regulatory mechanisms specific to a
given biological context, is a key aim in systems biology. This has motivated the move from co-expression to
differential co-expression analysis and numerous methods have been developed subsequently to address this task;
however, evaluation of methods and interpretation of the resulting networks has been hindered by the lack of
known context-specific regulatory interactions.

Results: In this study, we develop a simulator based on dynamical systems modelling capable of simulating
differential co-expression patterns. With the simulator and an evaluation framework, we benchmark and characterise
the performance of inference methods. Defining three different levels of “true” networks for each simulation, we
show that accurate inference of causation is difficult for all methods, compared to inference of associations. We
show that a z-score-based method has the best general performance. Further, analysis of simulation parameters
reveals five network and simulation properties that explained the performance of methods. The evaluation
framework and inference methods used in this study are available in the dcanr R/Bioconductor package.

Conclusions: Our analysis of networks inferred from simulated data show that hub nodes are more likely to be
differentially regulated targets than transcription factors. Based on this observation, we propose an interpretation of
the inferred differential network that can reconstruct a putative causal network.

Keywords: Gene regulation, Differential co-expression, Differential networks, Systems modelling, Immune
infiltration, Breast cancer

Background
Comparative analysis of biological systems, where mo-
lecular changes are compared between conditions, has
been instrumental in many advances of modern bio-
logical science. In particular, differential expression (DE)
analyses have been used to elucidate meaningful vari-
ation between experimental conditions, disease states,
and cell types. While DE methods have been essential to
explore differences in the abundance of biomolecules

(e.g. RNA), if two targets are simultaneously up- or
downregulated, this does not provide any insight as to
whether these changes are independent or coordinated.
This has led to the development of gene-set analysis
methods [1–3] where genes with a known association
are simultaneously tested rather than individual genes;
however, these methods rely on well-defined gene sets.
Defining gene sets is not a trivial task due to the variable
nature of biological systems (i.e. a gene set defined
within one cell type may not generalise).
In contrast to exploring DE across conditions, there

are also opportunities to extract functional information
from the co-expression of genes [4] (i.e. concordant
changes in transcript abundance) using gene regulatory

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: davis.m@wehi.edu.au
1Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research,
Parkville, VIC 3052, Australia
3Department of Medical Biology, Faculty of Medicine, Dentistry and Health
Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
Full list of author information is available at the end of the article

Bhuva et al. Genome Biology          (2019) 20:236 
https://doi.org/10.1186/s13059-019-1851-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-019-1851-8&domain=pdf
http://orcid.org/0000-0003-4864-7033
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:davis.m@wehi.edu.au


network (GRN) inference methods such as WCGNA [5]
and the z-score by Prill et al. [6]. As DE and co-expression-
based GRN analyses complement each other in uncovering
the functional relationships, there is growing interest in
combining these two approaches. In contrast to these two
well-established approaches, differential co-expression (DC)
methods (also known as differential association [7], differ-
ential correlation [8–10], or differential network [11]
methods) are increasingly being used to reveal dependen-
cies between genes by identifying coordinated expression
that differs across conditions, and this is likely to increase
as larger data sets with hundreds or even thousands of sam-
ples increase in availability. These methods aim to identify
changes in regulation of different gene expression programs
across conditions, for example through common/shared
signalling pathways and/or transcription factors (TFs),
using changes in co-expression patterns. Such variation has
been observed in cancer where programs such as prolifera-
tion are activated and/or apoptosis is repressed depending
on the state and environment of the cancerous tissue [12].
This idea has been developed further by demonstrating that
regulatory networks vary depending on the biological con-
dition (i.e. the regulatory network can “re-wire”), contrary
to the more traditional concept of static regulatory net-
works [13–15].
Both co-expression-based GRN analyses and DC ana-

lyses can be used to learn about regulatory networks;
however, the inference made differs greatly. While co-
expression analyses aim to infer regulatory relationships,
DC analyses aim to identify conditional regulatory rela-
tionships. These two forms of analyses, and by extension
inferences, are in fact orthogonal. The former focuses on
concordant co-expression while the latter discordant/dif-
ferential co-expression. Though these analyses help un-
cover regulatory mechanisms, the underlying inferences
are not easily comparable. As such, in this benchmarking
study, we focused on evaluating DC methods and inter-
preting results from their application.
This work begins with a review of established methods

for differential co-expression analysis and discusses
strengths and limitations identified in previous studies.
To support unbiased benchmarking of methods, we have
developed a R/Bioconductor [16] package, dcanr, which
implements several published methods which previously
lacked software implementations and uses existing li-
braries for methods where available. The dcanr package
provides a unified interface to differential co-expression
analysis methods and also includes an evaluation frame-
work to benchmark differential co-expression inference
methods in the context of regulatory network inference.
To achieve this, we re-purposed a normalised Hill differ-
ential equation method for modelling signalling path-
ways from Kraeutler et al. [17] to model gene regulation
and simulate expression data. This approach is attractive

due to the relatively simple parameterisation process
that preserves directional interactions from the regula-
tory network structure. This allowed us to propose a
novel model for generating a true differential network,
which we demonstrate is a more appropriate representa-
tion of what these methods are designed to infer from
transcriptomic data.
Using a simulation framework based on this model, we

used the F1 metric to rank method performance. Intro-
ducing variability in the simulations and measuring a di-
verse set of network and simulation properties allowed
us to characterise variability in performance. By reverse
engineering the generation of a true network for evalu-
ation, our strategy also addresses the complex problem
of interpreting differential networks. We then apply the
most highly ranked differential co-expression analysis
method to the study of TCGA breast cancer data and
use the insights gained from simulations to propose a
putative estrogen receptor (ER)-dependent regulatory
sub-network. We highlight issues that are often encoun-
tered with differential co-expression analysis and identify
the steps where caution should be exercised along with a
brief discussion of the research required to improve their
utility. Of note, we demonstrate that a number of “hub
genes” identified within differential co-expression net-
works are likely to be strongly differentially regulated
targets, challenging the classic interpretation of hubs as
transcriptional “master regulators”.

Results
Survey of differential co-expression methods
Numerous methods have been developed for differential
co-expression (DC) analysis, mostly over the past decade,
and these can be categorised into four broad categories:
gene-based, module-based, biclustering, and network-
based methods.
Gene-based DC analysis methods identify genes that

show changes in associations with other genes across the
different conditions. They attempt to quantify the extent
to which an individual gene is differentially associated
with other genes rather than focusing on the nature, or
mechanism, of that differential association. Such gene-
level signal could arise from transcription factor (TF)
loss of function at the protein level (including post-
translational modifications), leading to a loss of regula-
tion across some or all target genes [18]. Notably, if this
TF had stable RNA abundances across conditions, it
would not be identified from a DE analysis even though
its targets may be differentially expressed. Gene-based
methods would identify this TF as strongly differentially
co-expressed, with its targets being weakly differentially
co-expressed. Gene-based DC methods are further
stratified into global and local gene-based DC methods.
Global gene-based methods quantify differential association
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of a gene in the context of all other genes, that is, how dif-
ferentially associated is the gene of interest to every other
gene. Local gene-based methods differ in the context of
genes whereby differential association is quantified against
a subset of genes; for example, genes that are associated to
the gene of interest in at least one condition. Global gene-
based methods include DCglob [19], the N-statistic [20],
differential PageRank centrality [21], and differential Eigen
centrality [22]. Local gene-based methods include DCloc
[19], DCp [23], DCe [23], DiffK [5], differential degree cen-
trality [24], differential motif centrality [21], RIF [25], and
metrics based on correlation vectors [26]. DiffRank is a hy-
brid of these classes where both local and global measures
of differential association are computed for each gene [27].
Lichtblau and colleagues [22] evaluated a subset of methods
and found that local and hybrid methods generally outper-
form global methods [22]. Correlation vector-based DC
measures were also evaluated by Gonzalez-Valbuena and
Trevino [26], demonstrating that methods which filter out
weak correlations performed poorly compared to those that
retain correlation information across all genes. In general,
all gene-based methods compute pairwise correlations of
gene expression or similar measures of association across
the conditions independently and either use these directly
or generate co-expression networks across the conditions
for comparison. Independent computation of the associ-
ation measures across the conditions assumes that errors
are similar between conditions, and it should be noted that
this would not be the case if the number of observations in
each condition differ. Moreover, quantifying association dif-
ferences does not account for estimation errors across both
conditions.
Module-based analyses aim to incorporate information

about gene connectivity. Under the assumption that
genes within modules are cross-correlated, there will be
a reduction in noise and increased statistical power.
These methods can be classified by three criteria: (i)
whether they detect differential co-expression within
modules or between, (ii) whether modules need to be
specified a priori or whether they are identified from the

data, and (iii) the number of conditions across which
comparisons can be made. Table 1 summarises these
methods according to these properties. Often the choice
of module comparison and module definition methods is
interdependent. For example, between module compari-
sons with known modules assumes that all genes within
the module are co-expressed, but many modules are
context (i.e. disease state, treatment condition) specific
and therefore co-expression may vary across conditions.
In contrast, within module comparison with known
modules limits the associations tested and thus associa-
tions with genes excluded from the module may be
missed. The de novo identification of modules begins
with construction of a differential co-expression network
followed by module extraction. Due to the independence
of modules extracted using de novo identification, both
within and between module differential co-expression
can be investigated. DICER and DiffCoEx have these
properties and can thus be classified as network-based
methods by discarding the module extraction phase.
DCIM is the only method that discovers conditions
without a need for prior specification and therefore may
also be categorised as a biclustering method; biclustering
methods simultaneously cluster across the rows and col-
umns of a matrix—or both samples and genes in the
context of transcriptomic data. The characterisation and
performance of these methods has been reviewed in de-
tail by Pontes and colleagues [42].
Finally, network-based methods aim to identify a dif-

ferential co-expression network that contains associa-
tions that change across conditions. Most methods use
correlation as a measure of association, although a sub-
set use metrics or tests based on information theory,
Gaussian graphical models, linear models, an expected
conditional F-statistic, or generalised linear models.
Table 2 lists these methods along with key properties.
Network analysis identifies a single network of differ-
ences rather than independent co-expression networks
across conditions. These networks contain information
about specific differential associations between genes,

Table 1 Module-based differential co-expression methods

Method Module comparison Module definition Number of conditions Citation Availability

DICER Between De novo Multiple [28] jar file available from [29], dcanr v1.0.0 R/Bioconductor package

GSCA Within Known Multiple [30] R package available from [31]

GSNCA Within Known Two [32] GSAR v1.18.0 R/Bioconductor package

CoGA Within Known Two [33] R package available from [34]

DiffCoEx Both De novo Multiple [35] dcanr v1.0.0 R/Bioconductor package

CoXpress Within De novo Two [36] R package available from [37]

dCoxS Within Known Two [38] Supplementary material of the original publication

DCIM Between De novo De novo [39] R package available from [40]

DiffCorr Between Known Two [41] DiffCorr v0.4.1 R package available from CRAN
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and as such, they can be used to perform both gene-
based and module-based analysis with appropriate sum-
marisation methods (and we note that some methods
such as DICER and DiffCoEx are listed in both
categories).
Network-based methods are attractive as modularity

of the analysis framework facilitates multiple levels of
DC analyses. Several methods use the z-test of correl-
ation coefficients which computes a z-score after apply-
ing Fisher’s transformation to Pearson’s correlation
coefficients. Differences across conditions can then be
quantified as a difference in z-scores across conditions
and modelled as a standard normal distribution. As the
variances of transformed coefficients are pooled, the
error estimate for the difference statistic is improved.
Some methods perform the same statistical tests to de-

termine differential associations but apply alternative
post-processing steps for categorisation and interpret-
ation. For instance, DGCA and discordant both perform
a z-test to identify the differential network, but add-
itional analyses are applied to characterise interactions
with respect to the conditions. Similarly, COSINE com-
putes a network optimisation function using the ECF
statistic which is optimised using genetic algorithms. In
general, methods based on Pearson’s correlations, linear
models, or graphical models are limited to identifying
changes in linear relationships.

Network-based methods are flexible and can be used
to identify both differentially co-expressed modules, as
well as differentially co-expressed genes. In contrast,
module- and gene-based methods cannot be used to re-
construct networks, due to the level at which association
information is detected and summarised in the methods’
outputs. Since our goal here is to evaluate the ability of
methods to reconstruct conditional regulatory networks,
in the following evaluation, we focus on network-based
methods only. Module and gene-based methods all have
valuable applications [18, 24, 25, 35, 39], but are not
suited for this specific task.

Survey of evaluation methods
Given the numerous choices available, it can be challen-
ging to select the most appropriate method for a given
analysis. Early comparative evaluations proved useful in
characterising the performance of gene regulatory net-
work inference methods. In particular, the evaluation
framework for the DREAM3 and DREAM4 challenges
motivated the development of novel methods and helped
to characterise methods based on motif discovery [6, 50].
Similar evaluations by Madhamshettiwar et al. [51] and
Maetschke et al. [52] showed that topological properties
of the true network and the type of experimental data
used strongly influenced method performance. These
comparisons used simulations to benchmark methods due

Table 2 Network-based differential co-expression analysis methods

Method Statistical method Test Number of
conditions

Citation Availability

z-score Correlation z-test Two [43] dcanr v1.0.0 R/Bioconductor package

DGCA Correlation z-test Two [9] DGCA v1.0.1 R package available from CRAN

Discordant Correlation z-test Two [10] discordant v1.8.0 R/Bioconductor package

MAGIC Correlation Modulation
test

Two [11] dcanr v1.0.0 R/Bioconductor package

DICER Correlation Permutation
test

Multiple [28] jar file available from [29], dcanr v1.0.0 R/Bioconductor
package

DiffCoEx Correlation Permutation
test

Multiple [35] dcanr v1.0.0 R/Bioconductor package

EBcoexpress Empirical Bayes + correlation – Two [7] EBcoexpress v1.28.0 R/Bioconductor package

Entropy
(ENT)

Entropy based on correlation Permutation
test

Two [44] dcanr v1.0.0 R/Bioconductor package

FTGI Generalised linear model Chi-squared
test

Multiple [45] dcanr v1.0.0 R/Bioconductor package

ECF Expected conditional F Permutation
test

Multiple [46] COSINE v2.1 R package available from CRAN

COSINE Expected conditional F – Multiple [8] COSINE v2.1 R package available from CRAN

GGM-based GGM + posterior odds – Two [47] dcanr v1.0.0 R/Bioconductor package

LDGM Latent differential graphical
model

– Two [48] dcanr v1.1.4 R/Bioconductor package

MINDy Conditional mutual
information

Permutation
test

Two [49] MINDy module in GenePattern, dcanr v1.0.0 R/
Bioconductor package
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to a lack of gold-standard test data; underlying regulatory
networks have not been fully characterised in most com-
plex organisms, and often these will change across differ-
ent conditions and cell types [53]. Accordingly, while
simulations may not capture the full complexity of bio-
logical systems, they provide a degree of control that is ne-
cessary for the comprehensive evaluations of DC methods.
An evaluation of DC methods by Kayano et al. [54]

used simulations to compare methods: varying the data
distribution, they were able to assess method perform-
ance in the presence of outliers and range biases across
conditions. Another study by Siska and Kechris [55]
assessed the ability of four alternative measures of cor-
relation to identify differential associations and showed
that Spearman’s correlation coefficient was a better and
more stable indicator of associations for both count-
level and transformed transcriptomic data from RNA-
seq experiments. These previous studies only tested a
small subset of available methods and evaluated their
performance across a limited set of scenarios. Given this,
we have developed a simulation framework that enables
methods to be compared across a diverse set of scenarios.
To guide the development of DC methods and improve

their adoption for bioinformatics analyses, it is also neces-
sary to include a comprehensive evaluation framework to
assess and compare different methods. An evaluation frame-
work consists of three components: (i) a mathematical
model of the system to simulate data, (ii) gold-standard/true
data to evaluate predictions, and (iii) appropriate metrics to
quantify the performance of different methods.
Two broad model classes can be used to simulate data:

statistical models based on multivariate Gaussian mix-
ture models [54], or dynamical systems models of gene
regulation such as GeneNetWeaver [56] and SynTReN
[57], which were previously used in the DREAM chal-
lenges. Multivariate Gaussian mixture models are simple
and easier to use for generation of large data sets, but
they are limited to simulating linear associations. More-
over, regulatory network structures cannot be incorpo-
rated into multivariate Gaussian mixture models
therefore propagating effects of differential regulation
cannot be modelled. Dynamical systems models have
more flexibility to model non-linear associations; however,
the increased number of model parameters can make
them difficult to control. Differential co-expression data
can be generated from these models by simulating knock-
outs or knockdowns on co-regulators in the network
across a portion of the population. GeneNetWeaver and
SynTReN can be used for this; however, current imple-
mentations pose a limitation in terms of flexibility. For ex-
ample, users cannot easily specify knockouts or alternative
initialisation parameters, making data simulation for co-
expression problematic. Moreover, current implementa-
tions are in Java whereas most inference methods using

these data are only available in R. Having an evaluation
framework in the same environment as inference methods
promotes comparisons against novel methods developed
in the future.
Next, it is possible to generate a regulatory network

structure and create alternative conditions such as gene
knockout/knockdown and control for use with this
simulation framework. Resulting data can be used for
different inference methods, and the resulting network
structures can be compared against the underlying truth
network. The simplest true differential network would
be the set of regulatory interactions directly influenced
by the perturbation. An influence network that captures
both direct and indirect associations may be a better
true network, as changes in the network can propagate
to downstream effects [58]. We note that Pe’er and
Hacohen [13] also referred to such associations as regu-
latory influences rather than regulatory interactions
further emphasising the idea of influence networks for
these inference frameworks.
The final component is a metric to quantify perform-

ance. Numerous performance metrics exist, each posses-
sing different properties, and previous evaluations have
uncovered their relationships and assess their relevant
usage scenarios [59]. The most commonly used metrics
in co-expression and differential co-expression analysis
are either based on the receiver operating characteristic
curve (ROC), such as the area under the ROC curve
(AUROC), or precision and recall [6, 50–52, 54, 60].
Under the assumption of sparsity in biological regulatory
networks, metrics based on precision and recall are more
appropriate than those based on the ROC curve [61].

A flexible approach to simulating expression data from
regulatory networks
Given the limited flexibility of existing network-based
gene expression simulators, we developed a new frame-
work for simulating expression data from realistic gene
regulatory networks that allows genes to be either wild-
type or knockdown across expression profiles in a simu-
lation. This allows perturbation of input parameters and
enables competing analysis methods to be compared
across a diverse set of scenarios. Our simulator com-
bines the method of Marbach et al. [59], which builds a
biologically realistic set of regulatory interactions, with
quantitative activation and repressor functions from
Kraeutler et al. [17]. A network of direct regulatory in-
teractions is first sampled from the S. cerevisiae (yeast)
regulatory network using the method described in [62].
The total number of genes (nodes) can be pre-specified,
as can the minimum number of regulators. For each
regulatory interaction, an ordinary differential equation
is generated that defines the activation or repression of
the target gene’s expression as a function of the

Bhuva et al. Genome Biology          (2019) 20:236 Page 5 of 21



regulator gene’s expression. Where an individual gene is
the target of multiple regulators, the activation and re-
pression functions are assumed to combine multiplica-
tively corresponding to a logical AND gate.
The model can be used to generate expression levels

for any number of genes and for any number of expres-
sion profiles. Expression levels are randomly generated
for the input genes in each expression profile, allowing
for the wildtype or knockdown status for each input
gene in each profile and allowing for inter-gene correl-
ation. Random noise is applied to the differential equa-
tions, and a non-linear equation solver is used to solve
the steady-state levels of all other genes in the network
given the expression of input genes. A small amount of
additive noise is added to the final expression values.
The simulator is available at [63]. Full mathematical de-
tails of the simulator are provided in “Methods”.

Gene knockdowns induce differential associations
between co-regulators and target genes
Perturbing a gene by knocking down its expression in
particular biological samples is a key experimental tech-
nique in functional genomics. Our simulations envisage
a set 500 biological samples involving knockdowns for
one or more of the input genes in the regulatory net-
work. For each of the perturbed genes, some of the
samples were generated to be wildtype with normal ex-
pression and the remainder were knockdown with abro-
gated expression for that gene. Knocking down a gene

affects not only the expression of that gene but also the
expression of its target genes and, indirectly, the expres-
sion of other genes via interactions across the regulatory
network. Our focus in this article is on DC, which arises
whenever the knockdown gene is a co-activator or a co-
repressor of a target gene. In the common scenario that
co-activators must cooperate to activate the target gene,
but co-repressors can act individually, a gene knockdown
tends to decrease the association between the co-activators
and the target and tends to increase the association be-
tween co-repressors and the target. The simplest regulatory
network to illustrate this phenomenon is that shown in
Fig. 1a. We used our simulator to generate 500 expression
profiles for genes A, B, and C assuming A and B to be co-
activators of C. Gene A was always wildtype while gene B
was knocked down in about half the samples, producing a
unimodal distribution of expression values for A symmetric
around 0.5 and a bimodal distribution of expression values
for B (Fig. 1b). Figure 1c shows a bivariate plot of the ex-
pression values for A and B together with the activation
function that A and B generate jointly to regulate the ex-
pression of C. The activation function for C takes on high
values only when A and B both have high abundance
(Fig. 1c). The correlation between A and C across all 500
samples is moderately positive (r = 0.246) but knockdown
of B produces strong differential association. The correl-
ation between A and C is very strong (r = 0.716) when re-
stricted to B wildtype samples but essentially absent (r =
0.049) for B knockdown samples (Fig. 1d). An ordinary co-

Fig. 1 A simple regulatory network demonstrating differential co-expression. a Schematic of the regulatory network. Genes A and B are input
genes and co-activate gene C. b Histograms showing the distribution of expression values for A and B across 500 simulated expression profiles.
Gene A is always wildtype whereas gene B is knocked down in about half of the samples. c Scatterplot of expression values for A and B.
Background shading shows the activation function generated by A and B used to model regulation of C. d Scatterplots of expression values for A
and C, knockdown of B (left panel) and B wildtype samples (right panel). Gene A is highly correlated with C (r = 0.716) when B is at wildtype
expression levels but uncorrelated with C (r = 0.049) when B is knocked down
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expression analysis therefore might miss the dependency
between A and C whereas DC analysis would detect a
strong signal.

Determining differential co-expression for complex
networks
Larger and more complex regulatory networks show
richer patterns of differential co-expression. Figure 2a
shows the direct interactions for a randomly sampled
network of 150 genes. The network includes 12 input
genes, two of which were selected for perturbation and
highlighted in purple and orange in the plot. Expression
data was simulated from the network for 500 biological
samples, with the two highlighted genes (KD1 and KD2)
randomly assigned to normal or knockdown expression
states in each sample (giving four possible combinations
for each sample). Figure 2b shows the results of the z-
score DC inference method applied to the expression
data. For every gene pair and each knockdown gene,

Pearson’s correlations and Fisher’s z-transform were
used to test for a correlation difference between the
wildtype and knockdown states of each gene knockdown.
Correctly predicted differentially co-expressed edges result-
ing from each gene knockdown were coloured accordingly
(purple or orange), and false positives were coloured grey.
Next, we analysed the regulatory network to determine

which of the empirical correlation differences shown in
Fig. 2b correspond to regulatory relationships that are
genuinely perturbed by the knockdown gene. Such rela-
tionships are considered to represent “true” DC and the
collection of such relationships is a representation of the
“true” DC network. In Fig. 2c, we perform a perturbation
analysis. We manipulate the network as a deterministic
system without added noise. We perturb all input genes
individually (including the two that are selected for
perturbation in our simulation experiment—purple and
orange) and determine which of the downstream genes
are sensitive to the perturbation, that is, show a substantial

Fig. 2 Differential co-expression analysis of an example network with 150 genes and 500 samples. a The regulatory network used to simulate the
data and the two knockdown genes (KDs) (orange and purple nodes). b A differential co-expression (DC) network inferred from the simulated
data using the z-score method. Interactions shown have significantly different correlations between knockdown and wildtype states (FDR < 0.1).
Correct predictions for each knockdown as per the “true” differential association network are coloured respectively with false positives in grey. c
Three representations of the true co-expression network obtained from a perturbation analysis of the regulatory network. Direct differential
interactions are a subset of differential influences which are in turn a subset of differential associations. d Empirical z-transformed correlations for
each interaction in the respective “true” networks. The association network shows a similar correlation profile to the direct and influence networks
but with added points, as shown for example by the circled points
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alteration in response to perturbation of a given input
gene. This analysis is necessary because not all genes
downstream of an input gene are significantly responsive
to perturbations of that input gene, especially in cases
where the downstream gene has many other upstream in-
put genes. Any input gene that shares a sensitive target
with a knockdown gene should manifest DC with that tar-
get, as the strength of the association of the input and the
target will be different in conditions where the knockdown
gene is reduced in expression. We can extend the input
gene results to downstream genes that are solely regulated
by each input gene because they are tightly correlated with
the input gene in the deterministic network. We call this
set of DC interactions the association DC network (left
panel of Fig. 2c). The association network includes non-
causal gene-gene relationships that are “spurious” or “con-
founded” in the sense that the putative regulator is not
upstream of the target gene in the regulatory network but
is merely downstream of a causal regulator. Sub-setting
the association network to gene pairs where the regulator
is upstream of the target gene in the network produces
the influence DC network (middle panel of Fig. 2c). Fur-
ther sub-setting the influence network to gene pairs where
the regulator is directly upstream (i.e. those in Fig. 2a)
produces the direct DC network (right panel of Fig. 2c).
In essence, these three representations of the “true”

network correspond to different levels of information
propagation across the network. The direct network rep-
resents information flow from a node to an immediate
downstream node. The influence network extends this
to model information flow from a node to all sensitive
downstream nodes for which there exists a path. The as-
sociation network further includes information shared
between nodes due to information flow from a common
ancestral node. In this application, we are interested in
the changes in information flow resulting from perturba-
tions, and therefore differences in information flow
across the regulatory network represent “true” DC net-
works and we compare all three levels in our evaluation.
Figure 2d shows the z-transformed correlation differ-

ences empirically observed from the simulated data for
interactions in each of the true DC network. Some as-
sociations exhibit small changes in correlation across
conditions and therefore may be difficult to detect with
inference methods, but others show substantial differ-
ences in z-transformed correlations. Differentially co-
expressed gene pairs in the influence and association
networks cluster together with the direct association
they are derived from (green circle) based on correla-
tions between conditions. This shows that correlation
profiles are retained despite the addition of edges to
the differential influence network and the differential
association network, thereby supporting these repre-
sentations of true DC networks.

Evaluation of inference methods using simulated data
We compared 11 differential co-expression inference
methods by applying them to 812 simulated datasets
(details in “Methods”). For the z-score method, we com-
puted correlations using Pearson’s and Spearman’s
methods therefore two sets of results were generated.
These are hereafter referred to as z-score-P and z-score-
S, respectively. Additionally, we evaluated DC networks
generated from co-expression-based GRN methods by
taking the difference between co-expression networks
identified separately in each condition; WGCNA and a
z-score method by Prill et al. [6] were used to generate
these co-expression networks. Briefly, approximately 500
expression profiles were simulated from networks with
150 nodes and approximately 2–8 knockdowns per-
formed. Some simulations could not be completed (n =
188), either due to an absence of co-regulation in the
sampled source networks or a lack of observations in
each condition. The resulting expression matrix (150 ×
500) and K × 500 binary matrix for K knockdowns were
used by the 11 inference methods to infer differential
co-expression networks.
For each simulated regulatory network, true DC net-

works were determined from the mathematical model as
demonstrated in Fig. 2. In particular, we propose the
idea of an association network that includes causative as-
sociations captured by the influence network, as well as
confounding associations resulting from similarity in
abundance profiles. Algorithmic details are given in
“Methods”. Performance of methods was evaluated using
the F1 score, which was computed for all three represen-
tations of the true DC network (direct, influence, and as-
sociation). Simulated data, inferred networks, and F1
scores for the 11 methods and 812 simulations in this
report are available as a precomputed data set for import
into the package (see “Availability of data and mate-
rials”). Functions in the dcanr (v1.0.0) R/Bioconductor
package can be used to invoke inference methods, per-
form evaluations, and parse these data.
Figure 3 summarises method performance across these

differential networks. A striking observation is that
methods tend to infer the differential association net-
work better than the direct or influence DC networks.
The example simulation shown in Fig. 2b also shows this
property where the network inferred using the z-score is
far closer to the association differential network. Overall,
the performance of the entropy-based method (ENT-
based) and the z-score calculated using Pearson’s coeffi-
cient (z-score-P) performed the best. The performance
of z-score was slightly better than the entropy-based
method for inferring the influence and direct networks;
however, the latter performs better at inferring the asso-
ciation network. The GGM-based method, MINDy, and
FTGI all performed poorly with the 90th percentile of
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F1 scores on the association network being lower than
0.25. The 90th percentile of F1 scores on the influence
and direct networks were lower than 0.15 for all
methods evaluated. As expected, most DC methods out-
perform co-expression methods (highlighted in Fig. 3) at
DC inference. Though these methods work well in the
task of co-expression analyses, simply taking the differ-
ence of co-expression networks does not successfully
infer true DC relationships.
Varying the number of observations can influence

method performance, therefore, to evaluate the effect of
sample sizes, we ran 500 different simulations, sampling
500 observations first, and then sub-sampling 100 obser-
vations under the same settings. Methods were applied
to the 396 simulations that converged and performance
was quantified on how well they predict the differential
association network. As expected, method performance
generally dropped with lower sample numbers, except
for ECF whose performance remained unaffected
(Additional file 1: Figure S1). The F-measure is com-
puted from precision and recall therefore we further
investigated which of these quantities was mainly influ-
enced by the reduction in sample numbers. The preci-
sion was reduced for all methods excluding ECF;
however, the entropy-based method was somewhat ro-
bust to sample number and had a precision that was
notably higher than all methods even with the reduced

number of samples (Additional file 1: Figures S2 and
S3). The recall of all methods except ECF dropped
drastically. Though ECF was robust to the number of
observations and generally had a high recall (median of
0.77), its overall performance was poor primarily due
to a low precision (median of 0.11) reflecting large
numbers of false positives. This analysis showed that
the entropy-based method was better at dealing with
low sample numbers compared to the other methods
and that ECF may be an even better choice if the num-
ber of samples is very small. Reduction in recall is ex-
pected as the power of the analysis is affected when
the number of samples are reduced which in turn
would reduce the recall for most methods. The analysis
also revealed the weakness of ECF being its precision,
and recall being its strength. In general, correlation-
based analyses require more samples than differential
expression analysis and we recommend having at least
32 observations per condition to allow confident esti-
mation of individual correlations greater than 0.3 (with
a p value <0.05).
Though the entropy-based method performs relatively

well across most simulations, inferences can be biased by
sample size differences. Investigations into the effect of
sample size differences revealed that the entropy-based
method and MAGIC were influenced by differences in the
number of observations across groups (see Additional file 1:

Fig. 3 Most methods tend to infer the association DC network. Performance of 11 DC inference methods and 2 co-expression methods
(highlighted in grey) across 812 different simulations with approximately 500 observations sampled. Performance is quantified using the F1 score
and is computed for the three different representations of DC networks: direct, influence, and association. Methods are sorted based on the sum
of their F1 scores across all simulations and truth networks. For co-expression methods, the difference of co-expression networks generated
separately in each condition was taken as the DC network
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Supplementary methods and Additional file 1: Figure S4).
Biases in the number of samples in each condition are
common in biological data, for example, the number of
estrogen receptor-positive (ER+) samples in clinical breast
cancer data is usually three times greater than the ER−

samples. In such cases, a method invariant to the differ-
ences in proportions is needed. Therefore, despite the
slightly better performance of the entropy-based method,
these results suggest that the z-score-based method is a
better and more robust choice for generic applications,
particularly when there is a class imbalance.

Dissecting method performance
The complementary performance of some methods war-
ranted an investigation into the properties that may be
contributing to inference results. It was evident that
some methods performed better than others in a subset
of simulations, demonstrating that no method is in gen-
eral the best, but rather most methods are better under
specific scenarios. This highlights the need for users to
consider the relative strengths and weaknesses of each
method for their specific use case. To improve our un-
derstanding of the simulation parameters and properties
that govern method performance, we generated sum-
mary statistics defining specific aspects of simulations.
Performance was characterised for the z-score with Pear-
son’s coefficient. Simulations were classified based on
the F1 score obtained from predicting the true DC net-
work. Classification was performed using hierarchical
clustering to group the simulations into five classes with
varying degrees of “ability to be inferred”, such that, class
label 1 represented those simulations where predictive
performance of the z-score was best while class label 5
represented those where performance was poor. Sum-
maries of the different properties were then investigated
in these classes.
Analysis revealed that the average number of input regu-

lators upstream of each differentially regulated target was
the strongest determinant of performance (Additional file 1:
Figure S5). The number of input genes also governed
uncaptured variation in the data as evidenced by the nega-
tive association of performance with the number of inputs.
As expected, multiple regulators increased the complexity
of the signal observed for a target gene and this may have
also reduced the association between input genes and their
downstream targets, therefore obscuring any signal in the
data used for inference. If instead multiple regulators were
concordantly expressed, the amount of variation would
reduce, thereby improving inference as shown when the
variance of correlations of input genes was high (μ of corre-
lations is 0; therefore, high σ2 means stronger correlations
are observed between a subset of inputs). Biological systems
are likely to exhibit such behaviour as regulation of genes
required for specific processes results from a signalling

cascade. Concordance of such targets and their transcrip-
tion factors is therefore common. The number of perturba-
tions applied per dataset was also negatively associated with
inference performance which could be explained by convo-
lution of the signal resulting from each independent per-
turbation. Weaker negative associations were observed with
the density of the source regulatory network indicating that
performance dropped as connectivity in the network in-
creased. This may, in part, also be explained by increased
convolution of the differential effects resulting from propa-
gation of the signal. A less dense network would likely have
a linear propagation effect where expression of a target re-
lies on a small number of upstream regulators. The local
clustering coefficient is indicative of the average number of
cliques formed by nodes in the network. Since feedback
loops are depleted from the original S. cerevisiae network,
cliques would generally represent feedforward motifs. A
larger local clustering coefficient would therefore represent
the average number of feedforward loops per node. Inter-
estingly, we observed that an increase in this metric
resulted in better performance as indicated by the larger co-
efficients in the top two performing classes, perhaps reflect-
ing the role of this motif in driving stable signalling.
Associations between classes and some of the sum-

mary statistics were of interest but so were the variables
which did not influence inference performance. Our
analysis revealed that inference performance by z-score
method was invariant to the means of input genes, their
variances, and the proportion of observations in each
condition. This showed that performance was dependent
on the structure of the regulatory network more than
parameters of the simulation. However, it should be
noted that these parameters could potentially impact
performance when sampling the entire range, whereas
our simulation procedure did not generate extreme ob-
servations and/or unusual distributions which may be
seen in some real-world data.

Hubs are targets rather than transcription factors
Several important observations were made using these
simulations. First, the differential association network
provides a better representation of the true network than
the differential influence network and differential regula-
tory interactions (direct DC network). Without informa-
tion on the directionality of associations, additional data,
and accurate estimates of differential association magni-
tudes, it is practically impossible to infer the underlying
regulatory network. Despite this, the differential network
may help to infer some information about the structure
of the underlying regulatory network. Structures in the
regulatory network may present themselves in a different,
yet consistent, form within the differential network, as
demonstrated in Fig. 2. We tried to identify relationships
between such structures by investigating differential
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association networks generated from specified regulatory
networks across the 812 simulations. The strongest obser-
vation we made was that the node degree or connectivity of
differentially regulated targets within the differential net-
work was generally much greater than that of any other
node. This challenges the classic interpretation proposed in
many differential network analyses where high-degree
nodes are proposed to be regulators/modulators [49]. The
network in Fig. 2 shows this property for a single simulation
where high-degree nodes within the differential network
are indeed target genes in the regulatory network. To inves-
tigate this further, we generated the degree distribution of
target genes and transcription factors across all 812 simula-
tions. Only genes connected in the differential association
network were analysed; target genes were defined as those
with zero out-degree, and all other were genes considered
as transcription factors (or general transcriptional regula-
tors). These distributions are shown in the additional files
(Additional file 1: Figure S6), with large differences in the
mean log-transformed degree of target genes (2.55) and
transcription factors (1.07). Conceptually, this could be ex-
pected as differentially regulated targets are associated with
all upstream regulators and their co-expressed genes. Con-
versely, transcription factors would have a high degree only
if they co-regulate many targets with other regulators (i.e. if
they are master TFs).

Applications to breast cancer
Differential co-expression analysis conditioned on the
estrogen receptor (ER) status was performed on the
TCGA breast cancer data using all DC methods, as de-
scribed in the “Methods”. We filtered out any genes
strongly associated with ER (with |correlations| > 0.5) to
focus on those targets where ER is a co-regulator and
not the sole regulator; this is analogous to filtering per-
formed in the simulations. Five methods completed
within the allocated computing resources (FTGI, Diff-
CoEx, z-score-P, z-score-S, and EBcoexpress). Scores for
5 more methods were computed but their statistical tests
did not complete (DICER, entropy-based, GGM-based,
ECF, MAGIC), and 2 methods (LDGM and MINDy) did
not generate any results within the allocated time.
We first investigated the raw scores to assess similarity

between all methods. Absolute scores from methods that
use correlation-based measures were themselves highly
correlated, with the exception of the entropy-based
method (Additional file 1: Figure S7a). ECF and the
GGM-based method produced the most distinct scores
with very low to almost no association with scores from
the other methods. Since statistical tests for some
methods did not complete, we used the top 10,000 inter-
actions with the highest absolute scores as a proxy for a
predicted network. Overlap analysis of these networks
reinforced the previous finding of concordance between

inferences made using the correlation-based methods
(Additional file 1: Figure S7b). The strongest overlap was
between networks generated using the z-score with
Spearman’s correlation coefficient and EBcoexpress. This
observation was further validated by comparing the final
predicted networks between these methods, which had
both completed within the allocated execution time. We
observed an adjusted Rand index (ARI) of greater than
0.7 for comparisons between DC networks generated
from the correlation-based methods (EBcoexpress and z-
score using either Pearson’s or Spearman’s correlation
coefficients). FTGI and DiffCoEx generated distinct net-
works as evident from ARIs < 0.02 (Additional file 1: Figure
S7c), likely due to differences in how each method calcu-
lates association (linear models and soft-thresholded correl-
ation, respectively).
We then investigated structural properties of the net-

works from methods that fully completed. Degree distri-
butions of all methods except DiffCoEx followed a power
law indicating that these networks had a scale-free top-
ology (Additional file 1: Figure S7d), while the DiffCoEx
network had many nodes with high degree. While these
results may be dataset-specific, we suspect it is because
DiffCoEx is originally a module-based inference method.
Networks generated using DiffCoEx are intended to be
fed into the module detection phase and therefore tend to
be densely connected and possess properties to facilitate
module extraction. As the inference from both z-score
methods and EBcoexpress were highly concordant, we de-
cided to focus further investigations on a representative
DC network: the DC network generated from the z-score
with Spearman’s coefficient method.
The z-score method resulted in a DC network with

178,487 differential associations between 8778 genes
across ER+ and ER− samples. As the resulting network
was too large to investigate in full, we focused our ana-
lysis on the most statistically significant interactions (p
value < 10−10). We selected a distinctive sub-network
with strong negative z-scores, indicative of genes that
show greater correlation across ER− patients than ER+

patients. Three high-degree nodes were connected to the
majority of the nodes within the sub-network, and thus
a sub-network induced from these genes and their
neighbours was analysed further. The resulting differen-
tial co-expression network is shown in Fig. 4a, centred
on the high-degree nodes HSH2D, DOCK10, and ITGAL.
Node colour is based on log fold-change of gene abun-
dance between ER+ and ER− tumours, and edge colour-
ing reflects the difference in observed correlation
coefficients, which could be considered as the effect size.
Nodes were clustered based on their connectivity with
the three putative targets.
Our observations from simulated data motivated the

hypothesis that these three hubs are differentially
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Fig. 4 A DC sub-network in ER− tumours is associated with lymphocyte infiltration. a The DC sub-network with candidate differentially regulated
targets DOCK10, HSH2D, and ITGAL, and TFs TFEC, SP140, IKZF1, KLHL6, IRF4, and STAT4. Nodes are coloured based on log fold-change conditioned
on ER status and edges coloured based on differences in correlations. Genes are clustered based on the target they are differentially co-expressed
with. b A putative regulatory mechanism proposed from the DC network with insights gained from simulations. Dashed lines indicate a
potentially indirect yet causal interaction. c Differential association of HSH2D with tumour-infiltrating lymphocytes (TILs) with infiltration estimated
from a naïve T cell signature using singscore (left), and from H&E-stained slides (Saltz. Gupta, et al.). Associations indicate that HSH2D is a marker
of lymphocyte infiltration specific to basal-like tumours. d correlations of genes in clusters C1-C5 with all transcription factors. The red line
indicates a correlation of 0.8, showing stronger co-expression with TFs in the same cluster. e Expression of selected genes in cancer cell lines
annotated with cancer sub-type and blood data annotated with immune cell type. Genes in the DC network have high expression in blood and
are rarely expressed in cell lines
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regulated targets and that their associated TFs would be
present within the connected nodes; all other nodes con-
nected to the differentially regulated target would likely
be targets directly regulated by the TF with no influence
from ER. To test this hypothesis, we annotated TFs in
the network using the union of genes in the gene ontol-
ogy (GO) category GO:0003700 (“DNA-binding tran-
scription factor activity”) and human TFs within the
AnimalTFDB3.0 database [64, 65]. IKZF1, IRF4, KLHL6,
STAT4, SP140, and TFEC were identified in the sub-
network, but only TFEC was differentially associated
with the hub gene DOCK10. These TFs have been la-
belled in Fig. 4a along with the three hubs. Next, we in-
vestigated whether these TFs were co-expressed with
other neighbours of their differentially regulated target/
hub, in this context perhaps representing direct regula-
tion. Genes were clustered based on their connectivity
with each target and labelled C1-C5, and then Spear-
man’s correlation of all nodes within a cluster was com-
puted against each of the 6 TFs. Correlations for the
resulting five clusters are presented in the boxplot in
Fig. 4d. For the transcription factor TFEC, correlations
were generally higher with other genes in the C5 cluster
(with DOCK10 as the only linked hub gene). According
to our hypothesis, this would suggest that TFEC regu-
lates or influences all genes in the C5 cluster, and differ-
entially regulates DOCK10. Additionally, as the C3 and
C4 clusters are connected to DOCK10, genes in these
clusters are likely regulated by TFEC and other TFs.
Similarly, differences in correlations were evident for C2,
the HSH2D-only cluster where larger correlations were
observed with IKZF1 compared to other TFs. C5 genes
also showed strong correlations with IKZF1 and KLHL6
which was explained by the high cross-correlation be-
tween these TFs and TFEC (0.81 and 0.87 respectively).
Correlations between all genes were generally high
which may be explained by the fact that the sub-network
was enriched for genes involved in the regulation of im-
mune response (GO:0050776; adj. p value < 2.11e−24)
and T cell activation (GO:0042110; adj. p value < 3.03e
−23). Indeed, the Ikaros family of transcription factors
(e.g. IKZF1) have well-defined roles in lymphocyte differ-
entiation and identity [66]. Genes differentially associated
with two or more targets could possibly indicate common
regulation by two TFs, for instance: genes in C4 exhibit
stronger correlations with both TFEC and IKFZ1 relative
to other TFs; C3 genes were strongly associated with mul-
tiple TFs investigated (TFEC, SP140, IKZF1, and KLHL6);
and C1 genes were associated with SP140, KLHL6, and
IKZF1. Based on these observations, we have proposed a
putative regulatory network in Fig. 4b. We note that up-
stream regulatory motifs were not investigated, and fully
elucidating the mechanism would require further investi-
gation and additional measurements across the system.

Two possible scenarios could explain the observed
differential associations across conditions: differences in
interactions between tumour cells and immune cells
within the tumour microenvironment; or differences in
the composition of the microenvironment. To investi-
gate this, we analysed expression profiles for genes in
the differential network within the Daeman et al. breast
cancer cell line dataset which is devoid of immune infil-
tration, and a human blood cell dataset. All genes except
for one were measured across both datasets. As ex-
pected, many genes were expressed solely in blood and
not within tumour cell line models, although a few ex-
hibited higher expression within both tumour cells and
blood (Additional file 1: Figure S8). C1S was the only
gene with high abundance in basal tumours that had
almost no expression in luminal tumours or blood as
shown in Fig. 4e. Interestingly, HSH2D showed expres-
sion in cell lines despite being previously reported as be-
ing solely expressed in haematopoietic cells [67]. A few
genes including IL2RB, CD3E, and CD2 were solely
expressed in lymphoid lineage cells and not in myeloid
lineages with a smaller proportion showing the opposite
profile, further supporting the notion that many of these
differential associations reflect changes in the relative
immune composition within the tumour.
We further tested this hypothesis by scoring samples

against immune signatures using the singscore method
and a transcriptome-independent measure of immune
infiltration (histopathology data). Both analyses revealed
a significant difference in tumour infiltrating lympho-
cytes between the ER− and ER+ tumours for all cell types
using scores (p value <0.015 from a t-test), while for
image-derived estimates most cell types showed signifi-
cant differences (p value <0.035; excluding macrophages,
p value =0.796; from a t-test, see Additional file 1: Figure
S9). Correlations between the two estimation procedures
were high (0.8–0.85) for lymphoid lineage signatures,
therefore indicating the reliability of signature-based es-
timation. Interesting associations were identified with
these scores and the genes in the differential network.
Several genes, including HSH2D, DOCK10, and ITGAL,
showed differential associations with immune scores, an
example of which is shown for the naïve CD4+ T cell
signature in Fig. 4c. These genes were positively associ-
ated with the score in basal-like tumours (which were
mostly ER−), but no association was found for any of the
other sub-types (Additional file 1: Figure S10). These
genes were not present in any of the signatures tested;
however, 40 genes from the differential network were
and they did not exhibit a differential association (see
IKZF1 in Additional file 1: Figure S10). The result was
also consistent with the leukocyte fraction estimated
from imaging data (Fig. 4c), providing independent val-
idation. Interestingly, only the associations of these

Bhuva et al. Genome Biology          (2019) 20:236 Page 13 of 21



genes varied with tumour infiltration and their abun-
dances did not change significantly (i.e. they were not
differentially expressed). These genes could be used as
basal-like specific estimators of tumour infiltrating
lymphocytes.
Our analyses support the hypothesis that the observed

differential network can largely be attributed to differ-
ences in lymphocyte infiltration. We note, however, that
the expression profile of C1S could possibly support the
hypothesis that the observed DC network captures the
relationship between tumour cells and infiltrating im-
mune cells. C1S is a serine protease involved in the com-
plement pathway and increased expression in basal-like
cell lines may contribute to increased immune infiltra-
tion within ER− cancers.

Discussion
In this study, we evaluated the performance of 11 differ-
ential network inference methods, 8 of which were pre-
viously published but lacked usable implementations.
We adapted a signalling network modelling method [17]
to simulate gene regulatory network activity and gener-
ate synthetic expression data from known generative
networks. The problem of precisely how gene expression
is regulated contains many open questions, and it is
questionable whether we yet have enough knowledge to
come up with a truly accurate model. Here, we have in-
stead generated a model that reproduces the observable
output of the system (i.e. gene expression). Our simulations
did not attempt to model binding events, stochasticity,
translation, or post-translational modifications [56, 57], in-
stead favouring simplicity to make the method tractable
and flexible. Despite these strong assumptions, the model
accurately captured the main biological property of interest
to us in regulatory networks, namely signal propagation
and its impact on gene expression. Moreover, most infer-
ence methods using transcriptomic data do not attempt to
capture details of proteins or binding events, so our as-
sumptions are not unwarranted in this context.
In order to simplify parameterisation of the simula-

tions, we used the classification scheme proposed in
SynTReN [57] where activation functions were split into
five classes. The classification scheme restricted the
range of activation functions such that extreme activa-
tion functions which are rarely feasible in biology are
avoided. Studies have discouraged the use of random
networks to represent biological networks due to large
differences in topological structures [57, 62]; thus, we
sampled networks from the S. cerevisiae regulatory net-
work in a manner which retained biologically relevant
motifs and network cliques [56]. Human regulatory net-
works were not used as they are sparsely identified.
Since the human gene regulatory network (GRN) is
sparsely identified yet, the known GRN can be thought

of as being sampled from the full true human GRN.
Sampling randomly (i.e. selecting random nodes) will re-
sult in differences in topological characteristics of the
sampled network from the source network [57, 62].
Moreover, identification of the human GRN is mostly
focused on genes/elements related to diseases which re-
sults in biased sampling of the true human GRN. The S.
cerevisiae network is more comprehensively realised at
this point; therefore, we assume that using it in simula-
tions will result in more biologically accurate networks
than using a larger but sparsely realised human network.
The final modelling constraint was the set of logic func-
tions used to model co-regulation. Here, we proposed
logic functions derived from co-regulatory mechanisms
that are representative of true biological regulation.
Additionally, we proposed a new parameterisation ap-

proach for input nodes which restricted variability at the
population level. Traditional simulators such as Gene-
NetWeaver [56] and SynTReN [57] use uniformly dis-
tributed abundance values for input nodes thereby
assuming all samples are independent. Real biological
data tend to contain sample populations which exhibit
similar behaviour with minor variations (e.g. within
tumour sub-types); this is better modelled with a normal
distribution. Moreover, we consider input genes to be
weakly dependent, as we note that in biological systems
the assumption of complete independence across all
genes is invalid. Our parameterisation accounted for
both the above observations in order to exclude extreme
and possibly rare instances.
Observations from our simulations have led us to

propose a novel interpretation of the true differential co-
expression network, along with the previously proposed
influence network [13, 14] and the classically used direct
network. Of the three representations of the true net-
work, we show that the differential association network
is a better representation of what DC methods infer. In-
tuitively, this made sense as methods set out to infer dif-
ferential co-expression networks rather than differential
regulatory networks. While it is common to assume that
networks inferred by DC methods can be interpreted as
a regulatory network, our analysis demonstrates that this
is not the case and that network topologies should be
interpreted with this distinction in mind. We propose
that this distinction should also apply to the evaluation
of general co-expression network inference methods.
Previous evaluations of network inference with co-
expression methods have used the regulatory network as
the true network for evaluating performance [50–52].
Given the results presented here, we propose that

methods detecting co-expression should use the associ-
ation network as the true network for benchmarking.
We have shown this to be the case for all differential co-
expression network methods examined here, despite
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differences in performance. It is also evident that if we
use a direct or influence network as the true network,
the usefulness of all methods is largely underestimated.
In other words, while no method reconstructed the gen-
erative regulatory network well (in agreement with our
previous work [51, 52]), most methods could reconstruct
a co-expression network with reasonable accuracy. We
found that the simple z-score method performed the
best in benchmarking. Performance of co-expression
methods such as WGCNA and the z-score method by
Prill et al. [6] was poor in the task of DC inference as
could be expected given their development for an alter-
native application. This demonstrates the need for spe-
cialised methods for DC analysis and should discourage
the construction of DC networks using the difference
between separately inferred co-expression networks,
even when the best co-expression analysis methods are
used. Additionally, this observation suggests that DC
analysis methods, at gene, module, or network-level
resolution, should refrain from performing inference
across the conditions independently and should instead
jointly estimate differences between conditions. Validat-
ing the choice of the true network through simulation
allowed us to identify structures in the differential net-
work that were indicative of the underlying regulatory
network structure. One striking outcome of this detailed
analysis is that hub genes in DC networks are more
likely to be targets than regulators, contrary to the com-
mon assumption that a hub gene is likely to be a regula-
tor. This can be used to guide downstream analyses,
enhance the interpretation of co-expression networks,
and support the identification of important nodes in the
generative regulatory network.
Knowing that inference methods identify an associ-

ation network, the challenge becomes interpreting these
results with respect to the underlying biology. The aim
of many transcriptomic analyses is to learn about the
underlying biological system, and in the context of dif-
ferential co-expression analysis, this is the regulatory
network driving observed patterns within the data. Com-
pletely elucidating the regulatory network with only
multifactorial transcriptomic data is difficult, as influ-
ences and direct regulatory relationships are a subset of
the inferred network with non-unique mappings. The
key required step here would be inference of directional-
ity of edges. Given a directed differential co-expression
network and a directed co-expression network (identify-
ing shared behaviour), an influence network [13, 14]
could be derived, providing some insight into the true
regulatory network. Directionality can either be inferred
from time-series and/or systematic perturbation experi-
ments, or from knowledge bases such as TF-target binding
databases, although the latter may limit novel discoveries.
Though the aim of complete network inference may not

be feasible with transcriptomic data alone, higher-order
tasks are still possible, such as identifying dysregulated
processes. For example, module identification following
differential co-expression network inference may identify
perturbation in cellular processes.
In this benchmarking study, we have focused on the

analysis of differential co-expression between two condi-
tions. The scenario where DC is detected across multiple
conditions is an interesting one; however, it presents
many complexities. Of the methods examined here, only
five (ECF, COSINE, DiffCoEx, FTGI, and DICER) allow
for multiple conditions. With the exception of ECF and
COSINE, they do so by constructing a pairwise compari-
son, where each group is compared against the average
of the others, or a selected reference condition. ECF and
COSINE perform a series of pairwise comparisons and
aggregate the statistic, in a process analogous to ANOVA.
Thus, there is a clear need for the development of new
methods that deal with truly multiple comparisons in a
way that preserves information about the nature of the
differences across conditions.
Our differential co-expression analysis of breast cancer

data using estrogen receptor (ER) status as the differential
condition revealed a sub-network related to immune ac-
tivity. Combining the differential network with a basic co-
expression analysis and differential expression analysis, we
characterised the differential network and proposed a pu-
tative regulatory mechanism involving transcription factor
regulation specific to ER− tumours. We further showed
that differentially regulated targets were also differentially
associated with tumour infiltrating lymphocytes, suggest-
ing a potential use in estimating lymphocytic infiltration
for basal-like tumours. Based on these findings, we con-
clude that changes were likely observed due to differences
in the tumour microenvironment across conditions. ER
status is a complex factor, with numerous molecular dif-
ferences in addition to changes in regulatory mechanisms.
For instance, differences in lymphocyte infiltration have
also been previously observed [68]. Consequently, the con-
dition used to generate the differential network is likely to
be confounded with co-occurring phenotypic changes,
limiting interpretation from bulk RNA-seq data alone.
Single-cell RNA-seq data might be useful in such a sce-
nario, or inference methods based on partial correlations
could account for such effects; however, neither type of
method has yet been developed. Generally, we recom-
mend acknowledging the fact that conditions are rarely in-
dependent in real data and accounting for this when
interpreting results from a differential analysis.
Finally, we showed the application of signatures/gene

sets in differential association analysis with the differen-
tial associations observed between HSH2D and the naïve
T cell signature. Signatures have been used in a similar
context to identify conditions that are otherwise difficult
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to measure [69]; however, their application in differential co-
expression analysis remains unexplored. Furthermore, we
showed that differential associations with non-transcriptomic
data also exist and they too can be identified. Both cases
present interesting avenues for future applications of these
methods.

Conclusion
Differential co-expression (DC) analysis is a powerful
tool for understanding differences between samples be-
longing to different groups. Here, we have undertaken a
benchmarking study to explore the performance of 11
DC analysis methods, and we provide implementations
for eight of these in the dcanr R/Bioconductor package
associated with this work. Across our simulations, we
found the z-score method to have the best performance.
Our simulation framework allowed us to focus not only
on evaluating DC network inference methods, but also
on the problem of how resulting networks can be inter-
preted in the context of their generative regulatory
networks. We show that common interpretations of
inferred network topology are often flawed and that a
deeper understanding of the relationship between co-
expression networks and regulatory networks is not only
possible, but also critical to the accurate interpretation
of the results of such methods.

Methods
Random sampling of network topologies
Networks in this study were sampled from S. cerevisiae
(yeast) regulatory networks obtained from the SynTReN
v1.2 supplementary data in simple interaction format
(SIF) [70]. The SynTReN file provides a directional regu-
latory network containing 690 nodes/genes and 1094
edges with annotations for edge types. The edge type
represents the type of regulatory relationship: activation,
repression or both (dual). In our simulations, any dual
interaction was reset to a repressor. Networks with 150
nodes (genes) were sampled using the method described
in [62], which ensures most network properties of the
original network are retained in the sampled network. A
sampling bias was introduced to ensure at least 10 input
genes (genes without regulators) were selected and sto-
chasticity was set at k = 25%. All randomly sampled net-
works have a single component, in that a path exists
from each gene to every other gene (discounting direc-
tionality of edges).

Mathematical model of gene regulation
The normalised-Hill differential equations from Kraeu-
tler et al. [17] were re-purposed to model activation/re-
pression of a gene by a set of regulator genes. The
following equation was used to model the activation of a
gene B by a single regulator gene A:

dB
dt

¼ f act A;ECAB
50 ; n

AB
� �

−B

Here fact is the activation function, A is the relative
abundance of gene A, B is the relative abundance of
gene B, ECAB

50 is the abundance of gene A required for
half-maximal activation of gene B and nAB is the Hill
constant used to specify linearity of the activation func-
tion. The activation function is defined by

f act A;ECAB
50 ; n

AB
� � ¼ βAnAB

KnAB þ AnAB

with

β ¼ ECAB
50

nAB
−1

2ECAB
50

nAB
−1

and

K ¼ β−1ð Þ 1
nAB

All abundance values are in the range [0,1].
Repression can be modelled using the activation func-

tion 1− f actðA;ECAB
50 ; n

ABÞ. Co-activation of a gene by two
regulators, A1 and A2 is modelled using the activation

function f actðA1; EC
A1B
50 ; nA1BÞ � f actðA2; EC

A2B
50 ; nA2BÞ .

The activation function for multiple regulators is both
commutative and associative which is useful considering
the fact that the yeast network has a node with 13 regu-
lators. The EC50 and n parameters define the relation-
ship between each regulator and its target. To restrict to
linear-like activation functions [57], we sampled EC50

from the range [0.4,0.6] and n from the range [1.01,
1.70]. A rate equation is generated for each target gene.
Steady-state levels for all genes were obtained using a
non-linear equation solver.

Simulating expression data from a regulatory network
Expression values were simulated from each regulatory
network. Expression values for the input genes were
generated from a truncated multivariate normal distribu-
tion on the interval [0,1] using a random mean vector
and covariance matrix. The normal distribution means
were sampled from a B(10,10) beta distribution for wild-
type genes or B(10,100) for knocked down genes. The
normal distribution variances were sampled from B(15,
15) and then scaled by min(μ,(1 − μ))/3 where μ is the
mean; scaling ensured that support for the normal distri-
butions was concentrated within the range [0,1]. The
correlation matrix for non-knockdown input genes was
generated using the C-vine algorithm with partial corre-
lations sampled from a B(5,5) distribution on [−1,1] [71].
Knockdown input genes were generated to be independ-
ent of other genes to avoid confounding the differential
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signal. The mean vector and covariance matrix of the
multivariate normal distribution was held constant across
all realisations of each network, apart from the switches
from wildtype to knockdown states for selected input
genes.
Once the abundances of all standard and knockdown

input genes are generated, the expression values of all
other genes are determined by solving for the steady
state of the system of differential equations. Two types
of noise are added to the simulated data to model ex-
perimental and biological noise. The activation functions
were multiplied by lognormal random variables with μ =
0 and σ = 0.05 before solving the differential questions.
After solving the differential equations, Gaussian noise
with μ = 0 and σ = 0.05 was added to the expression
values.

Deriving the “true” differential association network from
a model
This approach uses perturbations to determine the true
differential association network for each simulation and
allow performance evaluation. As noted above, a subset
of genes is defined as input nodes and their abundances
are sampled rather than calculated through network
simulation. The expected value of each input node was
independently perturbed with a 25% reduction resulting
in an abundance of μi ∗ (1 − 0.25), and where these input
nodes correspond to knockdown targets, the “wildtype”
mean is used. Resulting changes in the abundance of
other genes are then calculated and “perturbation sensi-
tivity” values are calculated, defined here as the relative
expression change in the target gene divided by 0.25
[17]. Absolute abundance values less than 0.001 are set
to 0 to account for numerical inaccuracies encountered
while solving for steady states. It should be noted that if
linear-like activation functions are used the sensitivity
calculation is invariant to the size of the perturbation.
Gene pairs with dependencies are then identified by ap-
plying a threshold of 0.01 to absolute perturbation sensi-
tivity values; this results in a binary sensitivity matrix
where each entry indicates whether a gene is affected/
sensitive to perturbation to another gene. At this stage,
the network of associations represented by the sensitivity
matrix is considered as the influence network [14]. This
matrix is then used to infer the three representations of
the “true” DC network using the algorithm described in
the Additional file 1: Supplementary Methods.

Simulation setup for evaluations
Method performance was evaluated across 1000 simula-
tions. Simulated networks with 150 nodes were sampled
from the S. cerevisiae network and approximately 500
expression profiles simulated from the network, result-
ing in 150 × 500 expression matrix. Some simulations

resulted in fewer expression profiles due to the steady-
state not being solved. The genes to knockdown per
simulation were sampled from the input nodes with a
probability of ρ (i.e. from a binomial distribution). Then,
for each knockdown gene, expression profiles with the
knockdown followed a binomial distribution Binomial(p =
ρ,N = 500) where the proportion of such profiles were
sampled from the uniform distribution Uniform(0.2,0.8).
With K gene knockdowns being performed in a simula-
tion, a K × 500 binary matrix was used to represent condi-
tions. The expression matrix and condition matrix were
then used by inference methods to predict a differential
co-expression network conditioned on each knockdown.

Summary statistics of simulations
Network properties and simulation parameters define
each simulation. Summary statistics for 16 important
characteristics were calculated for each simulation, 5
representing parameters of the dynamical systems model
and 11 representing the network structure. Some prop-
erties map one-to-one with each simulation while others
have a one-to-many relation (Table 3). Network proper-
ties were calculated using the igraph (v1.2.1) R package
(available from CRAN) [72].

Inferring differential co-expression networks
Some of the methods examined here had available R
package implementations (Table 2), although most were
either unavailable or available on other platforms. For
the graphical Gaussian model (GGM)-based method,
models were fit using the GeneNet (v1.2.13) R package
(available from CRAN) with the remaining analysis per-
formed as described by Chu et al. [47] and implemented
in our R/Bioconductor package dcanr (v1.0.0). The mini-
mum and maximum values for the regularisation param-
eter for LDGM were computed as described by Tian
et al. [48]. The parameter was tuned within this interval
such that the number of edges in the resulting network
matched the average number of edges in the “true”
differential association networks resulting from each
knockdown. For a knockdown resulting in 100 differen-
tial associations, the regularisation parameter would be
selected such that the DC network had close to 100
edges. Binary search was performed in the interval to
optimise for this parameter for up to 50 iterations. If the
parameter was not optimised, the value that minimised
the difference between the observed and expected num-
ber of edges among the 50 iterations was chosen.
Remaining methods were implemented to score and

test independent associations, although additional down-
stream analyses such as module detection or filtering of
significant associations based on heuristics were not im-
plemented. We aimed to benchmark how well each
method quantified independent differential associations.

Bhuva et al. Genome Biology          (2019) 20:236 Page 17 of 21



As such, downstream analyses such as module extraction
by DICER and DiffCoEx and “minimum modulator sup-
port” by MINDy were not performed. Additionally, the
output of all methods, excluding EBcoexpress, is a set of
p values for all possible gene pairs. Interface functions to
all existing implementations were developed to allow
further comparison of results. MINDy inferred direc-
tional networks; therefore, for each edge, the maximum
statistic in either direction was chosen to be representa-
tive of its score. This made sure all inferred networks
were undirected. Where permutation tests are required,
five permutations of the data were computed, and the
statistic was pooled for each perturbation. These p values
were then corrected for multiple testing using the
Benjamini-Hochberg procedure [73] for each perturbation/
condition. EBcoexpress produces posterior probabilities;
therefore, these were used directly. An FDR cut-off of 0.1
was applied for each method excluding EBcoexpress, for

which a maximum a posteriori probability cut-off of 0.9
was applied producing the final binary predictions of edge
absence/presence. Prior to inference, genes only regulated
by the knocked down gene were filtered out to maintain
conditional independence. These were selected from the
perturbation analysis as genes that were sensitive to the
knocked down gene only and no other input gene. Preci-
sion, recall, and the F1 score were then computed for each
method.
Differential co-expression inference was also performed

using co-expression-based GRN analysis methods. Co-
expression networks were generated in the knockdown
and wild-type conditions independently, and the differ-
ence network between the two conditions (i.e. non-
overlapping edges) formed the DC network. The WGCNA
(v1.68) R package (available from CRAN) was used to run
the WGCNA algorithm with default parameters. The co-
expression network was generated by selecting all edges

Table 3 Network and model properties calculated to characterise simulations

Label Description Type Mapping

Avg num input TFs Average number of input genes co-regulating
the differentially regulated target.

Network 1-to-1

Clust coef (g) Ratio of cliques over all possible cliques in the
network. Large values are indicative of small-world
networks. Calculated on the undirected
regulatory network.

Network 1-to-1

Clust coef (l) Average of clustering coefficients calculated per
node. Calculated on the undirected network.

Network 1-to-1

Density diffnet Network density of the true differential network.
Here the differential association network is used.

Network 1-to-1

Density source Network density of the source regulatory network.
Density is calculated as the ratio of observed edges
over the total number of possible edges
(N choose 2) for N edges.

Network 1-to-1

Diameter Calculated as the longest of all shortest paths in
the network and is indicative of the linear size of
the network. Calculated on the undirected network.

Network 1-to-1

Eigen centrality Eigen centrality of each perturbed (knockdown)
node. Calculated on the undirected network.

Network 1-to-many

Input means Mean value of the distribution each input gene Model 1-to-many

Input vars Variance of the distribution of each input gene Model 1-to-many

KD sample props The smaller proportion of the population resulting
from a knockdown. 0.2 if the proportions are
0.2 and 0.8.

Model 1-to-many

Num co-targeted Number of differentially regulated targets Network 1-to-1

Num inputs Number of input nodes in the source
regulatory network.

Network 1-to-1

Num KD genes Number of perturbed genes (knockdown). Model 1-to-1

Num TFs Number of regulators in the source regulatory
network (both inputs and downstream).

Network 1-to-1

Radius Minimum eccentricity of any node where eccentricity
of a node is the shortest distance to the farthest
node. Calculated on the undirected network.

Network 1-to-1

Var of input cors Variance of the correlations between relative
abundances of input genes.

Model 1-to-1
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with a weight greater than 0.05. The z-score method by
Prill et al. [6] was implemented as originally described. A
two-tailed z-test was applied for this method, and p values
were adjusted using the Benjamini-Hochberg procedure
[73]. An FDR threshold of 0.1 was applied to result in the
final co-expression networks.

Implementation of the evaluation framework
Simulations and analysis were performed using R. Simula-
tions and regulatory networks are encoded in S4 classes to
ensure code stability and information organisation. The
MASS (v7.3-50) R package (available from CRAN) [74] is
used to sample data from multivariate normal distributions.
The non-linear equation solver in the nleqslv (v3.3.1) R
package (available from CRAN) is used to solve the differ-
ential equation system. Parallelisation is achieved using the
foreach (v1.4.6) and doSNOW (v1.0.16) R packages (avail-
able from CRAN). Inference methods used in this study
along with the evaluation framework are available in the
dcanr (v1.0.0) R/Bioconductor package. Data from the 812
simulations performed along with inferred networks and F1
scores for the 11 methods are available as a separate file
(see “Availability of data and materials”). Source code for
performing the simulations is available at [63].

TCGA breast invasive carcinoma analysis
TCGA breast invasive carcinoma (BRCA) HTSeq count-
level RNA-seq data were downloaded from the genomic
data commons (GDC) using the TCGAbiolinks (v2.8.2)
R/Bioconductor package [75] with male and FFPE sam-
ples discarded. Genes with low expression (CPM < 2
across more than 50% of samples) were filtered out
along with non-protein coding genes. TMM normalisa-
tion was performed on filtered data and logFPKMs com-
puted using the edgeR (v3.22.3) R/Bioconductor package
[76]. Gene lengths for computing logFPKMs were calcu-
lated as the summed length of all exons from Gencode
v22 annotation files. We adapted code from the Sings-
coreAMLMutations (v1.0.0) R/Bioconductor package to
download and process TCGA data [77]. Samples without
annotation for ER status or samples with a “Indetermin-
ate” ER status were discarded. Genes with an absolute
correlation greater than 0.5 with the ER gene (ESR1)
were removed and differential co-expression analysis
was performed on the remaining data, conditioned on
the ER status.
All methods were applied to the dataset with the same

parameters as those used for simulated data. An adjusted
p value threshold of 1 × 10− 10 was applied to generate
the DC network. A threshold of 1 × 10− 10 was applied
on the posterior probabilities generated by EBcoexpress.
The regularisation parameter for LDGM was tuned to
produce a network with 4700 edges; the average of the
number of edges resulting from the two z-score

executions (with Pearson’s and Spearman’s coefficient).
As some methods were computationally intensive, we
allocated 20 processors per method and allowed for a
maximum wall time of up to 7 days (up to 3360 CPU
hours per method dependent upon the efficiency of par-
allelisation). Network visualisation was performed using
Cytoscape (v3.6), and network analysis used both Cytos-
cape and the igraph R package (available from CRAN).
The RCy3 (v2.0.86) R/Bioconductor package provides a
simple, complete interface between R and Cytoscape and
was used to load and analyse networks across the two
platforms.
The Daeman et al. breast cancer cell line RNA-seq data

(GSE48213) [78] and sorted blood cell data (GSE60424)
[79] were processed as described in [80]. Additionally, a
processed microarray dataset of sorted blood dataset was
used (GSE24759) [81]. Immune signatures [82] were used
to estimate tumour infiltration from transcriptomic data
using the singscore method [80] implemented in singscore
(v1.4.0) R/Bioconductor package. Estimates from the ana-
lysis of H&E-stained slides [83] were used as an independ-
ent measure of tumour-infiltrating lymphocytes.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13059-019-1851-8.

Additional file 1. Supplementary methods. Figure S1. F1 measure of
inference methods across 396 simulations with either 500 or 100
observations. Figure S2. Precision of inference methods across 396
simulations with either 500 or 100 observations. Figure S3. Recall of
inference methods across 396 simulations with either 500 or 100
observations. Figure S4. Score profiles for the different methods without
(top) and with (bottom) imbalanced samples in each condition. Figure
S5. Classes were determined by hierarchical clustering of the F1 score of
the z-score with Pearson’s coefficient method across 812 simulations with
1 representing simulations where methods the z-score performed well
the best and 5 where performance was poor. Figure S6. Degree
distribution of target genes and transcription factors. Figure S7.
Comparing differential co-expression scores and networks generated
using different inference methods. Figure S8. Expression of genes from
the ER dependent differential co-expression network in breast cancer cell
lines and sorted blood datasets. Figure S9. Immune infiltration in the
TCGA breast cancer cohort estimated from the RNAseq data using the
signatures from CIBERSORT using the singscore gene set scoring method
(top) and from image analysis of H&E stained slides of samples by Saltz
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