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Abstract 

The evaluation of intra-tumour heterogeneity (ITH) from a transcriptomic point of view is 

limited. Single-cell cancer studies reveal significant genomic and transcriptomic ITH within a 

tumour and it is no longer adequate to employ single-subtype assignment as this does not 

acknowledge the ITH that exists. Molecular assessment of subtype heterogeneity (MASH) 

was developed to comprehensively report on the composition of all transcriptomic subtypes 

within a tumour lesion. Using MASH on 3,431 ovarian cancer samples, correlation and 

association analyses with survival, metastasis, and clinical outcomes were performed to 

assess the impact of subtype composition as a surrogate for ITH. The association was 

validated on two independent cohorts. We identified that 30% of ovarian tumours consist of 

two or more subtypes. When biological features of the subtype constituents were examined, 

we identified significant impact on clinical outcomes with the presence of poor prognostic 

subtypes (Mes or Stem-A). Poorer outcomes correlated with having higher degrees of poor 

prognostic subtype populations within the tumour. Subtype prediction in several independent 

datasets reflected a similar prognostic trend. In addition, paired analysis of primary and 

recurrent/metastatic tumours demonstrated Mes and/or Stem-A subtypes predominated in 

recurrent and metastatic tumours regardless of the original primary subtype. Given the 

biologic and prognostic value in delineating individual subtypes within a tumour, a clinically 

applicable MASH assay using NanoString technology was developed as a classification tool 

to comprehensively describe constituents of molecular subtypes. 

 

Keyword: Intra-tumour heterogeneity/Microarray Gene Expression/Molecular 

Subtype/Ovarian Cancer 
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Introduction 

 Ovarian cancer (OC) is the sixth leading cause of cancer mortality in developed 

countries [1]. In 80% of patients with advanced OC, the disease recurs despite optimal 

surgical cytoreduction and adjuvant systemic platinum-based chemotherapy. At disease 

recurrence, tumours may be platinum sensitive or resistant, and the spectrum of 

chemosensitivity may be partially explained by the existence of at least four different 

histological subtypes—high grade serous (HGSOC), endometrioid, clear cell, and mucinous 

carcinoma. Histological differences alone, however, cannot fully account for the 

heterogeneity in clinical outcomes because differences in patient outcomes and responses to 

chemotherapy also exist between patients with seemingly identical histological subtypes. 

Therefore, other underlying mechanisms that underpin drug resistance in OC require further 

exploration. Plausible mechanisms include inter- and intra-tumoural heterogeneity driven by 

genomic alterations [2-5] or molecular signatures [6,7], and clonal evolution and/or 

chemoresistant stem cell-like populations in the primary tumour [3,8]. 

 Tothill et al, [7] identified six molecular subtypes of HGSOC—with associated 

biological and clinical significance based on gene expression profiling, which was later 

validated in several independent studies [6,9]. Similarly, we identified five molecular 

subtypes based on gene expression profiling [6]. When we compared the subtype definitions 

from Tothill et al [7], TCGA [9], and our previous work [6], we observed significant 

concordance in molecular features and associated clinical outcomes [6]. The Clinical 

Proteomic Tumour Analysis Consortium (CPTAC) refined the molecular subtypes by 

integrating transcriptomics and proteomics [10] which identified a very similar classification 

system as that described by TCGA, except for a rare subtype ―stromal‖ which was not 

identified previously. Due to the lack of publicly available proteomics data, and the 

similarities between the CPTAC and TCGA classification [10], we focused on transcriptomic 
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molecular subtypes in this study. The 3 transcriptomic molecular subtype definitions are 

shown in Fig. 1A (subtype in order of Tan et al [6]/Tothill et al [7]/TCGA[9]): Epithelial-A 

(Epi-A)/C3/Differentiated, Epithelial-B (Epi-B)/C2/Immunoreactive, Stem-like B (Stem-

B)/C6, Mesenchymal (Mes)/C1 and Stem-like A (Stem-A)/C5/Proliferative. The molecular 

subtypes were correlated with various clinicopathological parameters and showed significant 

differences in both disease-free survival (DFS) and overall survival (OS) in a univariate 

analysis [7] as well as in a multivariate Cox regression analysis when taking into account 

other clinically relevant parameters [6]. Importantly, the Mes/C1 (characterised by elevated 

pathways of extra-cellular matrix, metastasis, TGF-β signalling) and the Stem-A/C5 

(characterized by elevated pathways of chromatin reorganization, WNT signalling, 

microtubule processing) subtypes were linked to poorer outcomes compared to the other 

subtypes [6,7]. There is emerging clinical evidence to suggest transcriptomic subtypes can 

predict therapeutic outcomes in patients with OC. Recent retrospective analysis suggests the 

addition of bevacizumab to standard chemotherapy conferred a greater benefit in patients 

with poor prognostic molecular subtypes (Mesenchymal/C1/Mes and proliferative/C5/Stem-

A) [11,12]. Accumulating evidence has supported the existence of molecular subtypes, with 

enrichment of certain genomic and transcriptomic pathways, that exhibit preferential 

responses to certain cytotoxic agents, such as platinum, paclitaxel, vincristine and vinorelbine 

[5,6,13,14]. In light of these reports, several gene expression subtype-specific clinical trials 

have emerged to address the clinical relevance of gene expression signatures in OC.  

 Conventionally, molecular subtyping deploys a single-subtype assignment to each 

tumour sample without taking into account the underlying biology of intra-tumour 

heterogeneity (ITH). ITH has been documented by using single-cell analysis across multiple 

tumour types including carcinoma of the breast [15], renal [16], lung [17], prostate [18], 

ovarian [19], glioblastoma [20], melanoma [21], lymphoblastic leukaemia [22] and multiple 
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myeloma [23]. These studies suggest that the existence of heterogeneity lies not only at the 

genomic level, but also at the epigenomic and transcriptomic levels. As we expand our 

taxonomy of tumours and continue to understand the consequences and implications of ITH 

in solid tumours, it is apparent that a single-subtype annotation is largely inadequate for 

classifying tumours as it ignores the co-existence of potentially resistant subclones within the 

tumour [16,18]. While several studies have described the impact of ITH from genomic 

alterations by using various sequencing approaches, our understanding of transcriptomic ITH 

in OC, is still lacking. A recent study utilized the single-cell RNA sequencing approach to 

profile one single HGSOC tumour sample and identified two distinct cell populations. Both 

an epithelial cell populations and a separate population of mesenchymal, stem cell -like 

population were identified, reaffirming the prevalence of ITH in OC [24].  

 Ideally, a method that would comprehensively describe the co-existence of good and 

poor prognosis signatures [16] as well as drug-resistant and drug-sensitive populations [17] 

would better reflect the diversity that exist within a tumour lesion. Hence, we used a scheme 

termed molecular assessment of subtype heterogeneity (MASH) based on the established 

molecular subtypes previously described [6] to delineate the transcriptomic ITH in a cohort 

of 3,431 OC patients with associated clinical outcomes. MASH could be viewed as an 

extension to the single-subtype assignment method that also incorporates transcriptomic ITH 

to allow a more accurate prognostic view of a tumour. We also developed a clinically 

applicable NanoString-based assay that incorporates the MASH scheme. 

 

Materials and Methods 

National University Hospital cohort 

From 2006 to 2014, frozen archival epithelial OC tumours, and cells from patient’s ascites 

fluid from the Department of Obstetrics & Gynecology, National University of Singapore 
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were collected according to protocols approved by the Institution Review Board 

(supplementary material, Supplementary materials and methods). The samples were then 

subjected to microarray profiling using Affymetrix GeneChip® Human Gene 1.0 ST Array 

(Affymetrix, Inc., Santa Clara, CA) analysis (supplementary material, Supplementary 

materials and methods). The data has been deposited in Gene Expression Omnibus (GEO) 

with the accession id GSE94598. The data was first RMA-normalized and standardized with 

GSE69207 [27] using Affymetrix Power Tool version 1.15.0 and ComBat [45], respectively 

(supplementary material, Supplementary materials and methods). Subsequently, paired 

primary tumour-ascites data were extracted from the combined data. 

 

Immunohistochemistry (IHC) analysis 

Formalin-fixed and paraffin-embedded tissue sections (4 μm) from NUH cohort were 

immunostained for subtype-specific markers that were defined previously [6]: Epi-A-specific 

marker MUC16/CA-125 (1:50 dilution of Ov185.1; NeoMarker, Fremont, CA, USA), Mes 

marker α-SMA (1:1000 dilution of 1A4; Agilent (DAKO), Santa Clara, CA, USA), and 

Stem-A marker HMGA2 (1:50 dilution of OAGA00059, Aviva Systems Biology, San Diego, 

CA, USA.). Deparaffinization was performed using Histoclear and sections were rehydrated 

in a graded ethanol series. Antigen retrieval was performed by boiling at 120 °C in a high pH 

target retrieval solution for 10 minutes in a pressure cooker. Tissue sections were 

counterstained with haematoxylin, dehydrated in graded ethanols and mounted. All reagents 

for immunohistochemistry were from Agilent. The subtype-specific markers were validated 

using the positive controls (supplementary material, Figure S3). 
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Ovarian cancer database and subtype predictive model 

OC molecular subtype information was extracted from CSIOVDB [27] curated from 48 

cohorts of 3,431 clinical samples. Binary predictive models were developed to classify each 

subtype from the rest using Lasso regression and 10-fold cross-validation. The predicted 

subtype scores were scale-normalized across the samples to [0.0, 1.0], and a threshold of 0.4 

was selected to call the presence of a subtype (supplementary material, Figure S1A). The 

procedure was repeated to derive subtype predictive model for OC cell lines. 

 

Several datasets were downloaded from GEO and ArrayExpress for validation. Preprocessed 

data of E-MTAB-611 [35] were downloaded from ArrayExpress. Processed data from 

Australian Ovarian Cancer Study (AOCS) recurrent OC and ascites were downloaded from 

International Cancer Genome Consortium (ICGC; http://icgc.org/). Validation dataset 

GSE17260 [46], GSE32062 [47], and GSE32063 [47] hybridized on the Agilent platform, 

were downloaded from GEO, normalized using R version 3.3.1, limma version 3.28.21 and 

combined using ComBat [45] supplementary material, Supplementary materials and 

methods). The MASH analysis of these samples were estimated using the predictive model 

developed from CSIOVDB. Estimated tumour purity based on copy number and mutation 

data was extracted from [48] analysis of TCGA samples. Copy number aberration rate and 

tumour mutation rate were extracted from Broad GDAC data version 2016_01_28 [49]. 

 

Pathway and immune cell type infiltration 

Selected microtubule and AXL pathways projections were computed using R version 3.3.1 

Bioconductor package GSVA v1.20.0 [50], and genesets from the molecular signature 

database v5.1 [51]. Immune cell type infiltration was estimated using CIBERSORT [52]. 

This article is protected by copyright. All rights reserved.
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Immune cell type markers were taken from NanoString Immune panel® annotation 

(https://www.nanostring.com).  

 

Molecular subtype heterogeneity score 

To estimate intra-tumoural heterogeneity, a quantitative measurement scheme was derived 

based on the scores computed by the five subtype predictors. This score is based on the 

assumption that a tumour must show at least one primary molecular subtype, and that the 

secondary subtypes constitute the intra-tumour molecular subtype heterogeneity. The 

rationale is based on reports that the co-existence of poor and good prognosis, chemo-

sensitive and resistance signatures within a tumour [16,18]. Since the molecular subtypes in 

ovarian correlate to survival, this co-existence or mixture of good and poor prognosis cells 

would be indicative of heterogeneity which may be driven by various epigenomic or 

genomics aberration. Given the molecular subtype score      , where          , and 

          *                                 + 

, the tumour molecular subtype heterogeneity (MSH) score, denoted as                   , 

is estimated as 

                   ∑       
 
   U T PE        U T PE(      ), 

                   ,        - 

The MSH score was applied to the clinical samples. Tumours with more than one subtype 

annotation expectantly showed a higher heterogeneity score, indicating the validity of the 

scoring system (supplementary material, Figure S4A). 

 

MASH assay 

As the subtype signatures available on NanoString platform were derived previously from a 

cohort of 1,538 samples [6], new classifiers were developed for each subtype. For each 
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subtype classifier, the training were done on 49 or 61% of FFPE samples of NUH cohort, 

using lasso regression from Matlab 2016b, and MASH profile deducted from the CSIOVDB. 

The validation of the classifiers were assessed on the independent 31 or 39% of FFPE 

samples of NUH cohort. The cutoff for each subtype classifier is based on Youden’s index 

that maximizes sensitivity and specificity on the ROC curve. 

 

NanoString Codeset and processing 

The 187 signature genes from a previous subtype analysis [6] were sent to NanoString 

(NanoString Technologies Inc; Seattle, WA, USA) for designing and customizing the 

nCounter CodeSets. FFPE samples from NUH cohort (n = 80) that had corresponding fresh 

frozen samples included in CSIOVDB were chosen and analysed using NanoString nCounter 

gene expression profiling. The normalization of NanoString data was performed using 

nSolver analysis software version 3.0 (NaonoString). The raw count from NanoString was 

subjected to background subtraction, positive control normalization and reference gene 

(ACTB, B2M, GAPDH, HPRT1, HSP90, RPL90) normalization. The normalized counts were 

then log2-transformed prior to down-stream analysis. 

 

Statistical Analysis 

Statistical analyses were conducted using Matlab® R2016b version 9.1.0.441655, and 

statistics and machine learning toolbox version 11.0 (MathWorks; Natick, MA, USA). 

Statistical significance of differential expression was evaluated using either Kruskal-Wallis 

(for paired comparison) or Mann-Whitney U-test. A Spearman correlation coefficient test 

was applied to assess significance of correlation. Kaplan-Meier analyses were conducted 

using GraphPad Prism® version 5.04 (GraphPad Software, La Jolla, CA, USA). Statistical 

significance of the Kaplan-Meier analysis was calculated by log-rank test. Pathway 
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enrichment scoring is based on Kolmogorov-Smirnov method described previously [31]. The 

Microtubule-related pathway geneset was taken from [6], and the AXL signalling signature 

from [53]. 

 

Conditional probability of subtype is estimated by counting the number of samples having 

subtype score > 0.4. Prior of each subtype is estimated by  (       )  
            

 
, where 

N is the total number of sample. The co-occurrence probability is computed by 

 (                                    )  
                      

 
.  

Conditional probability is subsequently computed by  

 (                 |              )

 
 (                                   )

 (              )
⁄  

For de novo clone formation, the conditional probability is computed by  

 (                         |                               )

 
 (                                                            )

[   (              )]
⁄  
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Results 

Heterogeneity in ovarian cancer  

OC is heterogeneous with 95% of ovarian tumours found to consist of at least four 

subclones [23]. Similarly, 82% of tumours from the ovarian cohort of TCGA [25] and 42% 

from the Mayo cohort [26] were also shown to consist of at least two molecular subtypes. To 

determine the extent of transcriptomic ITH that exists in OC, we explored the prevalence of 

multiple co-existent transcriptomic subtypes within ovarian tumours from a database of 3,431 

OC samples—CSIOVDB [27]. We developed predictors for each transcriptomic subtype 

using Lasso regression (supplementary material, Figure S1; supplementary material, 

Supplementary materials ad methods) with an overall accuracy of 92.06% (supplementary 

material, Figure S1). Approximately 30% of tumours were found to consist of more than one 

subtype based on gene expression signatures (Figure 1B). Among various cohorts, tumours 

with more than one subtype ranged from 0 to 67% (supplementary material, Figure S2A). 

There was no significant association of tumour stage or grade with tumour heterogeneity 

(supplementary material, Figure S2B, C). When stratified according to histology, high grade 

endometrioid carcinomas were observed to be most heterogeneous followed by HGSOC 

(supplementary material, Figure S2D,E). There was no significant difference in tumour 

purity, copy number aberration rate, or mutation rate between tumours with single-subtype 

and tumours with more than one subtype (supplementary material, Figure S2F,G). We also 

found that there was no mutual exclusivity between which two molecular subtypes could co-

exist within the same lesion (Figure 1C). Epi-B, the most prevalent transcriptomic subtype in 

OC, commonly co-existed with other subtypes (22.4%) (Figure 1C) while the Stem-B 

subtype, rarely co-existed with other subtypes (4.2%) (Figure 1C) partly because Stem-B 

largely consists of non-serous, low grade carcinoma which is commonly associated with 

tumours of low malignant potential [6]. Immunohistochemistry (IHC) analysis showed that 
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tumours with mixed molecular subtypes co-expressed markers and distinct patterns specific 

to each subtype (Figure 1D, supplementary material, Figure S3). In particular, Mes/Stem-A 

tumour showed high Mes marker α-SMA staining scattered within the tumour bulk region 

mixing with some infiltrating lymphocytes, with tumour cells showing strong nuclear staining 

of Stem-A marker HMGA2. Epi-B/Stem-A tumour showed solid sheets of cells with strong 

nuclear staining of Stem-A marker HMGA2 and relatively few infiltrating lymphocytes 

inside the tumour sheets and the stroma. Importantly, Mes marker α-SMA was confined to 

the periphery region without scattering within the tumour bulk. In contrast, in an Epi-B/Mes 

tumour, α-SMA staining not only was positive strongly at the infiltrating stroma but also 

moderately positive inside the cytoplasm of tumour cells. Numerous lymphocytes were seen 

trapped within the dense -SMA stroma, suggesting an immune exclusion phenotype. The 

tumour cells were devoid of nuclear positivity for HMGA2. Intriguingly, both Epi-B subtype 

containing tumours showed absence of staining for the Epi-A marker MUC16/CA-125. 

Tumours of Epi-A/Mes mixture showed tumour cells with uniformly apical membrane 

staining for CA-125 and with α-SMA positive supporting stroma. The Mes/Stem-A tumours 

had patchy CA-125 positivity. Ovarian cancer is indeed enormously heterogeneous - 

manifested by displaying multiple molecular subtypes. 

 

Heterogeneity in subtype composition impacts clinical outcomes. 

An increased risk of recurrence or death has been associated with high ITH in several 

solid malignancies including lung [28], breast [29], head and neck cancers [30] and 

melanoma [29]. We evaluated whether high transcriptomic ITH would correlate with poorer 

outcomes in OC and developed a molecular subtype heterogeneity (MSH) score to estimate 

the degree of ITH within a tumour (Materials and methods). We observed that ovarian 

tumours had a wide range of MSH scores (supplementary material, Figure S4A). In general, 
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the MSH score was not significantly associated with DFS, OS or other clinicopathological 

parameters such as stage of disease, grade, surgical debulking status, age, clinical response, 

and EMT status (supplementary material, Figure S4B–D). However, when stratified by 

transcriptomic subtype, the degree of ITH was a pronounced aggravating factor in the good 

prognostic subtypes (Hazard Ratio = 1.2558; p-value = 0.0028) (Figure 2) as this negative 

impact on OS was particularly evident in Epi-A (HR = 4.4053; p < 0.0001) and Epi-B (HR = 

1.3369; p = 0.0174) subtypes. In addition, multivariate Cox regression analyses with age, 

stage, grade, histology and debulking status further supported the role of the MSH score as an 

independent prognostic factor in Epi-A (p = 0.0191), with a trend to significance in Epi-B 

tumours (p = 0.0792; Table 1) for OS but not DFS. Upon further interrogation, we observed 

that the difference in survival outcomes between MSH low and high groups were attributed to 

the co-existence of poor prognostic subtypes (Mes or Stem-A) within the tumour composition 

(Figure 2).  

We observed that the co-existence of Mes or Stem-A with other subtypes increased 

the EMT score of the tumour (Figure 3A) and was associated with a poorer prognosis. EMT 

score quantifies along a spectrum, which denotes the extent of mesenchymal traits that a 

tumour or cell line has acquired [31]. Tumours with Epi-A/Mes or Epi-A/Stem-A subtype 

had poorer OS and DFS compared to pure Epi-A tumours (HR = 1.6155, p = 0.0752, and HR 

= 1.8437, p = 0.0211, respectively; Figure 3B). A similar trend was observed when we 

compared Epi-B/Mes and Epi-B/Stem-A tumours to pure Epi-B tumours, albeit at a higher p 

value. When we interrogated the poor prognostic subtypes (Mes and Stem-A), the co-

existence of both Mes/Stem-A subtypes within a tumour was observed to have the poorest 

OS, when compared to tumours consisting of pure Mes and Stem-A subtypes (HR = 1.583, p 

= 0.0306 and HR=1.91, p = 0.0044, respectively). Similarly, Mes/Stem-A tumours had a 

poorer DFS than pure Stem-A (HR = 2.089, p = 0.0033), and pure Mes tumours (HR = 1.405, 
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p = 0.1221), despite the non-significant difference in the later. The data suggest that ITH does 

contribute to poorer outcomes in OC with the molecular constituents within the tumour 

significantly influencing survival outcomes and the presence of poor prognostic subtype/s in 

a tumour significantly worsens clinical outcomes. 

Since OC is characterized by frequent copy number aberration, we asked if MASH 

captures the genomic diversity within a tumour. We checked the copy number profiles of 

three genes which have been linked to molecular subtypes. HMGA2 and MYCN copy number 

amplification was reported to be characteristic of Stem-A/C5 whereas CCNE1 copy number 

amplification was linked to Epi-B/C2 tumours [32]. Samples with Stem-A containing 

subtypes, mixed or pure, had greater frequencies of HMGA2 and MYCN amplifications 

compared to the non-Stem-A containing subtypes. Similarly, samples with Epi-B containing 

mixed or pure subtypes had more CCNE1 amplification (p < 0.0001; supplementary material, 

Figure S5A). This indicates MASH still faithfully reflects the underlying genomic features 

within a tumour.  

We applied MASH by using the subtype definition of CPTAC [10] (supplementary 

material, Supplementary materials and methods) on CSIOVDB. We observed that the OS of 

good prognosis subtype was worse when poor prognosis subtype co-existed within the 

tumour (supplementary material, Figure S5B), indicating the applicability of MASH could 

extend to other molecular subtyping scheme. Subsequently, we applied the MASH analysis 

on an independent cohort of 409 OC tumours (Materials and methods; supplementary 

material, Supplementary materials and methods) as a validation set, we observed the same 

trend with survival outcomes (supplementary material, Figure S5C). Because of the small 

sample size and limited number of events, the difference in outcomes in this validation cohort 

between the Mes/Stem-A and pure Mes or Stem-A tumours were not significant (p = 0.476, 

and p = 0.172). Yet, the combination of Mes/Stem-A still appeared to confer a worse 
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outcome than Mes or Stem-A alone, as indicated by the hazard ratio HR = 1.5669, and HR = 

2.7064, respectively. There were insufficient samples for comparisons between Epi-A with 

Epi-A mixtures (n = 4; supplementary material, Figure S5C), and hence a survival analysis 

was not performed. In comparison of Epi-B/Mes or Epi-B/Stem-A and Epi-B tumours of the 

validation cohort, the trend was concordant with the above mentioned CSIOVDB cohort 

where significant poorer OS was observed but not in DFS (HR = 6.6401, p < 0.0001; and HR 

= 1.1744, p = 0.4964, respectively; supplementary material, Figure S5C). In the validation 

cohort, Epi-B/Mes and Epi-B/Stem-A tumours were combined due to the low number of 

samples available. 

 

Clinical outcome is linked to the extent of poor prognostic subtype within a 

tumour 

Armed with the knowledge that the co-existence of Mes and Stem-A subtypes 

conferred the worst outcome, we explored whether the degree of Mes/Stem-A mixture would 

also impact patient outcomes. We analysed the percentages of Mes/Stem-A mixture within a 

tumour, using the MASH scheme, and correlated them with clinical outcomes (Figure 3C). 

We grouped the tumours into three nominal categories according to the degree of Mes/Stem-

A mixture: none – no Mes/Stem-A subclones within a tumour; partial – Mes/Stem-A 

subclones make up 1~99% of tumour; or complete – tumour consist of only Mes/Stem-A 

subtype clones. Consistently, we found that the higher percentage of Mes/Stem-A subtype 

present within a tumour significantly correlated with OS and DFS in the CSIOVDB cohort 

(Figure 3C, supplementary material, Figure S6A; p < 0.0001). OC patients without 

Mes/Stem-A subtype clones had 19 months longer median overall survival compared to those 

with tumours completely consisting of Mes/Stem-A clones (55 versus 36 months in OS, and 

24 versus 16 months in DFS, respectively). We observed highly similar OS and DFS trends 
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in the validation cohort (p = 0.0212 and 0.0048, respectively) as well as in the International 

Cancer Genome Consortium-Australian Ovarian Cancer Study (ICGC-AOCS) 

chemoresistant OC cohort (release 19) [3] (p = 0.0473 and 0.4371, respectively). Patients 

with low Mes/Stem-A trait were observed to have a 23 months longer median survival than 

those with high Mes/Stem-A trait (44 versus 21 months in OS, and 7 versus 4 months in DFS, 

respectively). It is worth noting that slightly different stratification methods were used in the 

CSIOVDB and ICGC-AOCS cohorts because of the inherent differences between the 

analyses of tumour samples from the two cohorts (RNA-seq versus microarray) 

(supplementary material, Supplementary materials and methods).  

 

Enrichment of Mes and Stem-A subtypes in recurrent and metastatic OC 

We evaluated the evolution of the transcriptomic subtypes through the course of 

disease from diagnosis to disease relapse. We applied the MASH scheme to paired tumour 

samples comparing primary tumour with metastatic/recurrent disease including ascitic cells 

from the same patient. Intriguingly, regardless of the initial subtype of the primary ovarian 

tumour sample, the subsequent omental metastasis GSE30587 [33], peritoneum metastasis 

FRTLO [34], and/or ascitic cells of patients (GSE94598) at recurrent disease, consistently 

showed an increase in the percentage of Mes or Stem-A subtype (Figure 4A). The same trend 

of Mes or Stem-A enrichment was also seen in platinum-resistant relapsed disease compared 

to the primary tumours in two separate independent cohorts E-MTAB-611 [35], and ICGC-

AOCS [3] (supplementary material, Supplementary materials and mrthods). When paired 

primary-metastatic tumours were analysed, there was significant enrichment of Mes/Stem-A 

in the metastatic deposits compared to primary tumours (p = 0.0063; Figure 4B; 

supplementary material, Figure S6B). We subsequently explored whether the poor prognostic 

subtypes influenced response to chemotherapy. We observed no significant enrichment of 
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Mes/Stem-A in tumours that did not respond to chemotherapy (p = 0.9468; supplementary 

material, Figure S6C).  

 Comparing paired primary and metastatic or relapsed tumour samples (Materials and 

Methods), we found the majority of metastatic or relapsed tumour samples were more likely 

to fall into the Mes subtype regardless of the primary tumour subtype (Figure 4C). The Epi-A 

subtype had a higher tendency to maintain the original subtype or to switch to the Mes 

subtype at relapse or during metastasis while the Stem-A subtype appeared to have an affinity 

for switching only to Mes subtype (Figure 4C). The Mes subtype was observed to be stable 

maintaining the transcriptomic signature in disease relapse and during metastasis (Figure 4C). 

To further understand the evolutionary changes in the subtypes from primary to 

recurrent/metastatic disease, we used MASH to delineate the constituents of primary and 

recurrent tumours and subsequently divided them into three different categories: (i) clonal 

conversion - the disappearance of a subtype clone initially observed in primary tumour from 

the metastatic lesion, (ii) clonal expansion - expansion of a pre-existing subtype clone within 

the primary in the metastatic deposit, or (iii) de novo – the appearance of a subtype in the 

metastatic deposit which was not originally seen in the primary tumour (Figure 4C). The Mes 

subtype had the highest probability to undergo clonal expansion and to appear in metastasis 

or chemoresistant relapse. In contrast, the Stem-A and Epi-B subtypes were more likely to 

undergo clonal conversion to other subtypes. For the Stem-A subtype, it was very unlikely to 

acquire this subtype during disease progression unless there was a pre-existing Stem-A clone 

in the primary tumour (Figure 4C). This likely reflects the stem cell-like nature of the Stem-A 

subtype. We also observed that almost all subtypes (except Stem-A) showed medium 

probability to be annotated as Epi-B in the metastatic lesion. In accordance, Epi-B also had 

the second highest probability to form de novo clones in metastatic lesions. Since Epi-B is 

correlated with the immune reactive subtype from TCGA, this finding is intriguing and raises 
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the question regarding the impact of local microenvironmental cues in ITH and disease 

progression. It also shines light on the relationship between the microenvironment and the 

immune signature in its effect on biological function and even therapeutic responses. 

Accordingly, we checked the immune cell infiltration and immune cell type markers for 

tumours that underwent clonal expansion of Epi-B and Mes. There was a change in immune 

environment from primary to recurrent/metastasis settings (supplementary material, Figure 

S6D,E). Tumours that underwent Epi-B clonal expansion showed increased infiltration of 

resting memory CD4 T-cells (supplementary material, Figure S6D). On the other hand, 

tumours that underwent clonal expansion of Mes had increased infiltration of monocytes and 

tumour-associated macrophages M2 (supplementary material, Figure S6E), which is 

consistent with the roles of monocytes and macrophages in promoting tumour growth [36]. 

However, these observations on clonal conversion and de novo clone formation should be 

accepted with caution. The probability of clonal expansion may be underestimated in our 

analysis due to the lack of multiple biopsies taken from the primary and metastatic tumour 

samples to confirm the presence of spatially separated existing subclones. Collectively, these 

results indicate that during OC progression, transcriptomic subtype clones undergo clonal 

evolution according to several distinct patterns as a result of either clonal expansion, clonal 

conversion, or de novo clone formation leading to significant intra- and inter-tumoural 

heterogeneity observed between paired samples of primary tumour and metastatic/ relapsed 

lesions. 

 

Utility of MASH as a clinical assay  

As the significance of molecular subtyping in OC becomes more apparent, clinical 

trials using molecular signatures as a biomarker to stratify patients for specific therapeutic 

strategies are now underway (clinicaltrials.gov identifier: NCT03188159). Applying MASH, 

we observed that the underlying subtype mixture critically affects the targeted pathway 
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activity (supplementary material, Supplementary materials and methods, and Figure S7), 

which may alter the therapeutic response of a tumour. Therefore, it is perhaps intuitive to 

incorporate transcriptomic heterogeneity into a clinically applicable assay for better 

stratification of these patients. Using fresh frozen and FFPE samples collected from 80 OC 

patients from 2006 to 2014, we applied the MASH analysis using microarray and NanoString 

gene expression profiling methods (Figure 5A). In the fresh frozen samples subjected to 

microarray analysis, 61.25% (n = 49) were assigned a single-subtype while 38.75% (n = 31) 

were mixed-subtypes (Table 2) based on the MASH scheme. The most frequent subtype 

mixture was Epi-B/Stem-A (n = 9; 11.3%) followed by Epi-B/Stem-B (n = 8; 10%) and Epi-

B/Epi-A (n = 6; 7.5%). We took the MASH profiles obtained from microarray as supervised 

training labels to develop a MASH classifier for the NanoString assay. FFPE samples from 

patients assigned to a single subtype (n = 49) were used to train the NanoString MASH 

classifier (Figure 5B; Material and methods). The remaining FFPE samples (n = 31) not used 

in NanoString MASH classifier training were subsequently annotated based on the predicted 

enrichment scores of the 5 molecular subtypes. The prediction was compared with the MASH 

analysis using the microarray method (Figure 5B). The NanoString MASH assay achieved an 

average area under the curve (AUC) of 0.971 for training, and 0.757 for testing sets, showing 

good feasibility of this assay. Of note, the Mes and Stem-A classifiers had AUCs of 0.705 

and 0.86, respectively. Receiver-operating characteristic (ROC) curves for each subtype 

showed good accuracy of the classifier based on the testing cohort, apart from Epi-B (Figure 

5C). The poor performance of Epi-B is due to limited numbers of non-Epi-B samples in the 

testing set (n = 3), which significantly deflates the specificity for each wrongly classified 

sample. Encouragingly, the propensity to accurately detect the poor prognostic subtypes Mes 

or Stem-A within the MASH, was 85.7% (training set) and 67.8% (testing set; supplementary 

material, Table S1). Importantly, the age of FFPE tumour samples did not impact on the 
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results as the majority of the FFPE samples were at least 3 years old, with some noted to be 

>10 years old. Collectively, these results demonstrate the feasibility of accurately 

implementing the MASH scheme as a clinical assay using easily obtained FFPE samples.  

 

  

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
Discussion 

As we enter the era of precision medicine, managing the underlying heterogeneity 

within tumours continues to be one of the most challenging tasks. Many studies have looked 

at the mutational landscape using next-generation sequencing (NGS) which have helped 

shine some light in this field. With sequencing tools available at the single-cell level, the 

appreciation of the dynamic intricacies of inter- and intra-tumour heterogeneity (ITH) has 

been greatly magnified. Yet, there are limitations before these technologies can be readily 

translated into the clinical setting and be offered as diagnostic tests. In this study, we 

demonstrated that MASH captures the ITH from the bulk tumour gene expression profiling 

and provide additional clinically relevant information, a strength over the conventional 

single-subtype assignment. Indeed, when Chen, et al [37] attempted to re-implement three 

previously validated subtyping methods [7,25,32], they observed only a minority of HGSOC 

fell into the four subtypes while a majority of samples (~75%) were not consistently labelled 

into the pre-specified single subtypes. This is likely due to the analysed tumours being mixed 

consisting of several transcriptomic subtypes and were unable to fit neatly into a single 

assigned subtype, highlighting the heterogeneous nature of ovarian tumours that often display 

more than 1 molecular subtype, as demonstrated in our study. Hence, we proposed a scheme 

termed—molecular assessment of subtype heterogeneity (MASH)—to describe a tumour 

using its molecular subtype composition.  

 The MASH scheme also provides a cheaper alternative to single-cell/nucleus 

technologies. While useful to quantify and study ITH, single-cell/nucleus technologies may 

not be cost-effective and can be technically burdensome for use in clinical practice. We 

demonstrated that MASH can feasibly be applied to NanoString® gene expression profiling 

technology using readily available FFPE samples, to facilitate translation into clinical 

practice in a cost-effective manner. In addition, the MASH annotation using the bulk tumour 
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transcriptome could circumvent a crucial technical issue encountered in single-cell/nucleus 

analysis: how many single cells are required to accurately represent the lesion in question? 

Nonetheless, this study is still limited by the fact that the archival samples were derived from 

a single random biopsy. The extensive diversity in tumours poses significant challenges in 

resolving the full spectrum of cancer pathway aberrations through a single biopsy sampling 

bias and may not be representative of the entire tumour [16]. Consequently, this raises 

concerns whether the subtype annotation derived from a single biopsy would adequately 

depict the degree of genetically distinct subclones driving phenotypic variation of the actual 

tumour. However, the above concerns could be somewhat reduced by the temporal evolution 

of the poor prognostic signatures demonstrated in this study, where the presence of poor 

prognostic subtypes within a tumour persisted in the recurrence/metastatic setting and 

ultimately determined the patients clinical outcome. As the Mes signature is enriched in 

processes related to extracellular matrix modelling, stroma and fibroblast [3], it is entirely 

plausible that OC preferentially elicits stromal reactions similar to fibrosis in response to 

platinum-taxane chemotherapy. It is also plausible that the tumour stromal and immune 

environment were remodelled in the recurrent setting in favour of tumour progression.  

 The co-existence of multiple molecular subtypes or subclones within a tumour implies 

that more sophisticated therapeutic strategies are required in order to successfully target all 

the specific subtypes/subclones [39,40]. Treatment regimens targeting only one subtype 

might inevitably spare the other co-existing subtypes resulting in the expansion of or 

conversion to more resistant clones [21,22,40]. In our study, we identified Mes and Stem-A 

subtypes predominated in the recurrence or metastatic setting suggesting targeting of unique 

aberrant pathways responsible for driving the individual poor prognostic subtypes should be 

explored. We also demonstrated that the Mes subtype is least likely to undergo clonal 

conversion suggesting poor prognostic outcomes in patients with even a small percentage of 
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Mes subtype in their original primary tumour and a combination approach that targets the 

different clones within a tumour is likely required [41].  

 An important point of contention is the extent of subclones presents that would be 

considered relevant for therapeutic targeting. This is an important consideration highlighted 

in the KEYNOTE-010 study where consistent benefit of PD-L1 inhibition by pembrolizumab 

was only demonstrated in non-small cell lung cancer patients with ≥ 50% of PD-L1 

expression in tumours, but ambiguous for patients with PD-L1 expression < 50% [42]. The 

challenge is how to set the cut-off for a given biomarker (MASH in this case) that would 

have the highest impact for therapeutic response. An important aspect not covered in our 

study was inter-subclone cooperation [43]. Co-existing molecular subtypes within a tumour 

might interact and cooperate or compete in response to microenvironmental cues and 

cytotoxic stress. While it may be plausible to use the MASH scheme to analyse such 

interaction, the results will at best be correlative and therefore, limited in value. In this 

regard, single-cell transcriptome analysis is the preferred method when evaluating inter-

subclone competition and cooperation functionally.  

Applying various molecular subtype definitions from Tothill, et al, TCGA, or CPTAC 

would likely yield similar results with good overlap [6,10]. Since transcriptomic 

quantification technologies are relatively consistent especially in quantifying highly 

expressed transcripts [44], MASH could be applicable to any transcript quantification 

platform of choice. Nonetheless, our study shows that the application of the MASH scheme 

in deciphering ITH offers a promising method as a clinical tool. Thus, the proposed MASH 

scheme may provide a promising strategy in informing personalized management of a 

patient.  
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Table 1A. Univariate and Multivariate Cox regression analyses of overall survival. 

Single Subtype Samples Sample Number Univariate Multivariate 

n = 711, event = 345 

Parameter Category Coefficient Hazard^ p-value Coefficient Hazard^ p-value 

Age <55 225 0.3326 1.395 (1.097-1.772) 0.0065 0.2881 1.334 (1.0491-1.696) 0.0187 

≥ 55 486 

Stage I, II 69 1.425 4.157 (2.143-8.062) 2.5E-5 1.0844 2.958 (1.5078-5.801) 0.0016 

III, IV 642 

Grade G1 28 1.3327 3.791 (1.566-9.181) 0.0031 0.8705 2.388 (0.9784-5.829) 0.0559 

G2, G3 683 

Debulk Status Optimal 485 0.2939 1.342 (1.08-1.667) 0.0079 0.1394 1.15 (0.923-1.432) 0.2133 

Suboptimal 226 

Histology Non-high grade serous 37 1.654 5.23 (1.678-16.3) 0.0044 1.1439 3.139 (0.9989-9.864) 0.0502 

High grade serous 674 

Molecular Subtype 

Heterogeneity Score 

< median 355 0.2193 1.245 (1.007-1.54) 0.0429 0.1255 1.134 (0.9158-1.404) 0.2492 

≥ median 356 
^ 95% confidence interval in parentheses 

Stratified by Subtype Epi-A Epi-B Stem-B Mes Stem-A 

   n = 56, event = 22 n = 292, event = 133 n = 23, event = 6 n = 200, event = 108 n = 140, event = 77 

Paramet

er 

Category # Coef. p # Coef. p # Coef. p # Coef. p # Coef. p 

Age <55 22 0.470

9 

0.376

6 

101 0.166

3 

0.375

7 

10 0.918

3 

0.433 62 0.281 0.221 30 0.5145 0.09

49   ≥ 55 34 191 13 138 110 

Stage I, II 14 17.02 0.998

5 

32 1.641

8 

0.012

6 

7 0.657 0.657 6 16.78 0.994 10 -

0.5145 

0.27

27   III, IV 42 260 16 194 130 

Grade G1 17 0.289

3 

0.683

3 

2 -

1.006

2 

0.387

3 

3 18.85 0.999 5 0.419

8 

0.678 1 17.09 0.99

9   G2, G3 39 290 20 195 139 

Debulk 

Status 

Optimal 48 1.12 0.052

6 

201 0.173

5 

0.331

2 

20 0.786

2 

0.479 115 0.084

25 

0.672 101 -

0.0968 

0.69

96 Suboptimal 8 91 3 85 39 

Histolog

y 

Non-high grade serous 16 17.25 0.998

4 

7 0.596

9 

0.571

7 

7 -

0.112

5 

0.926 4 0.741

2 

0.467 3 17.46 0.99

64 High grade serous 40 285 16 196 137 
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Score 

< median 28 1.499 0.019

1 

146 0.311

4 

0.079

2 

11 -0.323 0.805 100 -

0.052

3 

0.791 70 -

0.1197 

0.60

63 ≥ median 28 146 12 100 70 

Abbrev: #, sample number; Coef., multivariate Cox’s regression coefficient; M H, molecular subtype heterogeneity. 

Table 1B. Univariate and Multivariate Cox regression analyses of disease-free survival. 

Single Subtype Samples Sample Number Univariate Multivariate 

n = 560, event = 380 

Parameter Category Coefficient Hazard^ p-value Coefficient Hazard^ p-value 

Age <55 186 0.3072 1.36 (1.091-1.694) 0.00622 0.2277 1.25560 (1.00620-1.56700) 0.04391 

≥ 55 374 

Stage I, II 59 1.6074 4.99 (3.018-8.248) 3.65E-10 1.3049 3.68740 (2.20540-6.16500) 6.5E-07 

III, IV 501 

Grade G1 18 1.2302 3.422 (1.617-7.244) 0.0013 0.4523 1.57200 (0.73010-3.38500) 0.24768 

G2, G3 542 

Debulk Status Optimal 403 0.5018 1.652 (1.336-2.042) 3.6E-06 0.2933 1.34080 (1.08200-1.66200) 0.00736 

Suboptimal 157 

Histology Non-high grade serous 30 1.603 4.967 (2.462-10.02) 7.58E-06 1.0718 2.9207 (1.4262-5.981) 0.00338 

High grade serous 530 

Molecular Subtype 

Heterogeneity Score 

< median 273 0.03759 1.038 (0.8481-1.271) 0.716 -0.1094 0.8964 (0.7311-1.099) 0.29288 

≥ median 287 
^ 95% confidence interval in parentheses 

Stratified by Subtype Epi-A Epi-B Stem-B Mes Stem-A 

   n = 47, event = 21 n = 235, event = 163 n = 19, event = 7 n = 158, event = 119 n = 106, event = 70 

Paramet

er 

Category # Coef. p # Coef. p # Coef. p # Coef. p # Coef. p 

Age <55 17 0.735

5 

0.215

9 

87 0.144

2 

0.3915 9 0.343

6 

0.813

8 

50 0.176

9 

0.391 28 0.517

6 

0.09

41   ≥ 55 30 148 10 108 78 

Stage I, II 14 19.71 0.998

3 

32 1.402

2 

1.79E-

05 

4 21.32 0.999 5 16.86 0.993 9 0.576

2 

0.27

31   III, IV 33 203 15 153 97 

Grade G1 14 -

0.307

6 

0.691 2 -

1.480

3 

0.0719 3 19.25 0.998

6 

4 -0.155 0.831 0 NA NA 

  G2, G3 33 233 16 154 106 

Debulk 

Status 

Optimal 40 0.963 0.083

2 

177 0.159

7 

0.3661 16 2.56 0.041

8 

98 0.127

3 

0.512 77 0.414 0.11

52 Suboptimal 7 58 3 60 29 

Histolog Non-high grade serous 16 19.56 0.998 6 0.265 0.6512 7 -1.683 0.193 4 1.44 0.172 2 0.379 0.73
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MSH 

Score 

< median 23 0.774

4 

0.261

4 

117 -

0.227

7 

0.1583 9 -1.084 0.350

7 

79 -0.303 0.109 53 0.303

1 

0.22

95 ≥ median 24 118 10 79 53 

Abbrev: #, sample number; Coef., multivariate Cox’s regression coefficient; NA, not applicable; M H, molecular subtype heterogeneity  

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e Table 2. NUH cohort for NanoString assay development 

Co-occurrence 
frequency 

Epi-A Epi-B Stem-B Mes Stem-A Total 

Epi-A 5 (6.3%)      

Epi-B 6 (7.5%) 11 (13.8%)     

Stem-B 1 (1.3%) 8 (10%) 10 (12.5%)     

Mes 1 (1.3%) 5 (6.3%) 0 (0%) 14 (17.5%)   

Stem-A 0 (0%) 9 (11.3%) 0 (0%) 1 (1.3%) 9 (11.3%)   

Single-subtype 5 (6.3%) 11 (13.8%) 10 (12.5%)  14 (17.5%) 9 (11.3%)  49 (61.25%) 

Mixed-subtype 8 (10%) 22 (27.5%) 0 (0.0%) 1 (1.3%) 0 (0%) 39 (38.75%) 
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Figure Legends 

Figure 1. Ovarian cancer is extremely heterogeneous between tumours and within 

tumours. 

(A) Epithelial ovarian cancer can be classified into five molecular subtypes: good prognosis 

(Epi)thelial-A/C3/Differentiated, (Epi)thelial-B/C4/Immunoreactive, (Stem)-like-B/C6; and 

poor prognosis (Mes)enchymal/C1/Mesenchymal, (Stem)-like-A/C5/Proliferative. Labels are 

given in order of Tan, et al [6]/Tothill, et al [7]/TCGA [9].  

(B) Pie chart of CSIOVDB samples exhibiting multiple subtypes. The threshold of 

normalized subtype score 0.4 was deemed if a subtype properties are expressed. Colour code: 

1 subtype, black; 2 subtype, red; 3 subtype, pink. 

(C) Chart of subtype co-occurrence frequency in CSIOVDB samples. Frequency percentage 

is given in parentheses.  

(D) Immunohistochemistry staining for subtypes markers (Epi-A, MUC16/CA-125; Mes, α-

SMA; Stem-A, HMGA2) in ovarian cancer with mixed subtypes. Scale bars = 100 µm. 

*indicates α-SMA on a separate tumour region of patient 1-1309. 

The frequency percentages in B, C are computed based on CSIOVDB sample size of 3,431.  

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e

 

Figure 2. Correlation of tumour molecular subtype heterogeneity score and survival. 

Kaplan-Meier analysis of overall- (A) and disease-free (B) survival in all samples with one 

subtype annotation (left panel), and stratified by ovarian cancer molecular subtypes (right 

panels). Significance is evaluated using log-rank test. Median of molecular subtype tumour 

heterogeneity score, an estimate of intra-tumoural heterogeneity, is used to separate the 

samples into high (black) and low groups (dotted line; grey colour). Percentage bar chart 

shows the composition of good prognosis subtypes (non-Mes/Stem-A%; black) and poor 

prognosis subtypes (Mes/Stem-A; grey) in tumour the molecular subtype heterogeneity-high 

and low groups. Significance evaluated using Fisher’s Exact test. HR, hazard ratio. 
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Figure 3. Molecular subtype composition is linked to clinical outcome in ovarian cancer. 

(A) Dot plot of epithelial-mesenchymal transition (EMT) score (y-axis; mean±SEM) in 

various molecular subtype compositions (x-axis) found in ovarian cancer from CSIOVDB (n 

= 3,431). Significance is evaluated using Mann-Whitney test. Selected comparisons are 

shown. 

(B) Kaplan-Meier analysis of overall- (upper panel) and disease-free (lower panel) survival 

stratified by molecular subtype compositions: Epi-A versus Epi-A/Mes (left); Epi-B versus 

Epi-B/Mes and Epi-B/Stem-A (middle); and Mes, Stem-A versus Mes/Stem-A (right). 

Significance is evaluated using log-rank test.  

(C) Bar plot indicating the median overall Kaplan-Meier analysis of overall and disease-free 

survival in CSIOVDB (left panel), validation cohort (middle panel) and in ICGC-ACOS 

cohorts (right panel), where ovarian cancers are stratified into no (% = 0) or low (lowest 

33%) Mes/Stem-A (green), partially (0 < % < 100) or intermediate (medium 33%) 

Mes/Stem-A (red), and fully (% = 100) or high (highest 34%) Mes/Stem-A (maroon). The p-

value was computed by log-rank testing. HR, hazard ratio; OS, overall survival; DFS, 

disease-free survival 
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Subtype colour code: Epi-A, dark green; Epi-B, light green; Mes, red; Stem-A, blue; Stem-B, 

purple. 

 

Figure 4. Ovarian cancer metastasis composed of predominantly Mes or Stem-A 

subtype.  

(A) Bar plots showing the MASH percentage of primary ovarian cancer and metastasis 

(omental, peritoneal, or other distant) or ascites from five dataset. A bar plot showing the 

poor prognosis Mes and Stem-A subtypes composition percentage is shown each on the right 

of the MASH bar plots. 

(B) Frequency plot of Mes and Stem-A percentage (% > 0, red; % = 0, black) within a 

tumour in primary and metastasis/relapsed ovarian cancer. The p-value was computed using 

Fisher’s exact test.  

(C) Heatmap showing the conditional probability of metastasis subtype given the primary 

subtype. Blue = low and red = high probability. Mets, metastasis; MASH, molecular 

assessment of subtype heterogeneity. Subtype colour code: Epi-A, dark green; Epi-B, light 

green; Mes, red; Stem-A, blue; Stem-B, purple. 
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Figure 5. MASH implementation as clinical assay. 

(A) Scheme of implementing MASH into a clinical assay. 

(B) Comparison of MASH predictions from microarray and NanoString on training (left) and 

testing (right) dataset. Top colour bar indicates FFPE year (blue = young, yellow = old 

FFPE). Second colour bar indicates MASH label from microarray. Enrichment score heatmap 

shows MASH prediction from NanoString (blue = low; red = high).  

(C) Classifier ROC curves of poor prognosis Mes, Stem-A and good prognosis subtypes Epi-

A, Epi-B and Stem-B developed using FFPE samples from NUH testing cohort (n = 31) on 

NanoString. ES, enrichment score; ROC, receiver operative characteristic curve; AUC, area 

under the curve. Subtype colour code: Epi-A, dark green; Epi-B, light green; Mes, red; Stem-

A, blue; Stem-B, purple. 
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SUPPLEMENTARY MATERIAL ONLINE 

 

Supplementary materials and methods  YES 

 

Supplementary figure legends  YES 

 

 

Figure S1. Molecular subtype predictor of ovarian cancer 

 

Figure S2. Intra-tumour heterogeneity and histology of ovarian cancer 

 

Figure S3. Validation of subtype-specific marker antibodies 

 

Figure S4. Intra-tumour heterogeneity in ovarian cancer 

 

Figure S5. Composition of poor prognosis subtypes confer poor ovarian cancer outcome in 

validation cohort 

 

Figure S6. Percentage composition of Mes and Stem-A 

 

Figure S7. MASH impact on drug treatment 

 

Figure S8. Raw subtype enrichment scores in validation cohorts  [Ed Note: mentioned in 

Suppl MandM file] 

 

Table S1. Classification accuracy of MASH assay 
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