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SUMMARY

Apoptotic cell death removes unwanted cells and is
regulated by interactions between pro-survival and
pro-apoptotic members of the BCL-2 protein family.
The regulation of apoptosis is thought to be crucial
for normal embryonic development. Accordingly,
complete loss of pro-survival MCL-1 or BCL-XL
(BCL2L1) causes embryonic lethality. However, it is
not known whether minor reductions in pro-survival
proteins could cause developmental abnormalities.
We explored the rate-limiting roles of MCL-1 and
BCL-XL in development and show that combined
loss of single alleles of Mcl-1 and Bcl-x causes
neonatal lethality. Mcl-1+/–;Bcl-x+/– mice display
craniofacial anomalies, but additional loss of a single
allele of pro-apoptotic Bim (Bcl2l11) restores normal
development. These findings demonstrate that the
control of cell survival during embryogenesis is finely
balanced and suggest that some human craniofacial
defects, for which causes are currently unknown,
may be due to subtle imbalances between pro-sur-
vival and pro-apoptotic BCL-2 family members.

INTRODUCTION

Craniofacial anomalies are among the most common human

birth defects and are often associated with fetal or infant death,

as well as with intellectual and/or physical disability. Of these

defects, holoprosencephaly (HPE) is the most common devel-

opmental anomaly of the forebrain. It is characterized by a

complete or partial failure of division of the singlemidline prosen-

cephalon into the bilateral hemispheres, and this is typically
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This is an open access article under the CC BY-N
associated with midline facial defects (Petryk et al., 2015). Holo-

prosencephaly has an incidence of 1 in 16,000 live births (Roach

et al., 1975) and 1 in 250 spontaneous abortions in humans

(Matsunaga and Shiota, 1977). Although holoprosencephaly is

known for its association with mutations in the sonic hedgehog

(SHH) (Belloni et al., 1996; Chiang et al., 1996; Roessler et al.,

1996) and nodal signaling pathways (Chu et al., 2005; Nomura

and Li, 1998) or defects in genes, such as ZIC2 (Brown et al.,

1998), SIX3 (Wallis et al., 1999), SOX9 (Wright et al., 1995), and

TGIF (Gripp et al., 2000), known genetic mutations explain only

�30% of clinical cases (Geng and Oliver, 2009). Intriguingly,

within the same kindred, it has been found that carriers of

the same heterozygous mutations can be phenotypically normal

or present with severely abnormal craniofacial features, respec-

tively, suggesting the involvement of presently unknown modi-

fying mechanisms (Geng and Oliver, 2009).

The intrinsic (also called BCL-2-regulated, mitochondrial, or

stress-induced) apoptotic pathway is thought to be critical for

shaping the developing embryo (Kulesa et al., 2004) and

therefore constitutes a candidate mechanism that may affect

developmental outcomes. The intrinsic apoptosis pathway is

regulated by the opposing actions of pro-survival and pro-

apoptotic members of the BCL-2 protein family. The family

contains five pro-survival members—BCL-2, BCL-XL, BCL-W,

MCL-1, and A1/BFL1—and two pro-apoptotic subgroups. The

pro-apoptotic BH3-only proteins (BIM, PUMA, BID, BIK, BAD,

BMF, NOXA, and HRK) are critical for the initiation of apoptosis

signaling, whereas the pro-apoptotic BAX/BAK proteins (also

including BOK) are essential for the effector phase of apoptosis

(Carpio et al., 2016; Chipuk and Green, 2008; Czabotar et al.,

2014; Ke et al., 2012, 2018; Llambi et al., 2016; Youle and

Strasser, 2008). In healthy cells, the BAX/BAK cell death effec-

tors are kept in check by the pro-survival BCL-2 familymembers.

In response to programmed cell death stimuli, BH3-only proteins

are transcriptionally and/or post-transcriptionally induced. They
rts 24, 3285–3295, September 18, 2018 ª 2018 The Authors. 3285
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bind and inhibit the pro-survival BCL-2-like proteins, thereby un-

leashing BAX/BAK to kill cells, although some BH3-only proteins

may also directly activate BAX/BAK (Chipuk and Green, 2008;

Czabotar et al., 2014; Youle and Strasser, 2008).

The pro-survival BCL-2 family members are essential for cell

survival, including in embryonic development, exhibiting cell

type-specific as well as overlapping roles. Complete loss of

the pro-survival protein MCL-1 causes embryonic lethality at

the blastocyst stage prior to implantation (embryonic day 3.5

[E3.5]) (Rinkenberger et al., 2000). BCL-XL-deficient embryos

die around E13.5 because of abnormally increased apoptosis

of erythroid progenitors and certain neuronal populations

(Motoyama et al., 1995). Mcl1+/– and Bclx+/– heterozygous

mice are largely normal (Motoyama et al., 1995; Rinkenberger

et al., 2000), although the former have a significant, albeit minor,

decrease in B lymphocytes that is associated with a �40%

reduction in MCL-1 protein (Brinkmann et al., 2017). We hypoth-

esized that MCL-1 and BCL-XL might have overlapping, cell sur-

vival-essential functions in embryonic development. Here we

show that combined loss of single alleles of Mcl-1 and Bcl-x is

sufficient to disrupt normal embryonic development and that

other pro-survival proteins cannot compensate for the subtle

reduction in MCL-1 and BCL-XL. Mcl-1+/–;Bcl-x+/– embryos

display a range of craniofacial anomalies, including cases of hol-

oprosencephaly. Remarkably, these defects were completely

corrected by loss of just one allele of the pro-apoptotic BH3-

only protein-encoding geneBim. We conclude that a major func-

tion of MCL-1 and BCL-XL during embryonic development must

be to keep the pro-apoptotic BH3-only protein BIM in check.

These findings demonstrate that a surprisingly tight balance be-

tween these three BCL-2 family members controls apoptotic cell

death in the embryo, particularly in craniofacial morphogenesis.

RESULTS

Mcl-1+/– Mice Display a Minor Increase in the Incidence
of Palpebral Fissure Defects and Hydrocephalus
Of all knockout studies of pro-survival BCL-2 family members,

theMcl-1–/– andBcl-x–/–mice showed themost dramatic defects

(Motoyama et al., 1995; Rinkenberger et al., 2000). We therefore

prioritized MCL-1 and BCL-XL for investigation of possible over-

lapping functions in embryogenesis and explored this genetically

by examining doubly heterozygous, Mcl-1+/–;Bcl-x+/– mice.

First, we established whether loss of one allele of either Mcl-1

or Bcl-x has any consequences on normal mouse development.

Intercrosses of either Mcl-1+/– or Bcl-x+/– mice with wild-type

(WT) animals produced viable Mcl-1+/– or Bcl-x+/– offspring.

The frequency of Bcl-x+/– heterozygotes at weaning was

reduced by �50% compared with WT (83 Bcl-x+/– versus 181

WT, p < 0.0005, Fisher’s exact test), indicating a haploinsuffi-

cient lethality with �50% penetrance that has not been reported

so far but is not the subject of this study. Although the majority of

the Mcl-1+/– and the surviving Bcl-x+/– pups had a normal life-

span, some Mcl-1+/– offspring exhibited an increased incidence

of hydrocephalus, evident prior to weaning, with concomitant

one-sided narrow palpebral fissures compared with WT litter-

mates (4.8%Mcl-1+/– versus 0.9%WT, p = 0.027, Fisher’s exact

test; Figure 1A). Other developmental anomalies, such asmaloc-
3286 Cell Reports 24, 3285–3295, September 18, 2018
clusion, occurred at similar frequencies inMcl-1+/– and WT mice

(1.7%Mcl-1+/– versus 2.1%WT, p = 1; Figure 1A). Hydrocepha-

lus (1.2% Bcl-x+/– versus 0% WT, p = 0.555; Figure 1A) and

malocclusion (1.2% Bcl-x+/– versus 1.7% WT, p = 1; Figure 1A)

occurred with similar frequency in Bcl-x+/– mice and their WT

littermates.

As a prerequisite for overlapping function, it would be ex-

pected that Mcl-1 and Bcl-x have overlapping gene expression

patterns during embryogenesis. In situ hybridization revealed

prominent expression of Mcl-1 mRNA in the maxillary and

mandibular component of the first pharyngeal arch in E9.5 WT

embryos, whereas Bcl-x mRNA was found to be highly ex-

pressed in the first and second pharyngeal pouch of E9.5 em-

bryos. Both Mcl-1 and Bcl-x mRNA were detected throughout

the fore-, mid-, and hindbrain regions, along the neural tube,

and in the optic as well as the otic vesicles at E9.5 (Figure 1B).

Mcl-1 and Bcl-x mRNA were present at lower levels throughout

the E9.5 embryos. These results demonstrate that Mcl-1

and Bcl-x have substantial overlap in their expression during

embryogenesis and reveal that morphogenesis can occur nor-

mally in the absence of one allele of either of these genes.

CombinedLoss ofOneAllele ofMcl-1 andBcl-xCauses a
Loss of Offspring at Birth because of Severe
Developmental Anomalies
WecrossedMcl-1+/–withBcl-x+/–mice todetermine the functional

overlap of these pro-survival proteins. At weaning Mcl-1+/–;

Bcl-x+/– mice were present at a frequency of only 3.4% (cf. 25%

expected, p = 0.002; Figure 1C). A reduction in the litter size was

noted in Mcl-1+/–-by-Bcl-x+/– matings already at birth compared

with WT intercrosses. The losses at birth and at weaning were

similar, suggesting that the missing offspring from Mcl-1+/–-by-

Bcl-x+/– matings died before or at birth (Figure 1D).

Timed matings were established to determine the time and

cause of death of Mcl-1+/–;Bcl-x+/– mice. At E19.5, Mcl-1+/–-

by-Bcl-x+/– matings produced fewer single- and double-

heterozygous pups such that the overall distribution of

genotypes differed significantly from the expected Mendelian

ratio (p = 0.019; Figure 2A). Specifically, Mcl-1+/–;Bcl-x+/– pups

were present at a modestly reduced frequency (17%) compared

with expectation (25%) (p = 0.034).

The body weight of theMcl-1+/–;Bcl-x+/– double-heterozygous

pups was substantially decreased (24%; 0.979 ± 0.032 g

[n = 38]) compared with the WT (p < 0.0005; 1.286 ± 0.017 g

[n = 82]), Mcl-1+/– (19%; p < 0.0005; 1.216 ± 0.015 g [n = 57]),

andBcl-x+/– (20%; p < 0.0005; 1.223± 0.020 g [n = 55]; Figure 2B)

littermates and compared with E19.5 pups of WT-by-WT

crosses (1.273 ± 0.0134 g [n = 52]).

The Mcl-1+/–;Bcl-x+/– pups exhibited a range of craniofacial

anomalies with varying severity (Figure 2C), including hydro-

cephalus, micrognathia (small jaw), microphthalmia (small

eyeballs), or anophthalmia (lack of one or both eyes) and holo-

prosencephaly. About 10% ofMcl-1+/–;Bcl-x+/– pups developed

cyclopia (4 of 41). Furthermore, �7% presented with exence-

phaly (3 of 41), �50% with unilateral or bilateral anophthalmia

or microphthalmia (21 of 41), and 44% with overt palate

defects (18 of 41), which included a cleft palate. Only 22% of

Mcl-1+/–;Bcl-x+/– pups had developed normally.
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Figure 1. Expression of Mcl-1 and Bcl-x mRNA and Lethality of Mcl-1+/–;Bcl-x+/– Double-Heterozygous Mice
(A) Percentages ofMcl-1+/– or Bcl-x+/– offspring with hydrocephalus (HC) and/or malocclusion (MO) compared with their WT littermates. Depiction of aMcl-1+/–

mouse at 3 weeks of age with right-sided narrow palpebral fissure (cf. normal left eye; arrows) and hydrocephalus (note dome-shaped head; dashed line).

(B) In situ hybridization to detectMcl-1 or Bcl-xmRNA in E9.5 WT embryos, using a Bax sense probe as a negative control. Scale bars, 170 mm (top and middle)

and 270 mm (bottom).

(C) Frequency of mice of the indicated genotypes at 3 weeks of age.

(D) Mean ± SEM offspring number per litter at birth and weaning (3 weeks of age) of Mcl-1+/–-by-Bcl-x+/– matings compared with WT intercrosses.

n = numbers of mice examined are displayed within the individual bars. FB, forebrain; HB, hindbrain; MB, midbrain; NT, neural tube; OpV, optic vesicle; OtV,

otic vesicle.
A quarter of E19.5 Mcl-1+/– pups displayed eye defects

(14 of 57), and 7% also displayed palate defects (4 of 57).

Approximately 7% of Bcl-x+/– (4 of 55) but only 1% of WT

offspring (1 of 90) showed eye defects alone, and 4% of

Bcl-x+/– pups presented with combined eye and palate defects

(2 of 55; Figure 2D).

Both holoprosencephaly and cyclopia can be caused by a fail-

ure of midline formation (Hayhurst and McConnell, 2003). These

findings reveal that embryogenesis, particularly craniofacial

development, is prominently affected by only subtle reductions

in both MCL-1 and BCL-XL.

Combined Loss of One Allele of Mcl-1 and Bcl-2 or One
Allele of Bcl-x and Bcl-2 Does Not Cause Developmental
Abnormalities
To assess whether similar functional redundancy existed be-

tween other pairs of pro-survival BCL-2 family members, we
crossed Mcl-1+/– with Bcl-2+/– mice (Figure 3A) and Bcl-x+/–

with Bcl-2+/– mice (Figure 3B) and analyzed their offspring at

E19.5. Although most (89%) Bcl-2+/– offspring were normal in

both mating strategies, 11% of Bcl-2+/– pups developed eye de-

fects similarly to theMcl-1+/– pups. No anomalies were observed

in theBcl-x+/– offspring arising from theBcl-x+/–-by-Bcl-2+/–mat-

ings (Figure 3A; cf. the larger number of Bcl-x+/– offspring with a

low percentage of anomalies in theMcl-1+/–-by-Bcl-x+/– matings

[Figure 2D]).Mcl-1+/– offspring showed similar frequencies of eye

(15%) and palate (5%) defects as observed in the Mcl-1+/–-by-

Bcl-x+/– matings. Only 1 of 25 Bcl-2+/� offspring showed eye

anomalies, and only 4 of 34 and 1 of 34 Mcl-1+/–;Bcl-2+/� pups

had eye or combined eye and palate defects, respectively. Of

note, most Mcl-1+/–;Bcl-2+/– (n = 9) and Bcl-x+/–;Bcl-2+/–

(n = 17) offspring survived into late adulthood (>300 days) without

any further obvious anomalies. Because Mcl-1 heterozygosity

and Bcl-x heterozygosity displayed genetic interaction with
Cell Reports 24, 3285–3295, September 18, 2018 3287
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Figure 2. Craniofacial Anomalies in E19.5 Mcl-1+/–;Bcl-x+/– Pups Cause Death at Birth

(A) Expected (Mendelian) and observed numbers and frequencies of E19.5 pups of the indicated genotypes from Mcl-1+/–-by-Bcl-x+/– matings.

(B) Mean body weights ± SEM of E19.5 pups of the indicated genotypes.

(C) Range of craniofacial anomalies in E19.5 Mcl-1+/–;Bcl-x+/– pups compared with WT controls. Scale bars, 2 mm (left six panels) and 3 mm (right).

(D) Incidence of major craniofacial anomalies in mice of the indicated genotypes.

n = number of mouse pups examined displayed in columns in (A) and (B) and pie charts in (D), as well as by individual dots in (B). E, eye, normally covered by fused

eyelids at birth; Ea, ear; eE, exposed eye; lEa, low-set ear. Arrowhead, subcutaneous exencephaly; arrows, rudimentary lower jaw; bracket, shortened maxilla

and mandible; asterisk, rudimentary facial structure missing nose and mouth.
each other, but neither of them with Bcl-2, these observations

suggest a unique, gene dosage-sensitive functional overlap be-

tweenMCL-1 and BCL-XL during early embryonic development.

Mcl-1+/–;Bcl-x+/– Pups Display Gross External and
Internal Cephalic Anomalies
We used serial sectioning (Figure 4A), skeletal preparations

(Figure 5), and optical projection tomography (OPT) (Figure 6;

Videos S1, S2, S3, and S4) to examine the cephalic structures

inWT,Mcl-1+/–,Bcl-x+/–, andMcl-1+/–;Bcl-x+/– E19.5 pups. Serial

sectioning of the heads revealed further midline defects in the

Mcl-1+/–;Bcl-x+/– pups, including primary and secondary palate

defects, such as cleft palate and a deviated nasal septum (com-

bined 30%). Approximately 15% of those occurred in combina-

tion with obvious eye defects (Figure 4A). SomeMcl-1+/–;Bcl-x+/–

pups exhibited gross underdevelopment and/or malformation

of one or both eyes, and in some cases the eye was located

in an abnormal medial position (Figure 4A). Additionally,
3288 Cell Reports 24, 3285–3295, September 18, 2018
Mcl-1+/–;Bcl-x+/– pups displayed brain deformations and lower

jaw defects; the greatest degree of severity of these defects

occurred in conjunction with cyclopia (Figure 4A).

Given that we detected higher levels ofMcl-1mRNA in the first

pharyngeal arch, and of Bcl-x mRNA in the first pharyngeal

pouch and bothMcl-1 and Bcl-x in the telencephalon (Figure 1B)

(i.e., tissues that give rise to the brain, maxilla, andmandible), we

hypothesized that increased apoptosis due to limiting amounts

of these pro-survival proteins was responsible for the defects

in craniofacial development in Mcl-1+/–;Bcl-x+/– pups. Craniofa-

cial patterning andmorphogenesis commence at E8, and cranio-

facial structures undergo major changes between E8 and E10,

such that anomalies observed at E19.5 would be expected

to be present already at this earlier stage. Indeed, anomalies

were already visible in E9.5Mcl-1+/–;Bcl-x+/– embryos compared

with their control littermates (Figures 4B, 4C, and S1).

Mcl-1+/–;Bcl-x+/– E10.5 embryos (n = 8) were found to contain

slightly fewer cells (Figure 4B) and were frequently smaller in
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size compared with their littermates (Figures 4C and S1) but

contained significantly more TUNEL-positive cells (i.e., cells

undergoing apoptosis) compared with WT embryos (Figure 4B).

Some Mcl-1+/–;Bcl-x+/– embryos showed medially positioned

optic vesicles and a decrease in the size of the forebrain

(Figure 4C).

At E9.5 and E10.5,Mcl-1 and Bcl-xmRNA are both expressed

in the optic vesicle (Figure 1B). This combined with the observed

anophthalmia and microphthalmia (Figures 2C and 2D and

reported above) suggests that Mcl-1+/–;Bcl-x+/– embryos may

have abnormally increased apoptosis in the eye primordia,

causing eye defects that are observed at a later stage.

Three-dimensional (3D) imaging of E9.5 and E10.5 embryos

demonstrated that TUNEL-positive (i.e., apoptotic) cells in

Mcl-1+/–;Bcl-x+/– embryos were located within similar regions

as in WT, Mcl-1+/–, and Bcl-x+/– embryos (Figure 4D; Videos S5

and S6). Given that the defects caused by the reduction in

MCL-1 and BCL-XL were already present at E9.5, this indicates

that critical structures must be insufficiently developed or lost at

an earlier embryonic stage.

Compared with WT pups, the cephalic bone structures of

Mcl-1+/–;Bcl-x+/– pups with cyclopia showed a decrease in the

size or even a loss of the intraparietal and parietal bones (4 of 10;

Figure 5).Overall, the skulls ofMcl-1+/–;Bcl-x+/–pupswere lessossi-

fied and in some cases displayed severe structural defects (4 of 10)

compared with littermates, such as a size reduction or loss of the

parietal, interparietal, and supraoccipital bones, and this was

associated with exencephaly (Figure 5). The mandibles were

often smaller (5 of 10), missing (1 of 10), or fused in the midline

(7 of 10). Almost all (9 of 10) Mcl-1+/–;Bcl-x+/– pups showed pal-

ate defects. Skeletal preparations and optical projection tomog-

raphy confirmed the deviation of the nasal septum observed by

serial sectioning (Figure 4A) and in addition revealed anomalies
or absence of the nasal and mouth cavity in Mcl-1+/–;Bcl-x+/–

pups (Figures 5 and 6; Videos S1, S2, S3, and S4).

In general, Mcl-1+/–;Bcl-x+/– pups with less pronounced

external abnormalities also displayed milder internal defects.

This may suggest that in some Mcl-1+/–;Bcl-x+/– embryos, the

levels of MCL-1 and BCL-XL protein produced from the single

intact WT alleles are almost sufficient for normal development.

Despite Morphological Similarities of the Mutant Mice,
MCL-1 and BCL-XL Do Not Functionally Interact with
Sonic Hedgehog Signaling
Mcl-1+/�:Bcl-x+/� double-heterozygous pups displayed holo-

prosencephaly, cyclopia, and other midline development de-

fects, similar to phenotypes observed in sonic hedgehog

signaling pathway-deficient mice (Belloni et al., 1996; Chiang

et al., 1996; Roessler et al., 1996). To investigate whether the

similar phenotypes caused by these two distinct mutations

are connected, we tested two possible functional scenarios:

(1) MCL-1 and/or BCL-XL may be important for the survival of

midline cells expressing the Shh gene, and (2) sonic hedgehog

signaling may induce Mcl1 and/or Bclx gene expression and/or

an increase in their protein levels.

First, we generated Mcl-1+/�:Shh+/� and Bcl-x+/�;Shh+/�

compound heterozygotes to seek evidence for a genetic interac-

tion. Mcl-1+/�;Shh+/� but not Bcl-x+/�;Shh+/� double-heterozy-

gous animals were under-represented at weaning. Among 95

animals at weaning, only 7 wereMcl-1+/�;Shh+/� double hetero-

zygotes (p = 9 3 10�6; Figure S2). Observation of litters sug-

gested that the Mcl-1+/�;Shh+/� pups were lost in the first

week after birth. We therefore recovered litters of Mcl-1+/� by

Shh+/� crosses at E18.5. Among 37 animals recovered, 9 were

Mcl-1+/�;Shh+/� double-heterozygous animals. One of 5 Mcl-1+/�

single-heterozygous animals displayed holoprosencephaly and
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a proboscis (Figure S2). The fact that defects of similar severity

were not seen in Mcl-1+/� fetuses in our matings described

above (Figures 1C, 2, and 3) may be due to the rarity of this

event or an influence of the genetic background contributed

by the Shh+/� parent. Of note, none of the 9 Mcl-1+/�;
Shh+/� double-heterozygous animals displayed cyclopia, holo-

prosencephaly, or a proboscis. Externally, all Mcl-1+/�;Shh+/�

double-heterozygous animals appeared normal (Figure S2).

Mcl-1+/�;Bcl-x+/� double-heterozygous E8.5 embryos ex-

pressed Shh mRNA in the midline (Figure S2), similar to pub-

lished results in WT embryos (Goodrich et al., 1996), showing

that cells expressing the Shh gene can survive despite the

MCL-1 and BCL-XL-reduced state.

Last, we determined if sonic hedgehog signaling induced the

expression of the Mcl-1 or Bcl-x genes or resulted in elevated

levels of the MCL-1 or BCL-XL proteins. As a precedent, induc-

tion of Bcl-2 gene expression by sonic hedgehog had been

reported previously (Bigelow et al., 2004; Regl et al., 2004).

Treatment ofWTmouse embryonic fibroblasts with sonic hedge-

hog robustly induced expression of the known sonic hedgehog

target genes Ptch1 and Gli1, and the sonic hedgehog signaling

pathway inhibitor vismodegib prevented this induction (Fig-

ure S3). Similarly, but to a much lesser extent, Bcl-2 mRNA

and BCL-2 protein levels were increased by sonic hedgehog
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treatment and reduced by vismodegib treatment (Figure S3). In

contrast, sonic hedgehog and vismodegib had no impact on

the mRNA or protein levels of MCL-1, BCL-XL, or pro-apoptotic

BIM (Figure S3). These data indicate that a direct or indirect regu-

lation of MCL-1 and/or BCL-XL expression by sonic hedgehog

signaling and a loss of sonic hedgehog-expressing cells due

to combined loss of one allele of Bcl-x and Mcl-1 are not likely

explanations for the similarities in the phenotypes observed

between the two loss-of-function states.

Loss of One Allele of Bim Rescues the Craniofacial
Abnormalities of Mcl-1+/–;Bcl-x+/– Offspring and Their
Premature Lethality
Last, we tested whether loss of a pro-apoptotic BCL-2 family

member could restore normal embryonic development of

Mcl-1+/�;Bcl-x+/� mice. The pro-apoptotic BH3-only protein

BIM can bind with high affinity to all pro-survival BCL-2 family

members and is known to be critical for the initiation of apoptosis

in many cell types (Bouillet et al., 1999, 2001; O’Connor et al.,

1998; O’Reilly et al., 2000). Moreover, we found that Bim

mRNA is expressed in the same regions where Mcl-1 and

Bcl-xmRNAs are found at higher levels (i.e., in particular the first

and second pharyngeal arch and pouch and the optic and otic

vesicles) (Figure 7A). Hence, we crossed Bcl-x+/� females with
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Mcl-1+/�;Bim�/� males. Remarkably, loss of only one allele of

Bim was sufficient to produce healthy Mcl-1+/�;Bcl-x+/�;Bim+/�

offspring at the expected Mendelian frequency (Figure 7B;

p = 0.855). Litter sizes of Mcl-1+/�;Bim�/� by Bcl-x+/� matings

were similar to those of WT-by-WT intercrosses with similar pro-

portions of pups surviving until weaning and beyond compared

with littermate and WT controls (Figure 7C). Notably, these

Mcl-1+/�;Bcl-x+/�;Bim+/� animals survived normally into adult-

hood without complications (n = 12; >200 days) and had a rela-

tively normal outer appearance (Figure S4). Despite their survival

advantage compared with the Mcl-1+/�;Bcl-x+/� offspring,

Mcl-1+/�;Bcl-x+/�;Bim+/� triple heterozygoteswere still significantly

lighter thanWT animals (p = 0.0047) but not significantly different in

weight from Mcl-1+/�;Bcl-x+/� or Bim+/– pups (Figure 7D).

Overall, we conclude that a fine balance between pro-survival

MCL-1 and BCL-XL versus pro-apoptotic BIM is critical for

normal craniofacial development and survival.

DISCUSSION

Apoptosis is induced by a multitude of stress stimuli, including

cytokine/growth factor withdrawal, nutrient deprivation, onco-

gene activation, DNA damage, chemotherapeutic drugs, and

viral infection (Adams and Cory, 2007; Delbridge et al., 2016;

O’Brien, 1998). Apoptosis is critical for the normal development

of certain, but perhaps surprisingly not all tissues during embryo-

genesis (Ke et al., 2018). Apoptosis in large excess causes

embryonic or fetal lethality. Of note, complete loss of MCL-1 or

BCL-XL causes early or mid-gestation embryonic death in

mice, respectively (Motoyama et al., 1995; Rinkenberger et al.,

2000).We have shown here that developmental apoptosis needs

to be finely controlled and that even loss of just one allele of
Cell Report
Mcl-1 and one allele of Bcl-x leads to a

small but intolerable increase in develop-

mental apoptosis, resulting in a very high

incidence of developmental abnormalities

and perinatal lethality. Because compound

Mcl-1+/–;Bcl-2+/– or Bcl-x+/–;Bcl-2+/–pups,
in contrast to Mcl-1+/–;Bcl-x+/– pups, displayed neither develop-

mental abnormalities nor increased lethality compared with WT

and single-heterozygous (Mcl-1+/–, Bcl-x+/–, or Bcl-2+/–) animals,

our findings reveal that only MCL-1 and BCL-XL, but not MCL-1

and BCL-2 or BCL-XL and BCL-2, have critical, overlapping

roles in embryonic development.

The pro-apoptotic BH3-only protein BIM is able to bind and

inhibit all pro-survival BCL-2 family members (including MCL-1

and BCL-XL) (Chen et al., 2005; Kuwana et al., 2005). Because

loss of a single allele of Bim completely rescued the craniofacial

abnormalities and premature death of Mcl-1+/–;Bcl-x+/– pups,

restoring normal development and even survival into late adult-

hood, we conclude that a surprisingly fine balance between

pro-apoptotic BIM versus pro-survival MCL-1 and BCL-XL gov-

erns normal embryonic development.

MCL-1 regulation is complex, and its protein levels can drop

rapidly in cells exposed to stress stimuli, because of its short

half-life (Okamoto et al., 2014; Opferman, 2006). This explains

why even small changes in the gene dosage of Mcl-1 (i.e., loss

of a single allele) can cause the death of both normal and malig-

nant cells, either on its own or, more prominently, when exposed

to stress stimuli (e.g., cytotoxic drugs) (Brinkmann et al., 2017;

Delbridge et al., 2015; Glaser et al., 2012; Grabow et al., 2016;

Kelly et al., 2014; Koss et al., 2013). Our data show that

appropriate levels of MCL-1 and BCL-XL are critical for normal

craniofacial development and that they are required to keep

pro-apoptotic BIM in check.

Mcl-1+/�;Bcl-x+/� double-heterozygous pups displayed holo-

prosencephaly, cyclopia, and other midline development de-

fects, similar to phenotypes observed in sonic hedgehog

pathway-deficient mice. Defects in signaling pathways including

the sonic hedgehog and the nodal pathways, as well as
s 24, 3285–3295, September 18, 2018 3291
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mutations in individual genes such as ZIC2, TGIF, SIX3, and

SOX9, can cause holoprosencephaly (Belloni et al., 1996; Brown

et al., 1998; Chiang et al., 1996; Chu et al., 2005; Gripp et al.,

2000; Nomura and Li, 1998; Roessler et al., 1996; Wallis et al.,

1999; Wright et al., 1995). Cell survival in the ventral neural

tube and in the neural crest, which forms the facial mesenchyme,

depends critically on the presence of sonic hedgehog.

Impairment of sonic hedgehog signaling due to loss of the sonic

hedgehog-modifying enzyme, HHAT, was reported to lead to

increased apoptosis and holoprosencephaly (Dennis et al.,

2012). However, contradicting the notion that sonic hedgehog

signaling might be required to restrict apoptotic cell death in

the ventral neural tube, Six3+/–;Shh+/– double-heterozygous

embryos (the Shh gene is a direct target of the transcription

factor SIX3) had a reduced number of apoptotic cells (Geng

et al., 2008).

Interestingly, the GLI transcription factors, acting downstream

of sonic hedgehog signaling, have been implicated in the regula-

tion of the Bcl-2 gene (Bigelow et al., 2004; Regl et al., 2004).

Our data support elevation of Bcl-2 mRNA and protein levels

by sonic hedgehog signaling. However, deficiencies in BCL-2

do not appear to explain the similarities in phenotype observed

between the Mcl-1+/�;Bcl-x+/� double-heterozygous pups and

sonic hedgehog signaling pathway mutant mice. Although

Bcl-2 gene expression is activated by sonic hedgehog in cells

in culture, our results and previous findings (Bouillet et al.,

2001; Veis et al., 1993) show that BCL-2 levels, at least on a

WT background, are not limiting during the first half of mouse

gestation. Furthermore, unlike theMcl-1+/�;Bcl-x+/� double-het-

erozygous pups, our Bcl-2+/�;Mcl-1+/�and Bcl-2+/�;Bcl-x+/�
3292 Cell Reports 24, 3285–3295, September 18, 2018
compound heterozygotes did not produce an sonic hedgehog-

deficiency-like phenotype.

Our genetic and biochemical studies failed to provide evi-

dence that sonic hedgehog signaling might regulate MCL-1,

BCL-XL, or BIM expression or that sonic hedgehog-expressing

cells are lost when the levels of MCL-1 and BCL-XL are abnor-

mally low (i.e., in our Mcl-1+/�Bcl-x+/� embryos). On the basis

of these findings, we hypothesize that sonic hedgehog signaling

occurs normally inMcl-1+/�Bcl-x+/� embryos but that they retain

too few cells in the critical regions for normal headmidline devel-

opment and that this then results in a phenocopy of the anoma-

lies caused by deficiencies in the sonic hedgehog signaling

pathway, rather than MCL-1/BCL-XL (or BIM) function and sonic

hedgehog signaling being functionally linked.

Known genetic mutations explain only�30%of holoprosence-

phaly (Geng and Oliver, 2009). This suggests that, along with

unknown environmental causes, a number of yet to be identified

genetic mutations and epigenomic alterations may cause the

anomalies. Holoprosencephaly has been associated with abnor-

mally high levels of apoptotic cell death (Aoto and Trainor, 2015;

Dennis et al., 2012). The primordia of facial structures are

composed of small numbers of cells that have extensive

proliferative capacity. They are critical for the normal formation

of structures that appear later in embryogenesis. The bilateral

development and subsequent midline fusion of facial structures

require precisely coordinated bilaterally symmetric development.

Thus, minor reductions in the early cell number can compound

over subsequent cell cycles and result in severe craniofacial

anomalies that become obvious later in development. Our finding

that a delicate balance between pro-survival MCL-1 and BCL-XL

versus pro-apoptotic BIM is critical for normal craniofacial devel-

opment may suggest that even relatively subtle changes in the

levels of these regulators of apoptosis in primordial anlagen could

explain some cases of developmental abnormalities in humans.

Such subtle changes in MCL-1, BCL-XL, or BIM expression may

arise stochastically or could be due to polymorphisms in the cor-

responding genes. For the latter case, one may speculate that

polymorphisms in twoor three of the genes,Mcl-1,Bcl-x (reduced

expression), andBim (increased expression) may need to collude

to cause craniofacial anomalies. Future large-scale genomic ana-

lyses of affected offspring (or fetuses) and their healthy parents

and siblings may provide evidence for this proposition.

A possible reason for the need to strictly control cell survival

in the embryo by a finely tuned balance between pro-survival

MCL-1, BCL-XL versus pro-apoptotic BIM could be that rapidly

proliferating cells, such as those present during embryogenesis,

are intrinsically at risk for transitioning to deregulated growth.

This is exemplified by the development of teratomas (1 in

12,000–27,000 live births) as well as certain childhood cancers,

particularly blastomas and leukemias (Charles, 2007). Notably,

developing tissues in the embryo are provided with abundant

levels of nutrients and growth factors and therefore contain large

numbers of rapidly dividing cells that may through errors in DNA

replication acquire oncogenic lesions. It is therefore possible

that relatively facile induction of apoptosis, underpinnedby signif-

icant levels of apoptosis inducers (e.g., BIM) and limiting levels

of pro-survival proteins (i.e.,MCL-1 andBCL-XL) is critical to safe-

guard developing tissues against neoplastic transformation.
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detect Bim mRNA. Scale bar, 135 mm.

(B) Frequency of offspring from Bcl-x+/–-by-

Mcl-1+/–;Bim–/– matings.

(C) Mean offspring number ± SEM per litter at birth

and at weaning from Bcl-x+/–-by-Mcl-1+/–;Bim–/–

matings. The offspring numbers from WT-by-WT

and Mcl-1+/–-by-Bcl-x+/– matings are reproduced

from Figure 1D to aid comparison.

(D) Mean body weights ± SEM of E19.5 fetuses of

the indicated genotypes. Weights from WT and

Mcl-1+/–;Bcl-x+/– fetuses from Figure 2B are repro-

duced here for comparison.

n = number ofmice examined displayed as numbers

within bars in (B) and (C) and columns in (D), as well

as individual dots in (D). See also Figure S4.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-MCL-1, rat mAB, clone 19C4 Generated in-house by Dr DCS Huang,

Walter and Eliza Hall Institute of Medical

research, Parkville, VIC, Australia

clone 19C4

Anti-BCL-XL, rat mAB, clone 9C9 Generated in-house by Dr LA O’Reilly,

Walter and Eliza Hall Institute of Medical

research, Parkville, VIC, Australia

clone 9C9

Anti-BCL-2, mouse mAB, clone 7 BD Biosciences Cat# 610539

Anti-BIM, rabbit pAB Enzo Life Sciences Cat# ADI-AAP-330

Anti-HSP70, mouse mAB, clone N6 Gift from Drs R Anderson, Peter MacCallum

Cancer Research Institute, Melbourne, VIC,

Australia, and W Welch, University of California,

San Francisco, CA, USA

clone N6

Chemicals, Peptides, and Recombinant Proteins

Recombinant sonic hedgehog R&D systems Cat# 464-SH-200

Vismodegib Genentech, in-house N/A

Critical Commercial Assays

In Situ Cell Death Detection Kit, TMR Red Roche 12 156 792 910

NBT-BCIP Stock Solution Roche 11681451001

Intracellular Fixation & Permeabilisation Buffer Set eBioscience 88-8824-00

DIG RNA Labeling Kit (SP6/T7) Roche 11175025910

NBT/BCIP solution Boehringer Mannheim 1681451

Anti-Digoxigenin-AP Fab Fragments Boehringer Mannheim 1093274

SuperScript III First Strand Synthesis SuperMix Invitrogen Cat# 18080400

TaqMan Gene Expression Assays Applied Biosystems Cat# 4369016

Experimental Models: Cell Lines

Mouse: Mouse embryonic fibroblasts (MEFs) This paper N/A

Experimental Models: Organisms/Strains

Mouse: WT C57BL/6 mice In-house N/A

Mouse: Mcl-1fl/+ mice Vikstrom et al., 2010 N/A

Mouse: Bcl-x+/– mice Wagner et al., 2000 N/A

Mouse: Bcl-2+/– mice Veis et al., 1993 N/A

Mouse: Bim–/– mice Bouillet et al., 1999 N/A

Mouse: Shh+/� mice Harfe et al., 2004 N/A

Oligonucleotides

TaqMan probe: Ptch1 Applied Biosystems Mm00436026_m1

TaqMan probe: Gli1 Applied Biosystems Mm00494654_m1

TaqMan probe: Mcl1 Applied Biosystems Mm00725832_s1

TaqMan probe: Bcl2l1/Bclx Applied Biosystems Mm00437783_m1

TaqMan probe: Bcl2l11/Bim Applied Biosystems Mm00437796_m1

TaqMan probe: Bcl2 Applied Biosystems Mm00477631_m1

Mcl1 wild type allele forward primer:

50-TCTTCTCAGGCATGCTCCGGAA-30
Integrated DNA Technologies N/A

Mcl1 wild type allele reverse primer:

50-CGTCCTTACAAGAACATCTGTGA-30
Integrated DNA Technologies N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mcl1 knockout allele forward primer:

50-CGACACAGATCAGCAGGCGTTC-30
Integrated DNA Technologies N/A

Mcl1 knockout allele reverse primer:

50-TAGCCACAATCCTGTAGCCACT-30
Integrated DNA Technologies N/A

Bclx wild type forward primer:

50-GAGATGCAGGTATTGGTGAGT-30
Integrated DNA Technologies N/A

Bclx knock out primer:

50-TCCATTGCTCAGCGGTGCTGT-30
Integrated DNA Technologies N/A

Bclx common to both alleles reverse primer:

50-GTCTCCTGAACAATCGGTATCT-30
Integrated DNA Technologies N/A

Bcl2 knockout forward primer:

50-CACGAGACTAGTGAGACGTGC-30
Integrated DNA Technologies N/A

Bcl2 wild type forward primer:

50-CTGAACCGGCATCTGCACACC-30
Integrated DNA Technologies N/A

Bcl2 reverse primer common to both alleles:

50-CTAAAGATGCATAGGTCAAGAG-30
Integrated DNA Technologies N/A

Bim knockout reverse primer:

50-CATTGCACTGAGATAGTGGTTGA-30
Integrated DNA Technologies N/A

Bim wild type reverse primer:

50-CCCGTTGCACCACAGATGAA-30
Integrated DNA Technologies N/A

Bim forward primer common to both alleles:

50-AAGAATCTGAGGTTGACTCTAG-30
Integrated DNA Technologies N/A

Cre-recombinase knockin detection in the Shh locus

reverse primer: 50-GCATAACCAGTGAAACAGCATTGCTG-30
Integrated DNA Technologies N/A

Cre-recombinase knockin detection in the Shh locus

forward primer: 50-GGACATGTTCAGGGATCGCCAGGCG-30
Integrated DNA Technologies N/A

Software and Algorithms

Prism software GraphPad Software https://www.graphpad.com/

FlowJo version 10 Becton, Dickinson & Company https://www.flowjo.com/

Stata 12.1 software StataCorp, Texas https://www.stata.com/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Anne

Voss (avoss@wehi.edu.au).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Experiments with mice were conducted according to the guidelines of the Walter and Eliza Hall Institute of Medical Research Animal

Ethics Committee and according to the Australian code for the care and use of animals for scientific purposes. Mcl-1+/– mice were

generated from Mcl-1fl/+ mice (Vikstrom et al., 2010). The Mcl-1+/–, Bcl-x+/– (Wagner et al., 2000), Bcl-2+/– (Veis et al., 1993), Bim–/–

(Bouillet et al., 1999) and Shh+/� mice (Harfe et al., 2004) were all maintained on a C57BL/6 background. Mice were kept in a 14-hour

light and 10-hour dark cycle at 22�C and fed ad libitum. For timed matings, noon of the day on which the vaginal plug was first

observed was defined as embryonic day 0.5 (E0.5). Developmental stages of the animals are indicated in the figures and figure

legends. Male and female fetuses and embryos were used randomly in the order as they were recovered. External examination

and weighing of newborn mice and embryos were conducted and recorded prior to genotyping, thus blinded to the genotype of

the individual animal.

Mouse embryonic fibroblasts
Mouse embryonic fibroblasts (MEFs) were isolated fromWTC57BL/6 embryos, cultured on plates coatedwith 0.1%gelatin in DMEM

with 10% FBS and used at an early passage number.
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METHOD DETAILS

Genotyping
Genotyping ofmicewas performed usingDNA samples obtained from tail biopsies, which had been digestedwith tail digestion buffer

(Viagen Biotech, Los Angeles, CA, USA) supplemented with proteinase K (Sigma Aldrich, Castle Hill, NSW, Australia). Oligonucleo-

tides were obtained at PCR grade from GeneWorks (Hindmarsh, SA, Australia). GoTaq Green Master Mix (Promega, Alexandria,

NSW, Australia) was supplemented with 10 pmol of the appropriate oligonucleotide pairs. Oligonucleotide sequences are provided

in Table S1.

Whole-mount in situ hybridization
Whole-mount in situ hybridization (WMISH) was performed as previously described (Thomas et al., 2007). In brief, paraformaldehyde-

fixed embryoswere dehydrated and rehydrated throughmethanol series.With intervening PBS/Tween 20wash steps, embryoswere

treated with hydrogen peroxide, proteinase K and glycine and post-fixed in glutaraldehyde/paraformaldehyde. They were prehybri-

dized and hybridized with in vitro transcribed, digoxigenin-labeled cRNA in 50% formamide/5x SSC pH4.5/1% SDS/50 mg/mL yeast

RNA/50 mg/mL heparin overnight, then washed extensively, treated with RNase A, blocking reagent (Roche) and fetal bovine serum,

incubated with alkaline phosphatase labeled anti-digoxigenin antibody (Roche) overnight, washed extensively and finally subjected

to alkaline phosphatase reaction with NBT-BCIP (Roche) for color development. Stained embryos were washed and then cleared in

glycerol.

Histology and skeletal preparation
Fetuses were fixed in Bouin’s fixative and processed for paraffin embedding, serial sectioning and hematoxylin and eosin staining

using standard techniques. Skeletal preparations were performed according to standard histological techniques (Thomas et al.,

2000). In brief, E19.5 mouse pups were sacrificed by cooling. Skin and internal organs were removed and the remainder was fixed

first 4 days in ethanol and then 4 days in acetone, prior to staining for 10 days in 0.005% (w/v) alizarin red/0.015% (w/v) alcian blue

8GX/5% (v/v) acetic acid in ethanol. Skeletal preparations were macerated for 16 days in 1% (w/v) potassium hydroxide/20% (v/v)

glycerol in H2O. Skeletons were cleared in increasing concentrations of glycerol (40, 60, 80%).

Flow cytometry of TUNEL-stained cells and cell count
Flow cytometry of TUNEL positive cells was performed as published previously (Ke et al., 2018). In brief, embryos were harvested at

E10.5 and digested in trypsin. The reaction was halted by addition of 1 mL DMEM containing 10% FCS, and single cell suspensions

were generated by gentle pipetting. The single cell suspension was used to count the total cell number. Cells were washed once with

PBS and fixed with 2% paraformaldehyde (PFA) for 1 h at room temperature. Cells were then washed, permeabilized with 0.1%

Triton-X in 0.1% sodium citrate for 2 min on ice, and, following another round of washing, TUNEL stained using the In Situ Cell Death

Detection Kit (Roche) according to the manufacturer’s instructions. Cells were counter-stained with DAPI prior to FACS analysis

using the LSR IIW machine (Becton Dickinson).

Whole-mount TUNEL staining
Embryos were harvested at E9.5 and E10.5. Embryos were incubated with 1 mg/mL proteinase K (Sigma Aldrich) for 10 min at room

temperature (RT), then fixed in 4% paraformaldehyde for 20 min and further incubated with 66% ethanol/33% glacial acid at �20�C
for 20 min. We used the Roche In situ Cell Death Detection Kit, TMR red (Sigma Aldrich), following the manufacturer’s instructions.

Embryos were cleared for imaging by using glycerol gradients (5% to 80%) to prevent scattering and light absorption. All embryos

were stained with DAPI for single cell display.

Microscopy
E9.5 and E10.5 embryos were imaged using an LSM 780 confocal microscope (Zeiss). Embryos were imaged using a 10x/0.5 NA

objective at a resolution of 1024x1024 pixels using tile scanning, for movies rendered to 512x512 pixels. Z stacks were taken using

1 mm intervals and depth-correction to maintain signal strength throughout the embryo.

Optical Projection Tomography
Optical projection tomography has been previously described (Combes et al., 2014).

Analysis of the Sonic Hedgehog Pathway
For analysis of the sonic hedgehog pathway, early passage primary mouse embryonic fibroblasts (MEFs) fromWTC57BL/6 embryos

were seeded in 6-well plates coated with 0.1% gelatin in DMEM with 10% FBS for 24 h. Culture medium was then renewed with

DMEM with 0.5% FBS. After 4 h of serum starvation, MEFs were stimulated with 0.25 or 1 mg/mL recombinant mouse Sonic Hedge-

hog (R&D systems) in the presence or absence of 100 nM of the Hedgehog signaling pathway inhibitor, vismodegib (Genentech), for

24 h. MEFs were then harvested for gene and protein expression analyses.
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For analysis of mRNA expression, total RNA was extracted from MEFs using TRIzol reagent (Life Technologies), and cDNA was

synthesized with SuperScript III First Strand Synthesis SuperMix (Invitrogen). Gene expression levels were analyzed using TaqMan

Gene Expression Assays (Applied Biosystems) for Ptch1 (Mm00436026_m1), Gli1 (Mm00494654_m1), Mcl1 (Mm00725832_s1),

Bcl2l1/Bclx (Mm00437783_m1), Bcl2l11/Bim (Mm00437796_m1), Bcl2 (Mm00477631_m1). Hmbs (Mm001143545_m1) was used

for normalization of mRNA expression analysis on ViiA 7 Real-Time PCR System (Applied Biosystems). The comparative threshold

cycle method was applied to determine expression levels.

For analysis of protein expression, cells were lysed using RIPA buffer andwhole cell lysates in Laemmli sample buffer were electro-

phoresed through NuPAGE Bis-Tris gels (Invitrogen) and transferred to PVDF membrane. Blots were blocked in 5%w/v non-fat milk

in TBST prior to immunoblotting. Antibodies used were rat monoclonal anti-MCL-1 clone 19C4, rat monoclonal anti-BCL-XL clone

9C9, mouse monoclonal anti-BCL-2 clone 7 (BD Biosciences Cat# 610539), rabbit polyclonal anti-BIM (Enzo Life Sciences Cat#

ADI-AAP-330) and mouse monoclonal anti-HSP70 clone N6.

QUANTIFICATION AND STATISTICAL ANALYSIS

Frequencies of genotypes, body weights and developmental anomalies were plotted in GraphPad PRISM (GraphPad Software Inc,

La Jolla, CA, USA). Frequencies were compared by Fisher’s exact test using Stata 12.1 software (Stata Corp, Texas). Other param-

eters were compared by one-way ANOVA with genotype as the independent factor, where there were more than 2 experimental

groups, or Student’s t test, where there were only 2 experimental groups. Data are depicted as mean ± SD (Figure S3) and

mean ± SEM (all other figures). Significant p values (p < 0.05) are displayed in each figure. N equals the number of independently

performed cell culture experiments in Figure S3 and the number of mice in all other figures and is indicated in the figure legends.

Male and female fetuses and embryos were used randomly in the order as recovered. External examination andweighing of newborn

mice and embryos were conducted and recorded prior to genotyping, thus blinded to the genotype of the individual animal. No

animal or experiment was excluded from the analyses.
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