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Summary 

Apoptotic cell death via the mitochondrial pathway occurs in all vertebrate cells and requires the 

formation of pores in the mitochondrial outer membrane. Two Bcl-2 protein family members, Bak 

and Bax, form these pores during apoptosis and how they do so has been investigated for the last two 

decades. Many of the conformation changes that occur during their transition to pore-forming 

proteins have now been delineated. Notably, biochemical, biophysical and structural studies indicate 

that symmetric homodimers are the basic unit of pore formation. Each dimer contains an extended 

hydrophobic surface that lies on the outer membrane, and is anchored at either end by a 

transmembrane domain. Membrane remodelling events such as positive membrane curvature have 

been reported to accompany apoptotic pore formation, suggesting Bak and Bax form lipidic pores 

rather than proteinaceous pores. However, it remains unclear how symmetric dimers assemble to 

porate the membrane. Here we review how clusters of dimers and their lipid-mediated interactions 

provide a molecular explanation for the heterogeneous assemblies of Bak and Bax observed during 

apoptosis. 
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Introduction 

Apoptosis is essential for normal development and tissue homeostasis, and its perturbed regulation 

contributes to numerous pathological conditions, including cancer and autoimmune and degenerative 

diseases [1]. Apoptosis is regulated principally by interactions within the Bcl-2 family of proteins, 

whose members fall into three subclasses (Figure 1a). The eight or more pro-apoptotic BH3-only proteins 

(e.g. Bid and Bim) act as sensors of specific types of cellular stress, and signal by engaging other 

family members. The pro-survival proteins (e.g. Bcl-2 and Mcl-1) act by sequestering the pro-

apoptotic members. Finally, pro-apoptotic Bak and Bax act as critical effectors of apoptosis, as they 

are required for mitochondrial permeabilisation in cells and in mice [2, 3]. As illustrated in Figure 1b, 

upon receiving an apoptotic stimulus, upregulated BH3-only proteins bind to Bak and Bax to induce 

major conformation changes, resulting in Bak and Bax oligomerisation and subsequent outer 

membrane permeabilisation. This leads to the release of mitochondrial proteins including cytochrome 

c that in turn triggers caspase-driven cell demolition (reviewed in [4]). 

The 3D structures of non-activated Bak and Bax resemble those of the pro-survival proteins, 

comprising nine α-helices that form a tight globular bundle (Figure 2). Two important features are a 

surface hydrophobic groove (α2-α5) and a buried BH3 domain in α2 that mediate contact with other 

family members. A major distinction between Bak and Bax is that Bak is mostly inserted into the 

mitochondrial outer membrane in healthy cells, whereas Bax is mostly cytosolic and translocates to 

mitochondria following apoptotic stimuli (Figure 1b). Bax translocation is triggered by binding of 

BH3-only proteins which releases α9 from the hydrophobic groove [5]. Once the released α9 inserts 

as a transmembrane domain into the mitochondrial outer membrane, Bax has the same topology as 

non-activated Bak [6]. 

Conversion of Bak and Bax into symmetric homodimers with flexible extremities 

Bak and Bax undergo major conformation changes as they convert into pore-forming proteins (Figure 

2; reviewed in [4]). The changes are triggered by the binding of BH3-only proteins to a hydrophobic 

surface groove, which generates a cavity underneath both the N- and C-termini [7-9]. Destabilisation 

allows the protein to unfold as three segments: the α1-helix dissociates [10], and the core (α2-α5) 

separates from the latch (α6-α9) [7, 8]. Several newly exposed hydrophobic regions then associate 

with the mitochondrial outer membrane to lie in-plane (Figure 2, activated Bak monomer)[11, 12]. 

The core remains largely folded, but within it the newly exposed hydrophobic BH3 domain (in α2) 

then binds to the hydrophobic groove of another activated Bak or Bax molecule in a reciprocal 

manner to form symmetric homodimers (Figure 2, BH3:groove dimer). Evidence for symmetric 

homodimers originated from biochemical studies in mitochondria [13-15] and is supported by X-ray 

structures of the α2-α5 dimers [7, 8] and biophysical studies[12, 16-20]. 
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Together these studies support the in-plane model of a Bak dimer (Figure 3a) [11, 21]. The region in 

contact with the membrane (α2-α9) resembles an extended flexible amphipathic polypeptide 

anchored at either end with a transmembrane domain - an unusual structure for a pore-forming 

protein. Several helices may embed into the outer leaflet of the membrane, encouraged by aromatic 

residues on one surface of the α2-α5 core dimer (Figure 3b) and on one face of the α6-α8 helices 

(Figure 3c). At the N-terminus, the first 70 residues become exposed and do not re-engage with either 

membrane or protein [10, 21, 22]. Bax dimers also display aromatic residues on one surface (Figure 

3b,c) and a similar membrane topology [6, 11, 16, 19], although complete solvent exposure of the N-

terminus has not yet been shown. Thus, Bak and Bax homodimers show several features of 

antimicrobial peptides such as human LL-37 and magainin 2 (Figure 3d) that are proposed to form 

toroidal pores, rather than of the α-helical ClyA and actinoporin proteins that form more structured 

proteinaceous pores [23, 24].  

 

There are few examples of a homodimer as the building block of a pore that might provide insight 

into pore formation by Bak and Bax. One such example is the plant defensin NaD1, whose structure 

comprises seven antiparallel dimers [25]. However, unlike Bak and Bax, the NaD1 complexes are not 

promoted by major conformation change but by binding of the PIP2 phospholipid, and the oligomers 

lack transmembrane domains and flexible membrane-associated regions. Members of the colicin 

family of pore-forming proteins may also assemble as multiples of dimers to form small ring-shaped 

oligomers (~8 nm in diameter) [24, 26, 27]. Curiously, the first structure of a Bcl-2 protein, and its 

similarity to the colicins and diphtheria toxin prompted the idea that, as proposed for those proteins, 

Bak and Bax might form channels or pores by inserting a helical hairpin (α5/α6) through the 

membrane [28-30]. Notably, hairpin insertion is not consistent with the in-plane model in which α5 

remains with the α2-α5 dimer and α6 lies in-plane in the outer membrane (Figures 2-4) [11, 12]. A 

recent study proposed that Bax α2-α5 dimers can progress to α2-α3-α4 dimers after separation of α5 

to allow α5/α6 insertion [16]. However, it was not clear whether those dimers were functional [16], 

and in other studies separation of Bax α5 from α4 was not required for cytochrome c release [7]. 

Even so, further comparison of pore formation by the Bcl-2 and colicin families may prove 

informative.   

 

Dimer-dimer interactions are not via a single protein-protein interface 

It is thought that homodimers of Bak or Bax must then associate to higher order oligomers to porate 

the mitochondrial outer membrane. Such oligomers of Bak and of Bax are generated in mitochondria 

during apoptosis, as evident by gel filtration, blue native PAGE and linkage studies [31-33]. In 

addition, recombinant Bak and Bax form high order oligomers in liposome experiments (table 1). 
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High order oligomers observed biochemically, correlate with the clusters observed in early 

microscopy studies (table 1) and that are sometimes apparent at points of mitochondrial fission/fusion 

[34]. Higher resolution microscopy shows Bax and Bak complexes of various shapes and sizes in 

liposomes and mitochondria, including clusters, rings and arcs (table 1). Thus, there is strong 

correlation between high order oligomers and pore formation. Nevertheless, it is yet to be shown that 

specifically inhibiting dimer-dimer interaction blocks pore formation. 

 

While either Bak or Bax is sufficient to form pores (table 1), the two proteins locate to the same 

complexes in apoptotic cells [31, 33], suggesting that mixtures of the two proteins may be able to 

generate pores. The mixtures may include heterodimers of Bak and Bax, although heterodimers form 

only a minor population compared to homodimers [13, 35]. The low frequency of heterodimers may 

be explained by a degree of incompatibility due to the limited sequence similarity of the BH3 

domains and grooves of the two proteins. Mixtures may also include homodimers of Bak and of Bax, 

as Bax is able to intermingle with pre-formed Bak dimers [21]. If mixtures of Bak and Bax 

homodimers can actually generate pores, this would provide further evidence that protein-protein 

interactions between dimers are not important for high order oligomers or pore formation. 

 

Molecular structures of Bak or Bax as high order oligomers or pore complexes are currently not 

available. However, a range of biochemical approaches have been used to examine how activated 

Bak and Bax interact to generate pores. Most prominent have been linkage studies showing that 

homodimers can associate via interactions at α-helices 1, 3, 5, 6, and 9 [6, 12, 13, 15, 16, 19, 36-39]. 

Our initial studies showed that linkage between the α6-helices could link dimers of Bak and of Bax 

[13, 15], suggesting an α6:α6 interface may drive high order oligomers and pore formation. However, 

there was no evidence that mutations in α6 could block apoptosis [4, 40], and several groups reported 

linkage between additional regions. Thus, some or all of these linkages may be due to collisions 

rather than to stable complex formation. Flexibility of the N- and C-termini as depicted in Figure 4a, 

may allow linkage between multiple regions, and would also limit interaction between the α2-α5 core 

dimers [8, 21]. Based on the linkage pattern throughout the full-length of Bak, we recently proposed 

that dimers form disordered clusters during apoptosis (Figure 4a), and this was supported by 

mathematical simulation of linkage within the whole population of Bak dimers in the sample [21]. It 

is yet to be determined if only a small subpopulation of dimers directly participates in a pore 

complex. If so, within this subpopulation the core dimers may adopt an ordered arrangement, e.g. 

end-to-end or side-by-side.  

 

Formation of lipidic (toroidal) pores 
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Several lines of evidence indicate that Bak and Bax form lipidic rather than proteinaceous pores 

(table 1). Amphipathic peptides based on the Bak and Bax α5 and α6 helices can permeabilise 

membranes (table 1), as do amphipathic antimicrobial peptides that act via forming lipidic pores. As 

the Bak and Bax dimers resemble a flexible amphipathic polypeptide (Figure 3a), their shallow 

insertion into the outer leaflet [11, 18, 19] may destabilise the lamellar structure of the bilayer to 

induce lipidic pores. This mechanism of pore formation may be related to the “carpet” model 

proposed for antimicrobial peptides. In the Shai-Matsuzaki-Huang version of the carpet model [41-

43] peptides can disrupt membranes without disintegrating the membranes in a detergent-like manner 

[44]. The peptides insert close to the membrane surface to promote a convex curvature of the outer 

leaflet. As the peptide concentration increases, membrane defects occur, and in some cases may be 

resolved by peptide (or phospholipid) equilibrating across the bilayer. As Bak and Bax are unlikely to 

equilibrate across the bilayer due to their size and transmembrane domains, the membrane defects 

may progress to pore formation. There is evidence that pore formation is associated with lipid 

transbilayer movement [45-47]. 

 

During pore formation, parts of the dimer may line and stabilise the pore (Figure 4b)[11, 19, 48]. 

According to the clamp model (Figure 4b, right)[19] the core dimer positions roughly perpendicular 

in a circle to line the pore. Several features of this model are attractive. The length of the core dimer 

(~4 nm) is the approximate width of the MOM, and the bend observed in the structures (Bak and Bax 

α2-α5 dimers; Figure 3b) may be accommodated by the curved edge of the pore. In this position, the 

α6-α8 latch would disturb the outer and inner leaflets equally, and the core dimer could contribute a 

large surface area to stabilise the pore. In addition, the core dimers could pack tightly side-by-side 

around the pore. However, one side-by-side orientation of Bak α2-α5 dimers observed in a crystal 

structure was not supported by linkage studies in mitochondria [8, 21]. Moreover, the clamp model 

suggests that the α9 transmembrane domains become antiparallel within a dimer, presumably after 

the charged residues (e.g. RRFFKS in human Bak) at the far C-terminus of one activated molecule 

flips through the hydrophobic bilayer. While such flipping may be similar to insertion of the 

transmembrane domains of non-activated Bak (and Bax), direct evidence of antiparallel α9-helices in 

Bax or Bak oligomers is required to support this model.  

 

Heterogeneity of Bak and Bax complexes and pores 

Consistent with forming a lipidic pore, significant heterogeneity is observed in the characteristics of 

the Bak and Bax complexes and the actual pores formed by Bak and by Bax (table 1). Differences 

may be due to the levels of Bak and Bax (and prosurvival Bcl-2 proteins), lipid composition and 

diameter of the mitochondria or liposome, and even the presence or absence of the mitochondrial 

inner membrane and matrix. Detectable pores in the membrane were not always evident in the 
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clusters, suggesting that at least some clusters may form upstream or downstream of pore formation. 

Notably, Bax pore size in liposomes increased with higher protein concentration and over time [49-

52], and pore size in Xenopus laevis mitochondria increased in response to a cytosolic factor that was 

more potent in the presence of caspase inhibitors [53]. Thus, both protein and lipid appear able to 

enlarge apoptotic pores, a process that would ensure rapid cell death. It will be interesting to 

determine the role of pores that are not detectable by microscopy. Can a pore stay small, and what is 

the composition of such a "minimal" pore? Are there multiple small pores in a mitochondrion, 

perhaps even in a single cluster? Might a single small pore in each mitochondrion be sufficient for 

apoptosis? Answers to these questions may help to regulate apoptosis at the step of pore formation, 

including reversing the process. 

 

Concluding remarks 

Increasing evidence indicates that symmetric homodimers of Bak and of Bax form the structural 

building block of the apoptotic pore. As there is a strong correlation of higher order oligomers with 

pore formation, it is important to understand how symmetric dimers can form these oligomers. 

Within each dimer, the N-terminus is solvent-exposed and flexible, implicating the membrane-

associated regions (α2-α9) in driving pore formation. Flexibility of the latch (α6-α9) implies several 

arrangements of dimers may occur and contribute to the heterogeneity of clusters and pores observed. 

Notably, insertion of the core and latch into the outer leaflet may remodel the bilayer to form a small 

lipidic pore, which may then grow considerably. Obtaining structures of small apoptotic pores may 

yet be possible, and their formation may be the key to understanding how this central step of cell 

death might be regulated. 
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Table 1. Heterogeneity of Bak and Bax complexes and pores. 

AFM, Atomic Force Microscopy; CD, Circular Dichroism; Cryo-EM, Cryo-Electron Microscopy; ∆C, C-terminally truncated; FCS, Fluorescence Correlation 
Spectroscopy; GUV, Giant Unilamellar Vesicles; IVT, In Vitro Translated; LUV, Large Unilamellar Vesicles; OG, Octyl Glucoside; OMV, Outer Membrane 

Vesicles; PALM, Photo-activated Localisation Microscopy; TEM, Transmission Electron Microscopy; TIRF, Total Internal Reflection Fluorescence 

Microscopy; SMLM, Single Molecule Localisation Microscopy; STED, Stimulated Emission Depletion microscopy. 
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Planar bilayer 

AFM  

CD spectroscopy           

Confocal 

X-ray diffraction 

Toroidal pores of diameter ~5.8 nm  

Decreased membrane line tension at pore rim 

Lipids with positive intrinsic curvature enhance pore formation 

Lipid transbilayer redistribution activity for Bax α5 

 

Garcia-Saez 

2005, 2006, 
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Qian 2008  
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ro
te

in
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Bax∆C 
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Liposome 

Planar bilayer  

Patch clamping  
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Bax forms pH dependent ion-conduction channels/pores  
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Antonsson 1997  

Schlesinger 1997 

Saito 2000   
[50, 57, 58]                                    

Bax∆C 

IVT-Bax 

Bax (bovine) 
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Membrane lifetime 

measurements 
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Landeta 2011 
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Figure 1. 

Bcl-2 proteins regulate the mitochondrial pathway of apoptotic cell death. (a) Three subfamilies of 

Bcl-2 proteins. (b) Bak and Bax activation by the BH3-only proteins is followed by their 

oligomerisation in the mitochondrial outer membrane to release cytochrome c and induce 

apoptosis. 

Figure 2. 

Bak activation and conformation change results in symmetric homodimers. A schematic showing 

that Bak unfolds by the N-terminus (α1, blue) and the C-terminal latch (α6-α8, magenta) 

separating from the α2-α5 core (orange, red). Hydrophobic regions of the core and latch then 

collapse onto the membrane, while the exposed BH3 domain (in α2) binds to the hydrophobic 

groove in another activated Bak molecule. Reciprocal BH3:groove binding results in symmetric 

homodimers. The indicated crystal structures demonstrate the major conformation changes 

involved. Equivalent changes are observed for Bax.  

Figure 3. 

Membrane topology of the Bak dimer. (a) The in-plane model of the Bak dimer. The N-terminal 

regions become solvent-exposed while the remainder of the Bak dimer resembles a flexible 

extended amphipathic polypeptide that lies in-plane with the membrane, anchored at either end by 

transmembrane domains. Note that α1 may unfold after it dissociates, decreasing the 

hydrophobicity of the BH4 structural motif (VFrsYV) therein [10, 72]. Images were assembled in 

PyMol using the structures of Bak (2IMT) and the Bak dimer (4U2V), and represented as cartoon 

and mesh. Colour coding as in Figure 2. (b) Aromatic residues are concentrated on the bent surface 

of the Bak and Bax α2-α5 core dimers. (c) Aromatic residues can position on one edge of the 

flexible α6-α8 latch. (d) Examples of antimicrobial peptides thought to form lipidic pores, with 

aromatic residues indicated. 

Figure 4. 

Possible mechanisms involved in lipidic pore formation and stabilisation by homodimers of Bak or 

Bax. (a) Schematic of Bak dimers forming disordered clusters on the mitochondrial outer 

membrane, encouraged by flexibility of the α6-α8 latch. Note that end-to-end or side-by-side 

contact between the core regions is possible. Images were assembled as in Fig. 3a. (b) Parts of the 

dimer may line a lipidic pore. The flexible amphipathic latch may slide into a nascent pore to 

partially line and stabilise the pore (left; in-plane model [4]). The amphipathic core dimer (α2-α5) 

may also line the pore generating anti-parallel α9-helices (right; clamp model [19]). 
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Figure 4  
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