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Summary: 
High-resolution protein structures determined by X-ray crystallography or NMR have 
proven invaluable for deciphering the molecular mechanisms underlying the function 
of a vast range of proteins. Here we describe methods to generate complexes of 
proteins belonging to the Bcl-2 family of proteins with either biological ligands or 
small molecule antagonists.   

1. Introduction:
Members of the Bcl-2 family of proteins fall into two opposing factions, the pro-
survival group and the pro-apoptotic group (Figure 1). The interplay between
members of these rival family factions ultimately determines cellular fate, and
structural insights into these interactions have led to a wealth of information into Bcl-
2 mediated signalling and its role in disease (see e.g. [1]). Despite substantial
unresolved challenges in the preparation of complexes of full-length Bcl-2 constructs,
mechanisms of action governing the biology of these proteins are increasingly well
understood. These advances have relied heavily on the structural analysis of protein
complexes of the various family members bound to relevant partners.

The first structural analysis of a Bcl-2 family protein complex was achieved using 
NMR, and revealed in detail the interactions between Bcl-xL and a short 16 mer 
peptide spanning the BH3 domain of the pro-apoptotic executioner molecule Bak [2] 
(Table 1, Figure 2). The interaction was mediated through hydrophobic interactions 
between the amphipathic BH3 helix and a groove on the surface of the pro-survival 
protein, a salt bridge between a conserved Aspartate on the BH3 peptide and a 
conserved Arginine on the pro-survival protein was also observed. Subsequent 
structural analyses were informed by the realization that 26-mer peptides of BH3 
domains of pro-apoptotic BH3-only proteins faithfully recapitulate key aspects of 
these interactions [3]. This work also provided the first insights into the specificity of 
interactions occurring between different family members (Figure 1). Structures for a 
large number of various complexes have now been solved (Table 1).  

A number of complexes have also now been solved for pro-survival proteins in 
complex with peptides corresponding to the BH3 regions of the Bax-like executioner 



proteins (Table 1). However, the absence of a structure of a full-length mammalian 
pro-survival Bcl-2 protein bound to a Bax-like protein is hampering a complete 
understanding of the intricacies of pro-survival Bcl-2 mediated regulation of Bax and 
Bak. Nonetheless, the structure determination of a full-length complex of CED9 
bound to CED4, two key regulators of intrinsic apoptosis in the worm C. elegans [4], 
suggests that these challenges are not insurmountable. More recently structures 
have also been solved for complexes of Bax bound to activating BH3-only proteins, 
providing insight into the initiation of Bax conformational change, and of Bax and Bak 
dimers, providing insight into the ensuing oligomerisation of these proteins (Table 1).  
 
Here we will focus on methods and strategies related to the analysis of Bcl-2 family 
protein complexes with crystallography. However, it should be noted that other 
structural and biophysical techniques have contributed greatly to our understanding 
of Bcl-2 family protein structure, function and drug discovery including NMR (eg [2,5]), 
Fluorescence Resonance Energy Transfer (FRET)(eg [6]), Double Electron-Electron 
Resonance spectroscopy (DEER)(eg [7]) and chemical cross linking (eg [8]).		
 
Preparation of pro-survival protein:peptide complexes for crystallization 
Preparation of complexes of pro-survival proteins bound to peptides of their pro-
apoptotic counterparts has led to important insights into Bcl-2 mediated signalling 
and its role in disease. In this example we demonstrate how to prepare a complex of 
vaccinia virus F1L with the human Bim BH3 domain peptide. This method has been 
successfully used to prepare complexes for crystallisation trials of pro-survival Bcl-2 
proteins bound to BH3 domain peptides with affinities ranging from the 1 nM to 7 µM 
[9,10]. Final concentrations for crystallization experiments may vary depending on 
the sample.  
 
2 Materials 
Recombinant pro-survival protein (eg.. vaccinia virus F1L protein, Bcl-xL, etc) purified 
to homogeneity in final sample buffer (e.g. 25 mM Hepes pH 7.5, 150 mM NaCl). 
Synthetic BH3 domain peptide (e.g. Bim BH3, Uniprot accession code O43521-3, 
residues 51-77, Genscript) dissolved in H2O. Centrifugal concentrator (MWCO 10 
kDa, Merck Millipore).  
 
3 Methods 

1. Wash a 5 mL centrifugal concentrator with 5 mL of final sample buffer by 
centrifugation.  

2. Add 1 mg of pro-survival protein in final sample buffer, and top up with 
additional buffer to a final volume of 4 mL.  

3. Aspirate a 1.25 molar excess of BH3 domain peptide. 
4. Slowly add peptide to centrifugal concentrator whilst stirring with pipette to 

avoid local precipitation of sample.  
5. Concentrate sample to a final concentration of 5 mg/mL of pro-survival protein.  
6. Top up sample with additional buffer to a final volume of 4 mL.  
7. Concentrate sample to a final concentration of 5 mg/mL of pro-survival protein. 

Final concentrations for crystallization experiments may vary with each 
sample.  

 



 
 
 
 
4. Notes 
 
4.1 Crystallization of Bcl-2:peptide complexes expressed as single-chain 
constructs with cleavable linkers 
An alternative method of producing complexes of pro-survival protein bound to BH3 
domain peptides is to express both as a single chain construct with a protease 
cleavable linker [11]. It has been found in some cases that this aids the expression of 
the pro-survival protein and ensures complete saturation of all available binding sites. 
The constructs consisted of a C-terminally truncated form of the pro-survival protein 
linked to human Bims BH3 peptide via a (GS) linker. This enables the Bcl-2 
hydrophobic groove to be fully occupied with the native ligand. The final expression 
construct thus consists of: 6His-x-Bcl-2ΔC-x-(GS)9-x-Bim-BH3 (where -x- represents 
a TEV cleavage site ENLYFQGS). Following initial affinity purification TEV-
cleaveable linkers are cleaved via incubation with TEV protease, followed by re-
application of cleaved sample to affinity resin to remove uncleaved protein and 
purification tag. The final sample can then be concentrated for crystallization.  
 
4.2 Crystallization of Bcl-2 family members with organic molecules 
Preparation of complexes of pro-survival proteins with small molecules for 
crystallization can often be achieved using similar methods to those described above 
for pro-survival:BH3 domain peptide complexes (Table 2). However, an added 
difficulty with small molecules is that the ligands are usually dissolved in DMSO 
which can sometimes hinder crystallization. Furthermore, small molecules often have 
significantly reduced affinity for their target proteins as compared to wild type BH3-
only proteins. In the preparation of such samples DMSO is most efficiently removed 
from sample mixtures of protein and ligand through buffer exchange, but for low 
affinity targets this might also result in loss of compound. One approach to minimize 
such loss is to add a molar excess of compound to protein at high concentrations in 
small volumes and then to dilute these samples to a final DMSO concentration of 1% 
(or lower), followed by concentration using low molecular weight centrifugal filters 
back to the desired final molarity. Using this strategy the solubility of the compound 
in solution is reduced during the dilution step thereby minimising the rate of ligand 
dissociation during the purification step.   
 
4.3 Enhancing crystallization of Bcl-2 family proteins 
As with all attempts at protein crystallization there are a variety of different strategies 
to obtain diffracting crystals of target proteins [12]. Routinely initial crystallization 
trials are performed with a desired construct in a large number of crystallization 
conditions, and sometimes at a range of protein concentrations, in order to find 
conditions in which the protein is enticed towards formation of a crystal rather than 
precipitation. However, often crystallization conditions for target constructs are not 
forthcoming despite extensive screening and in these situations alternative construct 
strategies are often tried. In the case of the Bcl-2 family of proteins a range of 
different construct design strategies have been successful as follows. 



 
4.4 Constructs from different species 
A common strategy for obtaining diffracting crystals of difficult targets is to attempt to 
crystallize the protein of interest from different species. Structures of Bcl-2 family 
proteins from a variety of different species have been crystallized (Tables 1 and 2) 
and in some cases chimeric constructs consisting of sequence from two different 
species have proved useful ([13]). Naturally for drug discovery programs it is usually 
desirable to use human constructs and so for these projects alternative strategies for 
enabling crystallization may be pursued. 
 
4.5 Fusion Tags 
One method by which crystallization can be enhanced is through the use of protein 
fusion partners. These can act to both aid with protein solubility and may also 
provide extra opportunities for the formation of crystal contacts upon which a crystals 
lattice can build. One recent notable success has been achieved with a Maltose 
Binding Protein (MBP) fusion with Mcl-1 [14]. This construct provided the first crystal 
structure for apo Mcl-1 and enabled ligand bound Mcl-1 structures to be obtained 
through both soaking of compounds into the apo crystals and through co-
crystallization of compound and protein. Fusion partners have also enabled the 
crystallization of truncated constructs of Bax and Bak that reveal details for the initial 
steps of dimerization. For example, it was recently discovered that one of the 
conformational changes occurring to these proteins upon activation includes 
separation into “core” (α2-α5 and possibly including 1) and “latch” (α6-α7) domains 
[15,16]. Fusion of GFP to the “core” domains of these proteins [17] enabled their 
expression and crystallization and revealed the atomic details of the dimer units 
upon which the larger Bax and Bak oligomers build [18,8]. 
 
4.6 Alternative constructs 
Often it proves useful to make truncations or modifications to constructs in order to 
enable proteins to be expressed, purified and/or crystallized. The vast majority of 
Bcl-2 constructs used for structural studies have lacked the C-terminal trans-
membrane domain (α9 helix), primarily because it is difficult to produce sufficient 
quantities of soluble protein containing this highly hydrophobic region. Bax, however, 
is a notable exception as it can be can be expressed as a full-length protein in 
relatively high quantities [19]. Expression and purification of full length constructs for 
Bak [20],	Bcl-xL [21] and Bcl-w [22] have also been reported, however, these have 
not been used in structural studies. Another region of the Bcl-2 family fold that is 
often modified is the loop between the α1 and α2 helices. This segment is large and 
unstructured in most family members and is thus often either shortened (eg Bcl-xL 
Δ45-84 [23]), or replaced with the shorter loop from another family member (eg the 
Bcl-2 loop being replaced with sequence from Bcl- xL [24]. A particularly useful 
construct for crystallization has been Bcl-xL in which the α1-α2 loop is dramatically 
shortened (lacking residues 27 to 82) such that the α1 cannot fold correctly with the 
remainder of the protein. Instead this constructs forms a domain swap dimer, with 
the α1 of one monomer folding into its neighbor to complete the Bcl-2 fold [25,26]. 
These dimers readily produce crystals in a number of different crystal forms and thus 
have proven extremely fruitful for drug discovery (eg [27-30]). Similarly, a domain 
swapped dimer version of Bax, in which the α6-α8 “latch” region swaps with a 



neighbor, has been useful for solving structures of Bax bound to activator BH3 
domains (Figure 2)[16,31]. One possible reason for enhanced crystallization of these 
dimer constructs is that the dimerization interface provides a point of symmetry on 
which the crystal can build. In a similar manner, in the first structure solved of Bcl-xL 
bound to a compound within the benzoylurea series (Bcl-xL:1HI from PDB code 3ZK6 
– [28]), the compound itself dimerizes between 2 proteins across a 2-fold axis within 
the crystal, this may have similarly enhanced the crystallization of this low affinity 
inhibitor complex. Notably, however, the compound did not dimerize Bcl-xL in gel 
filtration experiments and so may only act within the crystal or at the high 
concentrations of protein found within the crystallization drop.  
 
4.7 Concluding remarks: 
Table 1 demonstrates that an enormous collection of structures of Bcl-2 family 
protein complexes has now been accumulated. These structures have informed our 
understanding of the molecular mechanisms controlling apoptosis and guided the 
development of inhibitors targeting these proteins. However, the family portrait is by 
no means complete. We are yet to determine a structure of a pro-survival protein in 
complex with a full-length Bax-like executioner protein and there are a large number 
of viral derived family members for which structures have not yet been solved. Such 
structures are likely to offer further insights into the molecular interactions governing 
these pathways and may provide new strategies for targeting them for novel 
therapeutic outcomes. 
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Figure 1: Bcl-2 family members and interactions. (A) The Bcl-2 protein family 
consists of two opposing groups, the pro-survival proteins and the pro-apoptotic 
proteins. The pro-apoptotic members can be further subdivided into the BH3-only 
proteins, whose role is to initiate death signalling, and the executioner proteins Bax 
and Bak (and possibly Bok) that are responsible for mitochondrial outer membrane 
permeabilisation (MOMP), a point of no return in the death signalling pathway. (B) 
Apoptotic signalling is initiated through the upregulation of BH3-only proteins. These 
inhibit the activity of the pro-survival proteins and can directly interact with and 
activate the executioner proteins. Pro-survival proteins inhibit activated executioners 
by binding to their BH3 domains, and possibly other regions, to prevent 
oligomerisation. An excess of BH3-only proteins competes for this interaction, 
releasing activated Bax-like proteins so that they can oligomerise and initiate MOMP. 
(C) Some BH3-only proteins, such as Bim, Puma and Bid, interact with the full suite 
of pro-survival proteins whereas others, such as Bad and Noxa, interact with only a 
subset [32,3,33]. (D) Bak is primarily inhibited by Bcl-xL, Mcl-1 and A1 [34], Bax is 
most likely inhibited by the full range of pro-survival proteins [35].  
 
 



Figure 2: a) Structure of Bcl-xL with Bim [36]. B) Structure of BHRF1 with Bak BH3 
[37]. D) Crystal structure of ABT-737 bound to Bcl-xL [38]. D) Structure of Bid BH3 
bound to Bax [16]. 
 
 
Table 1: PDB entries of Bcl-2 family member complexes. 
 
Protein	complex	 Species	 PDB	code	 Method	 Reference	
Bcl-xL:Bak	BH3	 Human	 1BXL	 NMR	 [39]	
Bcl-xL:Bad	BH3	 Human	 1G5J	 NMR	 [40]	
Bcl-xL:Bim	 Mouse	 1PQ1	 X-ray	 [36]	
CED9:EGL-1	BH3	 C.	elegans	 1TY4	 X-ray	 [41]	
CED4:CED9	 C.	elegans	 2A5Y	 X-ray	 [4]	
Bcl-w:Bid	BH3	 Human	 1ZY3	 NMR	 [42]	
Bcl-xL:Beclin-1	BH3	 Human	 2P1L	 X-ray	 [25]	
M11L:Bak	BH3	 Myxoma	virus/Human	 2JBY	 X-ray	 [43]	
Mcl-1:Bim	BH3	 Human/Rat	 2NL9	 X-ray	 [13]	
Mcl-1:mNoxaB	BH3	 Human/Rat	 2NLA	 X-ray	 [13]	
Mcl-1:mNoxaB	BH3	 Mouse	 2JM6	 NMR	 [13]	
Bax:BimSAHB	 Human	 2K7W	 NMR	 [44]	
Bcl-xL:Beclin-1	BH3	 Human	 2PON	 NMR	 [45]	
A1/Bfl-1:Bim	BH3	 Human	 2VM6	 X-ray	 [46]	
Bcl-xL:Bad	BH3	 Mouse	 2BZW	 X-ray	 [47]	
M11:Beclin-1	BH3	 mγHV68/Mouse	 3BL2	 X-ray	 [47]	
A1/Bfl-1:Puma	BH3	 Mouse	 2VOF	 X-ray	 [48]	
A1/Bfl-1:Bmf	BH3	 Mouse	 2VOG	 X-ray	 [48]	
A1/Bfl-1:Bak	BH3	 Mouse	 2VOH	 X-ray	 [48]	
A1/Bfl-1:Bid	BH3	 Mouse	 2VOI	 X-ray	 [48]	
Mcl-1:Puma	BH3	 Mouse	 2ROC	 NMR	 [49]	
Mcl-1:mNoxaA	BH3	 Mouse	 2ROD	 NMR	 [49]	
Mcl-1:mutBim	BH3	 Human/Mouse	 3D7V	 X-ray	 [50]	
BHRF1:Bim	BH3	 EBV/Human	 2V6Q	 X-ray	 [37]	
BHRF1:Bak	BH3	 EBV/Human	 2XPX	 X-ray	 [37]	
M11:Beclin-1	BH3	 mγHV68/Mouse	 3DVU	 X-ray	 [51]	
Bcl-xL:Foldamer	 Human	 3FDM	 X-ray	 [52]	
Bcl-xL:BimBH3	 Human	 3FDL	 x-ray	 [52]	
Bcl-xL:BimBH3L12F	 Human	 3IO8	 X-ray	 [27]	
Mcl-1:BimL12Y	 Human/Rat	 3IO9	 X-ray	 [27]	
Mcl-1:Bim	BH3	 Human	 2PQK	 X-ray	 [53]	
Mcl-1:Bim	BH3	 Human	 2PQK	 X-ray	 [53]	
Mcl-1:BimI2dY	BH3	 Human	 3KJ0	 X-ray	 [53]	
Mcl-1:BimI2dA	BH3	 Human	 3KJ1	 X-ray	 [53]	
Mcl-1:BimF4aE	BH3	 Human	 3KJ2	 X-ray	 [53]	
Mcl-1:Bid	BH3	 Human	 2KBW	 NMR	 [54]	
Mcl-1:Mcl-1	BH3	 Human	 3MK8	 X-ray	 [55]	
Mcl-1:MB7	 Human	 3KZ0	 X-ray	 [56]	
Bcl-2:Bak	BH3	 Human	 2XA0	 X-ray	 [57]	
Mcl-1:Bax	BH3	 Human	 3PK1	 X-ray	 [58]	
Bcl-xL:Bax	BH3	 Human	 3PL7	 X-ray	 [58]	
sJA:Bak		BH3	 Schistosome/Human	 3QBR	 X-ray	 [59]	
Bcl-xL:Soul	BH3	 Human	 3R85	 X-ray	 [60]	
Bcl-xL:Puma	Foldamer	 Human	 2YJ1	 X-ray	 [61]	
Bax:vMIA	 Human/CMV	 2LR1	 NMR	 [62]	
Bcl-xL:αβ	foldamer	4C	 Human	 4A1W	 X-ray	 [63]	
Bcl-xL:αβ	foldamer	2C	 Human	 4A1U	 X-ray	 [63]	
Bcl-b:Bim	BH3	 Human	 4B4S	 X-ray	 [11]	
A1/Bfl-1:Bid	BH3	 Human	 4ZEQ	 X-ray	 Not	published	
A1/Bfl-1:Bak	BH3	 Human	 3I1H	 X-ray	 Not	published	
A1/Bfl-1:Noxa	BH3	 Human	 3MQP	 X-ray	 Not	published	
Mcl-1:αβPuma2	 Human	 4BPI	 X-ray	 [64]	
Mcl-1:αβPuma3	 Human	 4BPJ	 X-ray	 [64]	
Mcl-1:αβPuma5	 Human	 4BPK	 X-ray	 [64]	
Bcl-xL:BimLOCK	BH3	 Human	 2YQ7	 X-ray	 [65]	
Bcl-xL:BimSAHB	BH3	 Human	 2YQ6	 X-ray	 [65]	



Bcl-xL:Puma	BH3	 Human	 4HNJ	 X-ray	 [66]	
Bcl-xL:Puma	BH3	 Human	 2M04	 NMR	 [66]	
Bax:Bid	BH3	 Human	 4BD2	 X-ray	 [16]	
Bax:Bax	BH3	 Human	 4BD6	 X-ray	 [16]	
Bax	BH3-inGroove	dimer	 Human	 4BDU	 X-ray	 [16]	
Bak:Bid	SAHB	BH3	 Human	 2M5B	 NMR	 [67]	
Mcl-1:Mcl-1BH3	 Human	 4HW4	 X-ray	 [68]	
Bcl-w:Bcl-w	BH3	 Human	 4CIM	 X-ray	 [69]	
Bcl-xL:Bcl-xL	BH3	 Human	 4CIN	 X-ray	 [69]	
BHRF1:BINDI	 EBV	 4OYD	 X-ray	 [70]	
Bak	BH3-in-Groove	dimer	 Human	 4U2V	 X-ray	 [15]	
F1L:Bim	BH3	 Vaccinia	virus/Human	 4D2M	 X-ray	 [10]	
F1L:Bak	BH3	 Vaccinia	virus/Human	 4D2L	 X-ray	 [10]	
Bcl-xL:p53	 Human	 2MEJ	 NMR	 [71]	
DPV022:Bim	BH3	 Deerpoxvirus/Human	 4UF3	 X-ray	 [9]	
DPV022:Bak	BH3	 Deerpoxvirus/Human	 4UF1	 X-ray	 [9]	
DPV022:Bax	BH3	 Deerpoxvirus/Human	 4UF2	 X-ray	 [9]	
F1L:Bid	BH3	 Variola	virus/Human	 5AJJ	 X-ray	 [72]	
F1L:Bak	BH3	 Variola	virus/Human	 5AJK	 X-ray	 [72]	
Bcl-xL:Bid	BH3	 Human	 4QVE	 X-ray	 [73]	
Bcl-xL:Bim	BH3	 Human	 4QVF	 X-ray	 [73]	
Bax:Bim	BH3mini	 Human	 4ZIF	 X-ray	 [31]	
Bax:Bim	BH3mini	 Human	 4ZIH	 X-ray	 [31]	
Bax:Bim	BH3	 Human	 4ZIE	 X-ray	 [31]	
Bax:Bid	BH3mini	 Human	 4ZIG	 X-ray	 [31]	
BaxI66A:Bid	BH3	 Human	 4ZII	 X-ray	 [31]	
Bcl-xL:BimBH3	with	AKT	site	 Human	 4YJ4	 X-ray	 [74]	

 
Table 2: PDB entries of Bcl-2 family members in complex with compounds. Three 
letter codes from the PDB entries are used to describe ligands unless a specific 
name for the compound has been published. 
 
Protein:Drug	complex	 Species	 PDB	code	 Method	 Reference	
Bcl-xL:N3B	 Human	 1YSI	 NMR	 [5]	
Bcl-xL:4FC/TN1	 Human	 1YSG	 NMR	 [5]	
Bcl-xL:43B	 Human	 1YSN	 NMR	 [5]	
Bcl-2:43B	 Human	 1YSW	 NMR	 [5]	
Bcl-xL:43B	 Human	 2O1Y	 NMR	 [75]	
Bcl-2:43B	 Human	 2O21	 NMR	 [75]	
Bcl-2:LIU	 Human	 2O22	 NMR	 [75]	
Bcl-2:LI0	 Human	 2O2F	 NMR	 [75]	
Bcl-xL:LI0	 Human	 2O2M	 NMR	 [75]	
Bcl-xL:LIW	 Human	 2O2N	 NMR	 [75]	
Bcl-xL:ABT-737	 Human	 2YXJ	 X-ray	 [38]	
Bcl-2:DRO	 Human	 2W3L	 X-ray	 [76]	
Bcl-xL:W1191542	 Human	 3INQ	 X-ray	 [27]	
Bcl-xL:HI0	 Human	 3QKD	 X-ray	 [77]	
Bcl-2:398	 Human	 4AQ3	 X-ray	 [78]	
Bcl-xL:0Q5	 Human	 4EHR	 X-ray	 [79]	
Bcl-xL:B50	 Human	 3SPF	 X-ray	 [80]	
Bcl-xL:03B	 Human	 3SP7	 X-ray	 [80]	
Bcl-xL:33B	 Human	 2LP8	 NMR	 [81]	
Mcl-1:PRD_000921	 Human	 4G35	 X-ray	 [82]	
Bcl-xL:WEHI-539	 Human	 3ZLR	 X-ray	 [28]	
Bcl-xL:1HI	 Human	 3ZK6	 X-ray	 [28]	
Bcl-xL:H0Y	 Human	 3ZLN	 X-ray	 [28]	
Bcl-xL:X8U	 Human	 3ZLO	 X-ray	 [28]	
Bcl-2:1E9	 Human	 4IEH	 X-ray	 [83]	
Mcl-1:19H	 Human	 4HW2	 X-ray	 [68]	
Mcl-1:19G	 Human	 4HW3	 X-ray	 [68]	
Bcl-2:ABT-263	 Human	 4LVT	 X-ray	 [84]	
Bcl-2:1XV	 Human	 4LXD	 X-ray	 [84]	
Bcl-2:1Y1	 Human	 4MAN	 X-ray	 [84]	
Mcl-1:LC3	 Human	 3WIX	 X-ray	 [85]	
Mcl-1:LC6	 Human	 3WIY	 X-ray	 [85]	



Bcl-xL:LC6	 Human	 3WIZ	 X-ray	 [85]	
Bcl-xL:X0R	 Human	 4C5D	 X-ray	 [29]	
Bcl-xL:X0D	 Human	 4C52	 X-ray	 [29]	
Mcl-1:2UU	 Human	 4OQ5	 X-ray	 [86]	
Mcl-1:2UV	 Human	 4OQ6	 X-ray	 [86]	
Bcl-w:013_D12	 Bos	Taurus	 4K5A	 X-ray	 [87]	
Bcl-w:UNP	 Bos	Taurus	 4K5B	 X-ray	 [87]	
Bcl-xL:38H	 Human	 4TUH	 X-ray	 [88]	
Mcl-1:3M6	 Human	 4WGI	 X-ray	 [89]	
Bcl-xL:3CQ	 Human	 4QVX	 X-ray	 [30]	
Mcl-1:4M7	 Human	 4ZBF	 X-ray	 [90]	
Mcl-1:4M6	 Human	 4ZBI	 X-ray	 [90]	
Mcl-1:BRDI1	 Human	 4WMR	 X-ray	 [14]	
Mcl-1:865	 Human	 4WMT	 X-ray	 [14]	
Mcl-1:19H	 Human	 4WMU	 X-ray	 [14]	
Mcl-1:BRDI3	 Human	 4WMV	 X-ray	 [14]	
Mcl-1:BRDI4	 Human	 4WMW	 X-ray	 [14]	
Mcl-1:BRDI5	 Human	 4WMX	 X-ray	 [14]	
Mcl-1:BRDI6	 Human	 4WMY	 X-ray	 [14]	
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