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Epistatic interactions between mutations of TACI
(TNFRSF13B) and TCF3 result in a severe primary
immunodeficiency disorder and systemic lupus
erythematosus

Rohan Ameratunga1,2, Wikke Koopmans1,11, See-Tarn Woon1,11, Euphemia Leung3,11, Klaus Lehnert4,11,
Charlotte A Slade5,6,7, Jessica C Tempany5,6, Anselm Enders8, Richard Steele1, Peter Browett9,10,
Philip D Hodgkin5,6 and Vanessa L Bryant5,6,7

Common variable immunodeficiency disorders (CVID) are a group of primary immunodeficiencies where monogenetic causes

account for only a fraction of cases. On this evidence, CVID is potentially polygenic and epistatic although there are, as yet,

no examples to support this hypothesis. We have identified a non-consanguineous family, who carry the C104R (c.310T4C)

mutation of the Transmembrane Activator Calcium-modulator and cyclophilin ligand Interactor (TACI, TNFRSF13B) gene.
Variants in TNFRSF13B/TACI are identified in up to 10% of CVID patients, and are associated with, but not solely causative of

CVID. The proband is heterozygous for the TNFRSF13B/TACI C104R mutation and meets the Ameratunga et al. diagnostic
criteria for CVID and the American College of Rheumatology criteria for systemic lupus erythematosus (SLE). Her son has type 1

diabetes, arthritis, reduced IgG levels and IgA deficiency, but has not inherited the TNFRSF13B/TACI mutation. Her brother,

homozygous for the TNFRSF13B/TACI mutation, is in good health despite profound hypogammaglobulinemia and mild

cytopenias. We hypothesised that a second unidentified mutation contributed to the symptomatic phenotype of the proband and

her son. Whole-exome sequencing of the family revealed a de novo nonsense mutation (T168fsX191) in the Transcription Factor

3 (TCF3) gene encoding the E2A transcription factors, present only in the proband and her son. We demonstrate mutations of

TNFRSF13B/TACI impair immunoglobulin isotype switching and antibody production predominantly via T-cell-independent

signalling, while mutations of TCF3 impair both T-cell-dependent and -independent pathways of B-cell activation and

differentiation. We conclude that epistatic interactions between mutations of the TNFRSF13B/TACI and TCF3 signalling

networks lead to the severe CVID-like disorder and SLE in the proband.
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Common variable immunodeficiency disorders (CVID) are a hetero-
geneous group of conditions characterised by defective antibody
production associated with frequent infections, autoimmunity, chronic
inflammation and malignancy.1 The dominant feature is late onset
antibody failure resulting in immune system failure.2 The genetic basis
of CVID is currently being studied and is proving complex. Over 12
monogenic defects causing CVID-like disorders have been
identified,3–7 most which appear to directly impair B-cell function.
Currently if a single causative mutation is identified, by definition such
patients are reclassified with a specific molecular diagnosis, for

example, NFκB1-deficiency (OMIM CVID12)6,7 and are deemed to
have CVID-like disorders. Identification of the genetic basis of primary
immunodeficiency disorders has many clinical advantages9,10 includ-
ing accurate, early diagnosis of mildly symptomatic individuals or
those with atypical presentations. This may prompt timely interven-
tions including immunoglobulin (Ig) replacement, to reduce disabling
sequelae. If the causative gene defect has been identified in a family,
it will allow genetic counselling as well as preimplantation genetic
diagnosis, prenatal diagnosis using chorionic villus sampling or
amniocentesis.8,9
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In contrast, mutations in other genes such as TNFRSF13B, which
encodes Transmembrane Activator Calcium Modulator and Cyclo-
philin Ligand Interactor (TACI), MutS homolog 5 (MSH5) and
TNFRSF13C, which encodes B-cell activating factor receptor (BAFFR),
predispose to, but do not solely underlie CVID. Mutations of
TNFRSF13B/TACI are also found in healthy individuals, albeit at
lower frequency than in CVID cohorts: the frequency of normal
individuals carrying the C104R variant (0.8%) is higher than the
prevalence of disease (0.002%).10 This suggests either these mutations
of TACI are clinically inconsequential in many cases, or there are other
additional unknown genetic defects in symptomatic patients that
contribute to the disease phenotype.11,12

Here, we report the first example of digenic inheritance leading to a
severe CVID-like disorder and autoimmunity, as a result of epistasis.
Epistasis, where two or more genetic loci interact to produce novel
phenotypes was first predicted over one hundred years ago. However,
its existence in humans has been highly controversial because of the
scarcity of well-characterised examples.13–15 In this report, super-
imposition of a de novo Transcription Factor 3 (TCF3) mutation in a
family already carrying a C104R (c.310T4C) mutation of the TACI
gene causes a severe CVID-like disorder and systemic lupus erythe-
matosus (SLE) in the proband. Her symptomatic son, who has
inherited only the TCF3 mutation, but not the TACI gene mutation,
has type 1 diabetes (T1D), synovitis, reduced IgG levels and IgA
deficiency. Other family members, carrying only the TACI mutation,
in heterozygous or homozygous form, are either in good health or
only present with mild clinical symptoms. Our studies indicate the
TCF3 mutation has a much greater clinical impact than the
TNFRSF13B/TACI mutation on disease severity and expression of
both mutations in the proband results in a severe disorder. The
phenotypic pattern of the immunodeficiency and autoimmune disease
in this family exemplifies how digenic inheritance can lead to clinical
and genetic epistasis in humans.16

RESULTS

Clinical presentation of index patient
The proband (II.2), aged 61 years presented with symptomatic
hypogammaglobulinemia in her teenage years and was diagnosed
with CVID at age 33 (Table 1, Figures 1a and b). She was initially
treated with intravenous immunoglobulin, but later changed to
subcutaneous immunoglobulin treatment. She has had two episodes
of meningitis while receiving immunoglobulin and has chronic
diarrhoea. Despite several functional endoscopic sinus surgical
procedures, she continues to suffer recurrent upper respiratory tract
infections. She is on thyroxine replacement for Hashimoto’s thyroiditis
and also meets the American College of Rheumatology (ACR) criteria
for SLE. She has cytopenias, antinuclear antibodies, rashes, oral ulcers,
nasal ulcers and arthritis.

Clinical features and segregation of the TNFRSF13B/TACI C104R
mutation in the kindred
The proband was shown to be heterozygous for the C104R
(c.310T4C) mutation of the TNFRSF13B/TACI gene in a previous
study.12 Her non-consanguineous parents (I.1 and I.2), in their ninth
and tenth decades, are both heterozygous for the C104R mutation
(Figure 1a). They have mild symptomatic hypogammaglobulinemia
and thrombocytopenia, but are in otherwise reasonable physical
health.12 Both the proband’s male siblings carry the C104R mutation
and are well. Both have mild cytopenias (Table 1). One brother is
heterozygous (II.3) and the other (II.4) is homozygous for the
TNFRSF13B/TACI C104R mutation.12 Given his asymptomatic status,T
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the proband’s brother with the TACI C104R homozygous mutation
(II.4) does not meet the Ameratunga et al.17 criteria for probable
CVID; he has normal, albeit transient vaccine challenge responses
despite being profoundly hypogammaglobulinemic (IgG 1.6 g l− 1,

NR 7–14; Table 1).12,18 He has declined immunoglobulin replacement
and remains in excellent health.
Neither of the proband’s children carry the TACI C104R mutation

(Figure 1b, Table 1). The proband’s daughter (III.2) is in good health.
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*

Figure 1 Novel de novo TCF3 mutation discovered in a CVID family carrying C104R TACI variant. (a) Digenic inheritance of TNFRSF13B (c.310T4C,
C104R TACI) and TCF3 (T168fx191) mutations in a three-generation New Zealand family. Whole-exome sequencing was performed on II.2, III.1 and III.2
(indicated by *). The proband (II.2) is indicated by an arrow. Circles, female; squares, male; gray, TNFRSF13B/TACI C104R mutation; blue TCF3
T168fsX191 mutation (as indicated). The proband (arrow, II.2) is heterozygous for both the TCF3 T168fsX191 and TNFRSF13B/TACI C104R mutations.
Other family members who have inherited TCF3 T168fsX191 and TNFRSF13B/TACI C104R mutations are shown. CVID, common variable immunodeficiency
disorder; SLE, systemic lupus erythematosus; sIgAD, selective IgA deficiency; T1D, Type 1 Diabetes, sHGUS, symptomatic hypogammglobulinaemia of
uncertain significance; WT, wild-type. (b) Electropherograms showing the T168fsX191 mutation of TCF3 and C104R (c.310T4C) mutation of TACI gene in
the proband II.2. The proband’s son (III.1) has inherited the TCF3 T168fsX191 mutation, but not the TNFRSF13B/TACI C104R mutation. The proband’s
clinically unaffected daughter (III.2) has not inherited either mutation. The TCF3 T168fsX191 mutation was absent in the proband’s parents, indicating a de
novo origin. (c) Schema of wild-type and truncated mutant TCF3 T168fsX191 gene. Exons coding E2A functional domains, activation domain 1 and 2 (AD1,
AD2) and helix-loop-helix (HLH) domains are shown. (d) E2A (E47) protein expression was assessed by western blotting of lysates following 30 min PMA/
ionomycin stimulation of PBMCS in the kindred, as indicated (U, unstimulated; S, stimulated). (e) PBMCs from the proband (II.2) and healthy control (HC)
individuals (n=2) were unstimulated, or stimulated with PMA+ionomycin for 30 or 60 min as indicated, and cell lysates were analysed for p105
phosphorylation (P-p105, Ser933), expression of p105 and p50 by western blotting. Beta-actin was used as a protein loading control. Results are
representative of two independent experiments.
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The proband’s son (III.1) has CVID-related phenotypes including
symptomatic IgG deficiency, IgA deficiency, type 1 diabetes and has
recently developed seronegative arthritis. He has high titres of anti-
parietal cell antibodies. His disorder may be in evolution as his IgG has
decreased to 5.5 g l− 1 (NR 7–14) from 6.5 g l− 1 over the last year. He
suffers from recurrent infections and has impaired antigen responses
to protein and carbohydrate vaccines (Table 1). He is classified as
having symptomatic hypogammaglobulinemia of uncertain signifi-
cance and IgA deficiency.17,19 Both the proband and her son have
reduced switched memory B cells and the proband is lymphopaenic
(Table 1). Since symptomatic disease is a prerequisite for probable
CVID, application of our CVID diagnostic criteria17,19 concluded that
only the proband (II.2) had CVID, while her son (III.1) had reduced
IgG levels (symptomatic hypogammaglobulinemia of uncertain
significance) and symptomatic IgA deficiency.
We have assessed the relative severity of the disorder of all family

members using the clinical score proposed for the use of subcutaneous
immunoglobulin/intravenous immunoglobulin,21 which is based on
the frequency and severity of immune sequelae of CVID (Table 1).
Application of the Ameratunga et al.2,19 diagnostic criteria for CVID
concluded that the proband (II.2) and her son (III.1) were phenoty-
pically distinct from other family members (clinical score 410) and
the highest clinical score was assigned to the proband. Together, these
findings indicated that the TNFRSF13B/TACI C104R mutation could

not be the sole explanation for CVID in this family, prompting a
search for other causative genetic mutations.12

Identification of a novel de novo mutation of TCF3 in both severely
symptomatic individuals
Whole-exome sequencing was performed on II.2, III.1 and III.2 and
analysed assuming an autosomal dominant mode of inheritance,
where II.2 and III.1 have reference/alternative alleles (REF/ALT) and
III.2 is healthy (REF/REF or ALT/ALT). Non-synonymous variants
within coding and splice site regions with a minor allelic frequency less
than 1% were annotated. Analysis did not reveal evidence of
consanguinity and identified 94 rare genetic variants affecting protein
sequence that were transmitted by the proband to her son, but not to
her daughter (Supplementary Tables 1 and 2). Nine variants affecting
genes with known roles in the immune system were genotyped in the
entire kindred (Supplementary Table 3). Of these, only a de novo
frameshift nonsense mutation in TCF3 encoding the E2A transcription
factors E12 and E4721 segregated with the two severely symptomatic
family members, II.2 and III.1 (Figures 1a and b) in the wider family.
TCF3 plays a critical role in early B-cell development.22 It is also
thought to play an important role in mature B-cell biology and
promotes Ig gene transcription.23 Studies have shown that the E2A
transcription factors are essential for the expression of several genes
involved in the Ig isotype switching and secretion pathway including
Activation Induced Deaminase (AICDA, which encodes AID) and
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Figure 2 Immunoglobulin isotype switching pathways showing nodes of intracellular signal integration between TACI and TCF3/E2A. T-cell-independent
isotype switching occurs through TACI and TLRs while T-cell dependent switching occurs through CD40 and IL-4 or IL-21. Ligation of the B-cell receptor
synergises with both pathways. TCF3/E2A contributes to the expression of AID, 14-3-3γ and Ig production and therefore influences both T-cell-dependent
and -independent Ig switching pathways. 14-3-3γ is a scaffolding protein and targets AID to switch regions. Mutations are shown in red stars. BCR—B cell
receptor. TLR, Toll-like receptor.
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14-3-3γ, a scaffolding protein, which targets AID to Ig switch regions
(Figure 2).24

Insertion of an adenine residue at exon 8 of TCF3 creates a
frameshift leading to a nonsense mutation (T168fsX191, Figure 1b).
Threonine at position 168 is the first amino acid to be affected by the
frameshift, and results in a stop codon at position 191 (Figure 1c). The
presence of the mutation was confirmed by Sanger sequencing and is
not expressed in other family members, healthy controls or any

publicly available gene databases (Figure 1b). The two severely affected
individuals (II.2, III.1) are heterozygous for the mutation, consistent
with autosomal dominant inheritance. The mutation was absent in the
proband’s parents, indicating its de novo origin.

Haploinsufficiency of E2A in proband (II.2) and her son (III.1)
Neither the mRNA of the mutant TCF3 T168fsX191 allele nor its
truncated protein products (E12 and E47) were expressed, presumably

Figure 3 (a) Immunophenotyping, proliferation and isotype switching in TCF3/ TNFRSF13B/TACI mutant B cells. (a) Immunophenotyping results indicating
proportions of naïve (CD20+CD27−) and memory (CD20+CD27+) B cells, and CD4+ and CD8+ T cells in PBMCs isolated from available family members as
indicated, and representative healthy donor controls. (b) Relative proportions of IgM/G/A memory B cells from each family member and unrelated healthy
donors (each as a proportion of total memory B cells). IgM-expressing cells are shown in black, IgG− in gray and IgA− isotype switched memory B cells in
white, as indicated. (c) Total numbers of lymphocytes, B cells, naïve (CD20+CD27−) and memory (CD20+CD27+) B cells in peripheral blood from each family
member and unrelated healthy donors (HD=12). Immunophenotyping and cell counts were performed in two separate experiments.
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as a result of nonsense mutation mediated decay. The wild-type E2A
(E47) protein is poorly expressed in both heterozygous individuals
carrying the TCF3 T168fsX191 mutation (II.2 and III.1), but normal
expression was detected in other family members and unrelated
healthy controls (Figure 1d). Together these results suggest haploin-
sufficiency of E2A in affected individuals II.2 and III.1.

Intracellular NFκB signalling
TACI plays a critical role in immunoglobulin isotype switching
particularly when mediated via the T-cell-independent pathway
(Figure 2).25 TACI acts synergistically with other signalling pathways
including Toll-like receptors, the B-cell receptor and CD40 implying a
broad range of actions during an immune response.27

CTV
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Figure 4 Severe defect in in vitro antibody production in proband demonstrates epistasis. (a) Immunoglobulin production from supernatants collected from
in vitro cultures of naïve B cells isolated from PBMCs of each family member, stimulated as indicated with CD40L (100 ng ml–1), IL-4 (50 ng ml–1), IL-21
(50 ng ml–1), CpG (1 μg ml–1) and APRIL (500 ng ml–1). Supernatants were assessed for secretion of IgG, IgA and IgM as indicated. (b) Representative Cell
Trace Violet (CTV) plots and IgG isotype switched cells following in vitro stimulation of naïve B cells with CD40L+IL-4+IL-21 for 6 days (representative from
two independent experiments). Cells were isolated, labelled with CTV, stimulated and collected after 6 days of culture and the division profiles and
proportions of IgG expressing cells determined. FMO, fluorochrome minus one.
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Both T-cell-dependent and -independent pathways lead to down-
stream activation of NFκB, expression of activation induced cytidine
deaminase (AID) and related molecules (Figure 2). NFκB1 (p105 and
its proteolytically cleaved subunit, p50) and NFκB2 (p100 and its
active subunit, p52) and their associated transcription factor family
members together regulate a large number of target genes that are
essential for B-cell development, maturation and differentiation into Ig
isotype switched memory and antibody-secreting cells (ASC). We thus
first investigated whether NFκB signalling was impaired in the
proband to determine the consequences of expressing TCF3 and
TNFRSF13B/TACI mutations. Phosphorylation of p105, as well as
total p105 and p50 were reduced (~50%) in stimulated peripheral
blood mononuclear cells (PBMCs) from the proband (II.2), compared
to unrelated healthy controls following stimulation with PMA and
ionomycin (Figure 1e). No differences were observed for p100/p52
expression and signalling via the NFκB2 pathway (not shown).

Immunophenotyping of lymphocyte populations
The two symptomatic individuals (II.2, III.1) bearing the TCF3
T168fsX191 mutation had a reduced total number of B cells, naïve
B cells, as well as a significant reduction in memory B cells, with fewer
isotype-switched memory B cells detected (Figures 3a–c). Individuals
carrying the TNFRSF13B/TACI C104R mutant only (II.3, II.4) also
displayed a reduction in the total number of lymphocytes and B cells
(Figures 3a and c). No differences in total T-cell number, CD4:CD8
ratios, NK cell or monocytes were observed (Figure 3a and not
shown).

Quantification of a severe in vitro antibody production defect by
proband naïve B cells demonstrates epistasis
We next assessed the ability of naïve B cells isolated from each family
member to differentiate into ASC leading to the production of Ig
following in vitro stimulation (Figure 4a). Naïve B cells isolated from
the proband (II.2) were able to differentiate and secrete Ig, under both
T-cell-dependent (CD40L+IL-4+IL-21) or T-cell-independent (CpG
+IL-4+IL-21±APRIL) conditions. However, in each condition, this
was consistently less than other family members and was almost
exclusively IgM, with very little IgG detected in culture supernatants.
The proband’s brother (II.3), who is heterozygous for the
TNFRSF13B/TACI C104R mutation is able to produce IgG levels
comparable to the wild-type family control (III.2, Figure 4a)
and unrelated healthy donors (Supplementary Figure 1) via the
T-cell-independent pathway. His cells produce lower quantities of
IgG through the T-cell-dependent pathway than his niece, (III.2).
The TACI/Toll-like receptor pathway can augment T-cell-dependent
isotype switching and IgG production,26 which may account for the
slightly lower IgG levels in comparison with II.3, who is heterozygous
for TNFRSF13B/TACI C104R mutation, or III.2, who has neither
mutation.
Naïve B cells isolated from the brother with the homozygous

TNFRSF13B/TACI C104R mutation (II.4) were able to produce
detectable IgG in vitro via the T-cell-independent pathway
(Figure 4a). However, his (II.4) cells produced consistently lower
levels of IgG compared to his healthy niece (III.2). Previous studies
have shown TNFRSF13B/TACI C104R homozygous individuals are
able to produce some IgG in vitro with APRIL stimulation alone.27

This is likely to be augmented by Toll-like receptor signalling with
CpG as well as IL-4 and IL-21, in our experiments. As expected,
his cells produce greater amounts of IgG through his intact T-cell-
dependent pathway. The proband’s son (III.1) carrying only the
heterozygous TCF3 T168fsX191 mutation is also able to produce

some IgG in vitro via activation of both pathways, but at much lower
levels than his wild-type sister (III.2). His cells produced higher levels
of IgG and IgM than his mother (II.2, who bears both the
TNFRSF13B/TACI C104R and TCF3 T168fsX191 mutations).
The combination of TCF3 T168fsX191and TNFRSF13B/TACI

C104R mutations in the proband resulted in a greater net effect
that the sum of each individual mutation would predict than
the sum of deficits observed for each mutation alone (that is,
Ig levelIII.2− (IgIII.2− IgIII.1)+(IgIII.2− IgII.3)). When the amount of Ig
detected in cultures of TNFRSF13B/TACI TCF3 double mutant naïve
B cells following APRIL/CpG stimulation, a much larger deficit is
observed compared to TCF3+/− or TNFRSF13B/TACI+/− mutant cells
alone; that is, the amount of Ig production in the proband (II.2) is
much lower than the sum of each individual contribution (by III.1 and
II.3). The same is also true for other culture conditions tested
(Figure 4a, Supplementary Figure 1). When such a quantitative defect
in Ig production is combined with the observed additional defects in
total cell number and B-cell development and differentiation, epistatic
interaction of TCF3 and TNFRSF13B/TACI mutations is clearly
observed in this family.

Proliferation and isotype switching potential of naïve B cells
We next investigated if the severely reduced in vitro antibody
production observed in the proband could be explained by impaired
proliferation or isotype switching. Naïve B cells were isolated from
family members, labelled with the cell division tracking dye, cell trace
violet (CTV), and after 6 days of stimulation with CD40L, IL-4 and
IL-21, the proliferative and switching potential assessed. Naïve B cells
from III.1 (carrying only the TCF3 T168fsX191 mutation) underwent,
on average, slightly fewer rounds of cell division (Mean division
number, MDN) than those from his healthy sister (III.2; MDN= 3.9
and 4.6, respectively; Figure 4b). A small proliferative difference was
also observed in naïve B cells from family members carrying only the
TNFRSF13B/TACI C104R mutation, either in heterozygous (II.3) or
homozygous (II.4) form (MDN= 3.3, 3.1, respectively). However, the
combination of both mutations in the proband (II.2) showed normal
proliferation of naïve B cells, with no direct proliferative defect
observed after 6 days of stimulation with CD40L and cytokines
(MDN= 4.8). Thus, neither mutation prevents B cells from under-
going a relatively healthy proliferative response.
We then examined the ability of stimulated B cells to undergo IgG

isotype switching (Figure 4b, right panels). Despite the absence of IgG
detected in the supernatants of these cultures, no defect was observed
in the generation of isotype switched IgG+ cells in II.2 (carrying both
TNFRSF13B/TACI C104R and TCF3 T168fsX191 mutations), com-
pared to III.2, who has neither mutation. Her son, III.1, carrying the
TCF3 T168fsX191 mutation only, also generated a similar proportion
of IgG+ switched cells. However, individuals carrying the TNFRSF13B/
TACI C104R mutation alone (II.3 and II.4) generated fewer IgG+

switched cells from naïve cultures, even in the absence of TACI ligand
engagement. Since isotype switching is known to be linked to the
number of divisions undergone,27–31 this could be, in part due to the
small proliferative delay and reduced number of cells in later divisions
observed in TACI-deficient naïve B cells.

Deficiency of in vitro generation of ASC by TNFRSF13B/TACI/
TCF3 double mutant naïve B cells
The above studies showed relatively healthy proliferation and
isotype switching by II.2, but markedly reduced secretion of Ig
suggesting a defect in development or function of ASC following
stimulation.6,30 To investigate a putative differentiation defect in
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the E2A-TCF3/TACI-deficient B cells, naïve B cells were
cultured under T-dependent (CD40L+IL4± 21) or T-independent
(APRIL+CpG± IL4/21) conditions and the generation of ASC was
assessed by flow cytometry after 5 days. The proportion of ASC
(CD27hi, CD38+) generated in cultures from the family wild-type
control (III.2) was comparable to that observed in healthy donors, for
each stimulation condition (Figure 5). However, a 2–6-fold reduction
in the proportion of ASC generated was observed following either
T-cell-dependent or T-cell-independent (that is, TACI-dependent)
pathways in the proband (II.2) compared with her daughter (III.2)
and healthy donor controls (Figure 5a). This effect was even
greater (up to 8-fold fewer ASC) when the total number of
ASC was calculated following T-dependent stimulation conditions
and even more pronounced following TACI-ligand engagement under
T-independent conditions (Figure 5b).
Naïve B cells from II.4, homozygous for TNFRSF13B/TACI C104R

mutation, also showed reduced differentiation into ASC, compared to
the healthy family member control (III.2) and unrelated healthy
controls, consistent with lower IgG secretion observed in culture
supernatants (Figure 4a, Supplementary Figure 1) and the profound
hypogammaglobulinemia observed in this patient (Table 1). When
total numbers of lymphocytes in these cultures were assessed, fewer
cells were present in cultures from all family members (Figure 5c).
However, consistently fewer cells were generated in cultures from
TNFRSF13B/TACI/TCF3 double mutant B cells from the proband
(II.2). Despite normal proportions of divided and isotype-switched
IgG+ cells in these cultures, a clear B-cell defect was observed in both

total cell number and absolute levels of Ig secreted in all mutant naïve
B cells, and this defect is most severe in the presence of both
mutations, consistent with epistasis.

DISCUSSION

Epistasis occurs when there are synergistic interactions between two or
more genetic loci or their products leading to a phenotype that is
either divergent or more severe than the sum of the individual
effects.31 In humans, epistasis can only be identified when pathogenic
mutations are present in two or more genes. Epistasis requires
quantification of the consequences of the mutations to demonstrate
synergistic effects. The existence and role of epistasis in human disease
has been difficult to demonstrate and remains highly controversial
since it was first proposed over one hundred years ago.14,31,32 The
predominant difficulty has been the inability to undertake relevant
clinical and in vitro functional studies to quantify the consequences of
multiple genetic mutations.
Previously, the existence of epistasis was inferred from the

phenotypic variation in large kindreds carrying mutations of genes
responsible for auditory or visual impairment and other congenital
disorders.17 A recent publication suggested an interaction between
LRBA and NEIL3 mutations in a consanguineous Middle Eastern
kindred with hypogammaglobulinemia and autoimmunity.33 Auto-
somal recessive LRBA deficiency has been previously described in a
number of early-onset CVID-like patients with autoimmune manifes-
tations, including ITP, haemolytic anaemia and inflammatory bowel
disease.34 The NEIL3 mutation was present in the three affected
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Figure 5 Severe defect in generation of antibody secreting cells in E2A/TACI-deficient cells. (a–c) Summary graphs from in vitro proliferation of naïve B cells
stimulated as indicated with CD40L (100 ng ml−1), IL-4 (50 ng ml−1), IL-21 (50 ng ml−1), CpG (1 μg ml−1) and APRIL (500 ng ml−1) as indicated. Isolated
cells were collected after 5 days of culture, cell surface stained and analysed by flow cytometry for the (a) proportion of antibody secreting cells (ASC,
CD27hiCD38+) and (b) total number of ASC and (c) total lymphocyte number. Cell counts and proportion of ASC are shown for the proband, with both
TNFRSF13B/TACI and TCF3 mutations in white; her son (III.1), expressing TCF3 T168fsX191 mutant B cells only (blue); TACI-deficient individuals (II.3,
II.4, gray); and wild-type (III.2 and HD, black). Summary graphs of the proportions and total number of differentiated cells for all family members and
healthy donors (HD, n=4) was performed in two independent experiments.
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children and was also observed in ~ 2% of individuals of Middle
Eastern origin, and thus may be a risk factor for autoimmune disease
in this population. No obvious phenotype was observed in an
unrelated NEIL3 homozygous mutant individual. In the affected
family, the homozygous NEIL3 mutation in addition to deleterious
mutations in LRBA likely contributed to the severe phenotype
observed; unfortunately, the three siblings carrying both mutations
were deceased, limiting functional studies in this family.
In the kindred presented here, the immune system has offered us an

unparalleled opportunity to study epistasis in readily accessible
PBMCs.17 Individual family members are exemplars for the effects
of each mutation or combination on in vitro B-cell differentiation,
Ig isotype switching and production, which are the ultimate laboratory
correlates of late onset antibody failure/immune system failure in
CVID. In this family, we have quantified both the clinical severity
(using the clinical score) and in vitro antibody production to
demonstrate a synergistic interaction between the two mutations
leading to clinical and genetic epistasis.
Both the TACI and TCF3/E2A networks share nodes of intracellular

signal integration (Figure 2), mutations of which appear to have
synergistically (epistatically) impaired B-cell function in the proband
(II.2). In her case, the two mutations, which lie in tandem along the Ig
isotype switching and secretion pathway (Figure 2), lead to severely
impaired B-cell differentiation and production of IgG in vitro
(Figures 3 and 4) and in severe clinical disease (Table 1, summarised
in Figure 6). The proband, carrying both mutations shows the largest
defect in vitro after isolated naïve B cells are specifically engaged via
CD40, APRIL or Toll-like receptorss and is much more severely
affected than her parents, her son and her siblings. Her in vitro IgG
production is substantially lower than that of her TNFRSF13B/TACI
C104R heterozygous brother (II.3) and her TCF3 T168fsX191 hetero-
zygous son (III.1), who individually bear each mutation. While clear
defects in B-cell development, isotype switching and differentiation
into ASCs were observed in both individuals (II.2 and III.1) carrying
the mutant TCF3 allele, the additional effect of the C104R TACI
mutation in the proband (II.2) resulted in a more severe B lymphocyte
cellular phenotype, consistent with epistasis.
Here, immunophenotyping of lymphocyte populations and in vitro

assessment of differentiation into isotype switched memory B cells did
not reveal such a severe block in B-cell development. Instead, we
observed a marked reduction in the total number, but not the
proportion, of isotype switched and total memory B cells present in
the proband, who carries both TCF3 and TACI gene mutations, as
well as her son, who carries only the TCF3 mutation and her brother,
homozygous for the TACI gene variant only. These data suggest that
neither mutation is intrinsically necessary for the generation of
memory B cells or for Ig isotype switching, but may be critical for
the survival and/or maintenance of the populations. Further investiga-
tions will be necessary to determine the relative contributions of these
mutations on memory B-cell persistence.
The quantification of the phenotypic disease severity also mirrors

the pattern of mutations of these two unrelated genes (Table 1,
Figure 6). The proband, the only family member to carry both
mutations, is much more severely affected than her parents, her son
and her siblings. Her clinical score is much higher than the sum of her
son (III.1) and any of her TNFRSF13B/TACI C104R heterozygous
family members (I.1, I.2, II.3; Figure 6), which is consistent with
epistasis.13 It should be noted that the proband’s serum IgG level was
measured over 15 years ago, prior to Ig recommencement; therefore,
no assumptions can be made about her current levels. Furthermore, if
the total level of Ig secreted in these cultures is compared for each

family member, then the net deficit for the proband carrying both
mutations is much greater than sum of each individual deficit. A
comparison of the amount of Ig detected in cultures of TCF3/TACI
double mutant naïve B cells following APRIL/CpG stimulation reveals
a larger deficit than the Ig observed in TCF3+/− or TACI+/− mutant
cells alone; that is, the amount of Ig production in the proband (II.2)
is lower than the sum of each individual contribution (by III.1 and
II.3, Figure 6). When such a defect in Ig production is combined with
the observed additional defects in total cell number and possibly B-cell
development, epistatic interactions of TCF3 and TACI mutations is
clearly observed in this family.
The novel TCF3 T168fsX191 mutation presented here has a clear

pathogenic effect on total B cell and switched memory B-cell
development, generation of ASC and Ig production.
The mutation has arisen de novo in the proband, co-segregates with

the disease phenotype, and is absent in over 60 000 individuals without
overt immunodeficiency phenotypes corresponding to a minor allele
frequency less than 10− 5 (Exome Aggregation Consortium).
There is also convincing evidence from other human and animal

studies that the TCF3 T168fsX191mutation is pathogenic in this
family. In another recent study, four unrelated individuals with de
novo heterozygous E55K missense mutations of TCF3 presented with a
severe B-cell defect and agammaglobulinemia, and here a dominant
negative mechanism was suggested.35

Our data suggest the TCF3 T168fsX191 mutation is more likely to
cause its effects through haploinsufficiency in this kindred, leading to a
distinct phenotypic presentation. Another recent publication suggested
an association of sequence variations in TCF3 in a patient with
CVID,36 although detailed functional studies were not presented. In
addition to inherited disease, a recent report of monozygotic twins
discordant for CVID, demonstrated differential methylation signatures
of TCF3 between the unaffected and affected twins. The authors
postulated impaired activity of TCF3/E2A accounted for the presence
of disease.37

Two independent studies of gene-targeted mice with TCF3 hap-
loinsufficiency have shown reduced numbers of B cells and impaired
lymphoid cell development.23,38 Similarly, reduced expression of
TCF3/E2A has been implicated in equine CVID.39 There is thus
strong support from human, murine and equine studies for the
pathogenicity of the TCF3 T168fsX191 mutation in our family.
Our study also offers new insights into the role of TNFRSF13B/

TACI mutations in the pathogenesis of CVID.11 The C104R mutant is
a low frequency variant in population databases (0.32% in Exome
Aggregation Consortium) and although earlier publications considered
this variant to be disease-causing and expressed in up to 10% of CVID
patient cohorts,40 it, and other TNFRSF13B/TACI variants were
subsequently found to be present in ~ 2% of healthy control
populations.41 Although functional studies of C104R mutant alleles
have demonstrable defects in B-cell development, switching and
differentiation, it is considered a risk allele for CVID, with a relative
risk of 4.241 and it has long been speculated that second mutations
may be identified in these families.13 This study is the first
demonstration of such digenic inheritance in a CVID-like disorder.
In this family, the TNFRSF13B/TACI C104R mutation appears to

demonstrate a gene dosage effect on serum IgG levels. The brother
who is homozygous (II.4) for the TNFRSF13B/TACI C104R mutation
has the lowest IgG levels, and consistently generated fewer isotype
switched and differentiated ASC in vitro, compared with other family
members who are heterozygotes.20 The presence of concomitant
mutations, such as the TCF3 T168fsX191 mutation seen in the
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proband, may explain the variable penetrance and expressivity of
TNFRSF13B/TACI mutations in CVID.
Individuals with digenic disorders will pose challenges for pre-

implantation genetic diagnosis and chorionic villus sampling. Here,
we have demonstrated that the TCF3 T168fsX191 mutation has a
more detrimental effect on the phenotype in this pedigree. It could be
argued that the TNFRSF13B/TACI C104R mutation has a modifying
effect on the phenotype and is relatively benign in this family.
Hence, priority should be given to identifying the TCF3 T168fsX191
mutation for preimplantation genetic diagnosis and/or chorionic villus
sampling.
Based on both clinical and laboratory quantification, it appears

neither the TNFRSF13B/TACI C104R mutation nor the TCF3
T168fsX191 mutation alone is sufficient to cause the complete, severe
CVID-like disorder and SLE observed in the proband. This is the first
example of late onset antibody failure/immune system failure resulting
from epistatic interactions of two independent monogenic defects
leading to a CVID-like disorder.17 We anticipate future genomic
sequencing and functional validation studies will reveal additional
instances of polygenic pathogenic mutations and epistatic gene
interactions in other families. Classification of such primary immu-
nodeficiency disorder patients will require a new category for

multigenic disorders. This family fulfils Bateson’s astute predictions
of human epistasis made over a century ago.13

METHODS

Study participants/human samples
Peripheral blood mononuclear cells (PBMCs) were isolated from healthy
control subjects (Volunteer Blood Donor Registry and Auckland City Hospital)
and from the proband and family members, following informed consent. All
studies were approved by ADHB (3435), NZ Ministry of Health (MEC/06/10/
134) and Walter and Eliza Hall Institute (WEHI) Human Research Ethics
Committee (HREC 10/02).

Whole exome sequencing
We undertook whole exome sequencing on individuals as indicated (Figure 1a).
Rare variants (frequency o0.01 in the Exome Aggregation Consortium,42 1000
Genomes, and HapMap projects, or our in-House database) likely affecting
protein primary sequence and co-segregating with CVID-like symptoms
(present in II.2 and III.2 but absent in II.1 and III.2) were shortlisted for
interpretation of disease causality.

Sanger sequencing
All PCR amplifications were performed as described (Roche protocol for
Faststart Taq DNA polymerase). The following PCR primers were used
(i) TNFRSF13B sense: 5′-TACTTGGCTTACTCTGGAAT-3′ and anti-sense:
5′-CATTTGCTTGGACTCTGG-3′ and (ii) TCF3 sense: 5′-TCTCTTGACCTC
GTGATCTG-3′, anti-sense 5′-GACTCACCGAGGATGGAA-3′.
DNA sequencing was performed with Big Dye Terminator cycle sequencing

on an ABI 3130× l Genetic Analyzer according to the manufacturer’s standard
protocol and reagents (Applied Biosystems, Waltham, MA, USA). Sequence
electropherograms were compared with wild-type sequences using SeqMan
v5.01 software (DNASTAR, Madison, WI, USA).

Lymphocyte phenotyping and naïve B-cell isolation
PBMCs were isolated from whole blood collected from family members and
healthy donors by ficoll-histopaque gradient centrifugation. For phenotypic
staining, the following monoclonal antibodies were used: CD3-APC-H7,
CD4-PerCP-Cy5.5, CD38-PerCP-Cy5.5, CD10-PECF594, CD21-APC, IgG
PeCy7, CD14-PerCP, CD123-PE, CD56-PeCy7, CD11c-APC, CD16-APC-H7
(BD Biosciences, San Diego, CA, USA), CD8-APC-EF780, CD27-APC-EF780
(eBioscience, San Diego, CA, USA), CD19-BV650, CD24-BV605 (Biolegend,
San Diego, CA, USA) and IgA-PE (Miltenyi Biotech, Bergisch Gladbach,
Germany). Naïve B cells were enriched by negative selection using B-cell
isolation kit (Stemcell, Vancouver, BC, Canada). Naïve B-cell purity was
verified by flow cytometry to 98% purity.

Cell stimulation protocols
Purified naïve B cells were cultured in B-cell medium (RPMI 1640 containing
L-glutamine; Invitrogen Life Technologies, CA, USA), supplemented with 10%
fetal calf serum (FCS) (Invitrogen Life Technologies, Waltham, MA, USA),
10 mM 4-(2-hydroxyethyl)-1-piperazineethansulfonic acid (HEPES) (pH 7.4;
Sigma-Aldrich, St Louis, MO, USA), 0.1 mM nonessential amino acid solution
(Sigma-Aldrich), 1 mM sodium pyruvate (Invitrogen Life Technologies),
60 mg ml− 1 penicillin, 100 mg ml− 1 streptomycin, 40 mg ml− 1 transferrin
(Sigma-Aldrich), and 20 μg ml− 1 Normocin (InVivogen, San Diego, CA,
USA); and stimulated with 100 ng ml− 1 CD40L alone (Enzo, Farmingdale,
NY, USA) or with IL-4 (100 ng ml− 1), IL-21 (50 ng ml− 1; both Peprotech), or
CpG 2006 (1 μg ml− 1, Invitrogen, Carlsbad, CA, USA), APRIL (500 ng ml− 1,
Adipogen, San Diego, CA, USA), in the presence or absence of IL-4 and IL-21.
For some experiments, B cells were labelled with division-tracking dye cell trace
violet (CTV, Invitrogen).32 For phenotypic and functional analysis, cells were
cultured in 96-well plates for 5 or 6 days, collected, stained with CD20, CD27,
CD38, IgG, IgM, IgA and the proportion of isotype switched and differentiated
antibody secreting cells determined as previously described.6 Secreted IgM, IgG
and IgA levels were determined by Ig Heavy chain-specific immunoassays as
previously described.6
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Figure 6 Quantitation of epistatic interactions of TCF3 and TACI mutations
showing a greater net effect than the sum of each individual mutation. Total
Serum Ig, clinical score and TNFRSF13B/TACI C104R and TCF3
T161fsX191 genotype for each family member, as indicated. The serum IgG
for the proband II.2 was obtained in 2002. Normal serum Ig ranges (g l−1)
shaded in green. Lower graph: summary of total Ig levels detected in naïve
B-cell cultures for each available family member, stimulated with APRIL,
CpG, IL-4+IL-21 for 6 days as described. Indicated line is the total Ig level
expected for the proband (II.2) calculated from the sum of deficits observed
for each mutation alone (that is Ig levelIII.2− (IgIII.2− IgIII.1)+(IgIII.2− IgII.3)).
Note that the clinical score for individual III.2 is 0.
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Western blotting
Freshly isolated PBMCs were either analysed at rest or following stimulation
with PMA/ionomycin (50 ng ml− 1 and 500 ng ml− 1, respectively, Sigma).
Resting or stimulated PBMCs were washed twice with ice-cold phosphate
buffered saline (PBS), and lysed in sodium dodecyl sulfate (SDS) lysis buffer
according to the manufacturer’s protocol (Cell Signaling Technology, Danvers,
MA, USA). Cell lysates were separated by SDS-PAGE gel electrophoresis,
and transferred to polyvinylidene difluoride (PVDF) membranes (Millipore,
Billerica, MA, USA). Membranes were immunoblotted with antibodies
(Cell Signaling, Danvers, MA, USA) against E2A (D2B1), phospho-p105
(Ser933; 18E6), phospho-p100 (Ser866/870), p105/p50 (#3035), p100/p52
(18D10), and actin (Millipore). NFκB bound antibodies were visualised
using SuperSignal West Pico (Thermo Scientific, Waltham, MA, USA) or
ECL plus (GE Healthcare, Chicago, IL, USA) and the chemiluminescence
detection system by Fujifilm Las-3000. Staining for actin was used as a control
for protein loading.
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