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statmod: Probability Calculations for the
Inverse Gaussian Distribution
by Göknur Giner and Gordon K. Smyth

Abstract The inverse Gaussian distribution (IGD) is a well known and often used probability dis-
tribution for which fully reliable numerical algorithms have not been available. We develop fast,
reliable basic probability functions (dinvgauss, pinvgauss, qinvgauss and rinvgauss) for the IGD
that work for all possible parameter values and which achieve close to full machine accuracy. The
most challenging task is to compute quantiles for given cumulative probabilities and we develop
a simple but elegant mathematical solution to this problem. We show that Newton’s method for
finding the quantiles of a IGD always converges monotonically when started from the mode of the
distribution. Simple Taylor series expansions are used to improve accuracy on the log-scale. The
IGD probability functions provide the same options and obey the same conventions as do probability
functions provided in the stats package.

Introduction

The inverse Gaussian distribution (IGD) (Tweedie, 1957; Johnson and Kotz, 1970) is widely used in a
variety of application areas including reliability and survival analysis (Whitmore, 1975; Chhikara and
Folks, 1977; Bardsley, 1980; Chhikara, 1989; Wang and Xu, 2010; Balakrishna and Rahul, 2014). It is
more generally used for modeling non-negative positively skewed data because of its connections to
exponential families and generalized linear models (Seshadri, 1993; Blough et al., 1999; Smyth and
Verbyla, 1999; De Jong and Heller, 2008).

Basic probability functions for the IGD have been implemented previously in James Lindsey’s
R package rmutil (Lindsey, 2010) and in the CRAN packages SuppDists (Wheeler, 2009) and STAR
Pouzat (2012). We have found however that none of these IGD functions work for all parameter values
or return results to full machine accuracy. Bob Wheeler remarks in the SuppDists documentation that
the IGD “is an extremely difficult distribution to treat numerically”. The rmutil package was removed
from CRAN in 1999 but is still available from Lindsey’s webpage. SuppDists was orphaned in 2013
but is still available from CRAN. The SuppDists code is mostly implemented in C while the other
packages are pure R as far as the IGD functions are concerned.

The probability density of the IGD has a simple closed form expression and so is easy to compute.
Care is still required though to handle infinite parameter values that correspond to valid limiting
cases. The cumulative distribution function (cdf) is also available in closed form via an indirect
relationship with the normal distribution (Shuster, 1968; Chhikara and Folks, 1974). Considerable
care is nevertheless required to compute probabilities accurately on the log-scale, because the formula
involves a sum of two normal probabilities on the un-logged scale. Random variates from IGDs can
be generated using a combination of chisquare and binomial random variables (Michael et al., 1976).
Most difficult is the inverse cdf or quantile function, which must be computed by some iterative
numerical approximation.

Two strategies have been used to compute IGD quantiles. One is to solve for the quantile using
a general-purpose equation solver such as the uniroot function in R. This is the approach taken by
the qinvgauss functions in the rmutil and STAR packages. This approach can usually be relied on to
converge satisfactorily but is computationally slow and provides only limited precision. The other
approach is to use Newton’s method to solve the equation after applying an initial approximation
(Kallioras and Koutrouvelis, 2014). This approach was taken by one of the current authors when
developing inverse Gaussian code for S-PLUS (Smyth, 1998). It is also the approach taken by the
qinvGauss function in the SuppDists package. This approach is fast and accurate when it works but
can fail unpredictably when the Newton iteration diverges. Newton’s method cannot in general be
guaranteed to converge, even when the initial approximation is close to the required value, and the
parameter values for which divergence occurs are hard to predict.

We have resolved the above difficulties by developing a Newton iteration for the IGD quantiles that
has guaranteed convergence. Instead of attempting to find a starting value that is close to the required
solution, we instead use the convexity properties of the cdf function to approach the required quantiles
in a predictable fashion. We show that Newton’s method for finding the quantiles of an IGD always
converges when started from the mode of the distribution. Furthermore the convergence is monotonic,
so that backtracking is eliminated. Newton’s method is eventually quadratically convergent, meaning
that the number of decimal places corrected determined tends to double with each iteration (Press
et al., 1992). Although the starting value may be far from the required solution, the rapid convergence
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Figure 1: Probability density functions of inverse Gaussian distributions. The left panel shows
densities for different λ with µ = 1. The right panel shows densities for different µ for λ = 1. The
densities are unimodal with mode between 0 and µ. As µ/λ increases the distribution becomes more
right skew and the mode decreases relative to the mean. Note that λ = 1/φ.

means the starting value is quickly left behind. Convergence tends to be rapid even when the required
quantile in the extreme tails of the distribution.

The above methods have been implemented in the dinvgauss, pinvgauss, qinvgauss and rinvgauss
functions of the statmod package (Smyth, 2016). The functions give close to machine accuracy for
all possible parameter values. They obey similar conventions to the probability functions provided
in the stats package. Tests show that the functions are faster, more accurate and more reliable than
existing functions for the IGD. Every effort has to made to ensure that the functions return results for
the widest possible range of parameter values.

Density function

The inverse Gaussian distribution, denoted IG(µ,φ), has probability density function (pdf)

d(x; µ, φ) =
(

2πφx3
)−1/2

exp
{
− (x− µ)2

2φµ2x

}
(1)

for x > 0, µ > 0 and φ > 0. The mean of the distribution is µ and the variance is φµ3. In generalized
linear model theory (McCullagh and Nelder, 1989; Smyth and Verbyla, 1999), φ is called the dispersion
parameter. Another popular parametrization of the IGD uses λ = 1/φ, which we call the shape
parameter. For best accuracy, we compute d(x; µ, φ) on the log-scale and then exponentiate if an
unlogged value is required.

Note that the mean µ can be viewed as a scaling parameter: if X is distributed as IG(µ,φ), then
X/µ is also inverse Gaussian with mean 1 and dispersion φµ. The skewness of the distribution is
therefore determined by φµ, and in fact φµ is the squared coefficient of variation of the distribution.

The IGD is unimodal with mode at

m = µ

{(
1 + κ2

)1/2
− κ

}
(2)

where κ = 3φµ/2 (Johnson and Kotz, 1970, p. 142). The second factor in the mode is strictly between
0 and 1, showing that the mode is strictly between 0 and µ. Figure 1 shows the pdf of the IGD for
various choices of µ and λ.

Care needs to be taken with special cases when evaluating the pdf (Table 1). When φµ is large, a
Taylor series expansion shows that the mode becomes dependent on φ only:

m = µκ

{(
1 + κ−2

)1/2
− 1
}

= µκ

(
1

2κ2 −
1

8κ4 +
1

16κ6 − · · ·
)
≈ µκ

1
2κ2 =

1
3φ

. (3)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=statmod


CONTRIBUTED RESEARCH ARTICLES 341

Description Parameter values log-pdf pdf cdf

Left limit x < 0 −∞ 0 0
Left limit x = 0, µ > 0 and φ < ∞ −∞ 0 0
Left limit x < µ and φ = 0 −∞ 0 0
Right limit x = ∞ −∞ 0 1
Right limit x > µ and φ = 0 −∞ 0 1
Right limit x > 0 and φ = ∞ −∞ 0 1
Spike x = µ < ∞ and φ = 0 ∞ ∞ 1
Spike x = 0 and φ = ∞ ∞ ∞ 1
Inverse chisquare µ = ∞ and φ < ∞ Eqn 5 Eqn 5 Uses pchisq
Invalid µ < 0 or φ < 0 NA NA NA

Table 1: Probability density function values for special cases of the parameter values. The pdf values
for infinite parameters are theoretical limit values.

Under the same conditions, the peak value of the density can be seen to converge to φ(2π/27)−1/2

× exp(−3/2). This shows that the distribution has a spike at 0 whenever φ is very large, regardless of
µ. It is also known that

(X− µ)2

φXµ2 ∼ χ2
1 (4)

(Shuster, 1968). Amongst other things, this implies that 1/(Xφ) ∼ χ2
1 asymptotically for µ large. For

infinite µ, the density becomes

d(x; ∞, φ) =
(

2πx3φ
)−1/2

exp
(
− 1

2φx

)
. (5)

The pdf is always NA if x is NA. Missing values for φ lead to NA values for the pdf except when x < 0 or
x = ∞. Missing values for µ lead to NA values for the pdf except when x < 0, x = ∞ or φ = ∞.

Next we give some code examples. We start by loading the packages that we will compare. Note
that statmod is loaded last and is therefore first in the search path.

> library(rmutil)
> library(SuppDists)
> library(STAR)
> library(statmod)

The statmod dinvgauss function checks for out-of-range or missing values:

> options(digits = 3)
> dinvgauss(c(-1, 0, 1, 2, Inf, NA), mean = 1.5, dispersion = 0.7)
[1] 0.000 0.000 0.440 0.162 0.000 NA

Infinite mean corresponds to an inverse-chisquare case:

> dinvgauss(c(-1, 0, 1, 2, Inf, NA), mean = Inf, dispersion = 0.7)
[1] 0.000 0.000 0.233 0.118 0.000 NA

Infinite dispersion corresponds to a spike at 0 regardless of the mean:

> dinvgauss(c(-1, 0, 1, 2, Inf, NA), mean = NA, dispersion = Inf)
[1] 0 Inf 0 0 0 NA

Extreme x values have zero density regardless of the mean or dispersion:

> dinvgauss(c(-1, 0, 1, Inf), mean = NA, dispersion = NA)
[1] 0 NA NA 0

All the existing functions rmutil::dinvgauss, SuppDist::dinvGauss and STAR::dinvgauss return
errors for the above calls; they do not tolerate NA values, or infinite parameter values, or x values
outside the support of the distribution.
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Cumulative distribution function

Let p(q; µ, φ) = P(X ≤ q) be the left tail cdf, and write p̄(q; µ, φ) for the right tail probability P(X >
q) = 1− p(q; µ, φ). The formula developed by Shuster (1968) for the cdf is

p(q; µ, φ) = pnorm((qm − 1)/r) + exp (2/φm)pnorm(−(qm + 1)/r)

where qm = q/µ, φm = φµ, r = (qφ)1/2 and pnorm is the cdf of the standard normal distribution. The
right tail probability can be written similarly:

p̄(q; µ, φ) = p̄norm((qm − 1)/r)− exp (2/φm)pnorm(−(qm + 1)/r)

where p̄norm is the right tail of the standard normal. The fact that this formula is additive on the
unlogged scale poses some numerical problems. The pnorm() evaluations are subject to floating under-
flow, the exp() evaluation is subject to overflow, and there is the danger of subtractive cancellation
when computing the right tail probability.

It is possible to derive an asymptotic expression for the right tail probability. If q is very large then:

log p̄(q; 1, φ) ≈ 1
φm
− 0.5 log π − log(2φm)− 1.5 log

(
qm

2φm
+ 1
)
− qm

2φm
.

See the Appendix for the derivation of this approximation. This approximation is very accurate when
φ−1/2

m (qm − 1) > 105, but only gives 2–3 significant figures correctly for more modest values such as
φ−1/2

m (qm − 1) = 10.

To avoid or minimize the numerical problems described above, we convert the terms in the cdf to
the log-scale and remove a common factor before combining the two term terms to get log p. Given a
quantile value q, we compute the corresponding log p as follows:

a = log pnorm((qm − 1)/r)
b = 2/φm + log pnorm(−(qm + 1)/r)

log p = a + log1p(exp(b− a))

where log pnorm() is computed by pnorm with lower.tail=TRUE and log.p=TRUE. Note also that
log1p() is an R function that computes the logarithm of one plus its argument avoiding subtrac-
tive cancellation for small arguments. The computation of the right tail probability is similar but
with

a = log p̄norm((qm − 1)/r)
log p̄ = a + log1p(− exp(b− a)).

Because of this careful computation, statmod::pinvgauss function is able to compute correct cdf
values even in the far tails of the distribution:

> options(digits = 4)
> pinvgauss(0.001, mean = 1.5, disp = 0.7)
[1] 3.368e-312
> pinvgauss(110, mean = 1.5, disp = 0.7, lower.tail = FALSE)
[1] 2.197e-18

None of the existing functions can distinguish such small left tail probabilities from zero:

> rmutil::pinvgauss(0.001, m = 1.5, s = 0.7)
[1] 0
> SuppDists::pinvGauss(0.001, nu = 1.5, lambda = 1/0.7)
[1] 0
> STAR::pinvgauss(0.001, mu = 1.5, sigma2 = 0.7)
[1] 0

rmutil::pinvgauss doesn’t compute right tail probabilities. STAR::pinvgauss does but can’t distin-
guish right tail probabilities less than 1e-17 from zero:

> STAR::pinvgauss(110, mu = 1.5, sigma2 = 0.7, lower.tail = FALSE)
[1] 0

SuppDists::pinvGauss returns non-zero right tail probabilities, but these are too large by a factor of
10:
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> SuppDists::pinvGauss(110, nu = 1.5, lambda = 1/0.7, lower.tail = FALSE)
[1] 2.935e-17

The use of log-scale computations means that statmod::pinvgauss can accurately compute log-
probabilities that are too small to be represented on the unlogged scale:

> pinvgauss(0.0001, mean = 1.5, disp = 0.7, log.p = TRUE)
[1] -7146.914

None of the other packages can compute log-probabilities less than about −700.

pinvgauss handles special cases similarly to dinvgauss (Table 1). Again, none of the existing
functions do this:

> pinvgauss(c(-1, 0, 1, 2, Inf, NA), mean = 1.5, dispersion = 0.7)
[1] 0.0000 0.0000 0.5009 0.7742 1.0000 NA

Infinite mean corresponds to an inverse-chisquare case:

> pinvgauss(c(-1, 0, 1, 2, Inf, NA), mean = Inf, dispersion = 0.7)
[1] 0.000 0.000 0.232 0.398 1.000 NA

Infinite dispersion corresponds to a spike at 0 regardless of the mean:

> pinvgauss(c(-1, 0, 1, 2, Inf, NA), mean = NA, dispersion = Inf)
[1] 0 1 1 1 1 NA

Extreme x values have cdf equal to 0 or 1 regardless of the mean or dispersion:

> pinvgauss(c(-1, 0, 1, Inf), mean = NA, dispersion = NA)
[1] 0 NA NA 1

We can test the accuracy of the cdf functions by comparing to the cdf of the χ2
1 distribution. For

any q1 < µ, let q2 > µ be that value satisfying

z =
(q1 − µ)2

φµ2q1
=

(q2 − µ)2

φµ2q2
.

From equation 4, we can conclude that the upper tail probability for the χ2
1 distribution at z should be

the sum of the IGD tail probabilities for q1 and q2, i.e.,

p̄chisq(z) = p(q1; µ, φ) + p̄(q2; µ, φ). (6)

The following code implements this process for an illustrative example with µ = 1.5, φ = 0.7 and
q1 = 0.1. First we have to solve for q2:

> options(digits = 4)
> mu <- 1.5
> phi <- 0.7
> q1 <- 0.1
> z <- (q1 - mu)^2 / (phi * mu^2 * q1)
> polycoef <- c(mu^2, -2 * mu - phi * mu^2 * z, 1)
> q <- Re(polyroot(polycoef))
> q
[1] 0.1 22.5

The chisquare cdf value corresponding to the left hand size of equation 6 is:

> options(digits = 18)
> pchisq(z, df = 1, lower.tail = FALSE)
[1] 0.00041923696954098788

Now we compute the right hand size of equation 6 using each of the IGD packages, starting with
statmod:

> pinvgauss(q[1], mean = mu, disp = phi) +
+ pinvgauss(q[2], mean = mu, disp = phi, lower.tail = FALSE)
[1] 0.00041923696954098701
> rmutil::pinvgauss(q[1], m = mu, s = phi) +
+ 1 - rmutil::pinvgauss(q[2], m = mu, s = phi)
[1] 0.00041923696954104805
> SuppDists::pinvGauss(q[1], nu = mu, lambda = 1/phi) +
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+ SuppDists::pinvGauss(q[2], nu = mu, lambda = 1/phi, lower.tail = FALSE)
[1] 0.00041923696954101699
> STAR::pinvgauss(q[1], mu = mu, sigma2 = phi) +
+ STAR::pinvgauss(q[2], mu = mu, sigma2 = phi, lower.tail = FALSE)
[1] 0.00041923696954100208

It can be seen that the statmod function is the only one to agree with pchisq to 15 significant figures,
corresponding to a relative error of about 10−15. The other three packages give 12 significant figures,
corresponding to relative errors of slightly over 10−12.

More extreme tail values give even more striking results. We repeat the above process now with
q1 = 0.01:

> q1 <- 0.01
> z <- (q1 - mu)^2 / (phi * mu^2 * q1)
> polycoef <- c(mu^2, -2 * mu - phi * mu^2 * z, 1)
> q <- Re(polyroot(polycoef))

The reference chisquare cdf value is:

> pchisq(z, df = 1, lower.tail = FALSE)
[1] 1.6427313604456241e-32

This can be compared to the corresponding values from the IGD packages:

> pinvgauss(q[1], mean = mu, disp = phi) +
+ pinvgauss(q[2], mean = mu, disp = phi, lower.tail = FALSE)
[1] 1.6427313604456183e-32
> rmutil::pinvgauss(q[1], m = mu, s = phi) +
+ 1 - rmutil::pinvgauss(q[2], m = mu, s = phi)
[1] 0
> SuppDists::pinvGauss(q[1], nu = mu, lambda = 1/phi) +
+ SuppDists::pinvGauss(q[2], nu = mu, lambda = 1/phi, lower.tail = FALSE)
[1] 8.2136568022278466e-33
> STAR::pinvgauss(q[1], mu = mu, sigma2 = phi) +
+ STAR::pinvgauss(q[2], mu = mu, sigma2 = phi, lower.tail = FALSE)
[1] 1.6319986233795599e-32

It can be seen from the above that rmutil and SuppDists do not agree with pchisq to any significant
figures, meaning that the relative error is close to 100%, while STAR manages 3 significant figures.
statmod on the other hand continues to agree with pchisq to 15 significant figures.

Inverting the cdf

Now consider the problem of computing the quantile function q(p; µ, φ). The quantile function
computes q satisfying P(X ≤ q) = p.

If qn is an initial approximation to q, then Newton’s method is a natural choice for refining the
estimate. Newton’s method gives the updated estimate as

qn+1 = qn +
p− p(qn; µ, φ)

d(qn; µ, φ)
.

For right-tail probabilities, the Newton step is almost the same:

qn+1 = qn −
p− p̄(qn; µ, φ)

d(qn; µ, φ)

where now P(X > q) = p. Newton’s method is very attractive because it is quadratically convergent
if started sufficiently close to the required value. It is hard however to characterize how close the
starting value needs to be to achieve convergence and in general there is no guarantee that the Newton
iteration will not diverge or give impossible values such as q < 0 or q = ∞. Our approach is to derive
simple conditions on the starting values such that the Newton iteration always converges and does so
without any backtracking. We call this behavior monotonic convergence .

Recall that the IGD is unimodal for all parameter values with mode m given previously. It follows
that the pdf d(q; µφ) is increasing for all q < m and decreasing for all q > m and the cdf p(q; µ, φ) is
convex for q < m and concave for q > m. In other words, the cdf has a point of inflexion at the mode
of the distribution.
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Figure 2: Monotonic Newton’s method for quantiles of inverse Gaussian distributions. The cdf has a
point of inflexion, marked by a red dot, at the mode of the distribution. Blue lines show the progress of
the iteration for the 0.01 or 0.99 quantiles. Since the cdf is convex to the left of the mode and concave to
the right, starting the iteration at the point of inflexion ensures convergence to the required quantiles
without any backtracking.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 346

Suppose that the required q satisfies q ≥ m and suppose that the working estimate satisfies
m ≤ qn ≤ q. It can be seen that the cdf is concave in the interval [qn, q], the Newton step will be
positive and the updated estimate qn+1 will still satisfy m ≤ qn+1 ≤ q (Figure 2). Suppose instead that
q < m and suppose that the working estimate satisfies q ≤ qn ≤ m. In this case it can be seen that
the cdf is convex in the interval [qn, q], the Newton step will be negative and the updated estimate qn
will still satisfy q ≤ qn+1 ≤ m (Figure 2). It follows that Newton’s method is always monotonically
convergent provided that the starting value lies between the mode m and the required value q. In
fact the mode m itself can be used as the starting value. Note that to compute the mode m accurately
without subtractive cancellation we use equation 3 when κ is large and use equation 2 otherwise.

We use q0 = m as the starting value for the Newton iteration unless the left or right tail probability
is very small. When the left tail probability is less than 10−5, we use instead

q0 =
µ

φq2
norm

where qnorm is the corresponding quantile of the standard normal distribution. When the right tail
probability is less than 10−5, we use

q0 = qgamma

where qgamma is the corresponding quantile of the gamma distribution with the same mean and
variances as the IGD. These starting values are closer to the required q than is m but still lie between m
and the required q and so are in the domain of monotonic convergence. We use the alterative starting
values only for extreme tail probabilities because in other cases the computational cost of computing
the starting value is greater than the saving enjoyed by reducing the number of Newton iterations that
are needed.

The term p− p(qn; µ, φ) in the Newton step could potentially suffer loss of floating point precision
by subtractive cancellation when p and p(qn; µ, φ) are nearly equal or if p is very close to 1. To avoid
this we work with p on the log-scale and employ a Taylor series expansion when p and p(qn; µ, φ) are
relatively close. Let δ = log p− log p(qn; µ, φ). When |δ| < 10−5, we approximate

p− p(qn; µ, φ) ≈ δ exp {log p + log1p(−δ/2)} .

Here log p(qn; µ, φ) is computed by pinvgauss with log.p=TRUE and log1p(−δ/2) is computed using
the log1p function.

We find that the statmod qinvgauss package gives 16 significant figures whereas the other pack-
ages give no more than 6–8 figures of accuracy. Precision can be demonstrated by comparing the
probability vector p with the values obtained by passing the probabilities through qinvgauss and
pinvgauss. qinvgauss and pinvgauss are inverse functions, so the final probabilities should be equal in
principle to the original values. Error is measured by comparing the original and processed probability
vectors:

> p <- c(0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5,
+ 0.9, 0.99, 0.999, 0.9999, 0.99999, 0.999999)
>
> p1 <- pinvgauss(qinvgauss(p, mean = 1, disp = 1), mean = 1, disp = 1)
> p2 <- rmutil::pinvgauss(rmutil::qinvgauss(p, m = 1, s = 1), m = 1, s = 1)
> p3 <- SuppDists::pinvGauss(SuppDists::qinvGauss(p, nu = 1, la = 1), nu = 1, la = 1)
> p4 <- STAR::pinvgauss(STAR::qinvgauss(p, mu = 1, sigma2 = 1), mu = 1, sigma2 = 1)
>
> options(digits = 4)
> summary( abs(p-p1) )

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00e+00 0.00e+00 0.00e+00 1.92e-17 2.20e-19 2.22e-16
> summary( abs(p-p2) )

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00e+00 5.10e-09 8.39e-08 3.28e-07 5.92e-07 1.18e-06
> summary( abs(p-p3) )

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00e-12 6.00e-12 2.77e-10 1.77e-09 2.58e-09 1.03e-08
> summary( abs(p-p4) )

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00e+00 0.00e+00 1.20e-08 8.95e-07 2.17e-07 6.65e-06

It can be seen that the error for statmod::qinvgauss is never greater than 2e-16.

Similar results are observed if relative error is assessed in terms of the quantile q instead of the
probability p:
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> q <- qinvgauss(p, mean = 1, disp = 1)
> q1 <- qinvgauss(pinvgauss(q, mean = 1, disp = 1), mean = 1, disp = 1)
> q2 <- rmutil::qinvgauss(rmutil::pinvgauss(q, m = 1, s = 1), m = 1, s = 1)
> q3 <- SuppDists::qinvGauss(SuppDists::pinvGauss(q, nu = 1, la = 1), nu = 1, la = 1)
> q4 <- STAR::qinvgauss(STAR::pinvgauss(q, mu = 1, sigma2 = 1), mu = 1, sigma2 = 1)
> summary( abs(q1-q)/q )

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00e+00 0.00e+00 0.00e+00 5.57e-17 0.00e+00 4.93e-16
> summary( abs(q2-q)/q )

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00e+00 1.70e-06 3.30e-06 8.94e-05 8.80e-05 5.98e-04
> summary( abs(q3-q)/q )

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.09e-08 3.94e-08 4.78e-08 4.67e-08 5.67e-08 8.93e-08
> summary( abs(q4-q)/q )

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00e+00 3.00e-07 1.40e-06 9.20e-05 9.42e-05 5.46e-04

The relative error for statmod::qinvgauss is never worse than 5e-16.

Speed was determined by generating p as a vector of a million random uniform deviates, and
running the qinvgauss or qinvGauss functions on p with mean and dispersion both equal to one.

> set.seed(20140526)
> u <- runif(1000)
> p <- runif(1e6)
> system.time(q1 <- qinvgauss(p, mean = 1, shape = 1))

user system elapsed
4.29 0.41 4.69

> system.time(q2 <- rmutil::qinvgauss(p, m = 1, s = 1))
user system elapsed

157.39 0.03 157.90
> system.time(q3 <- SuppDists::qinvGauss(p, nu = 1, lambda = 1))

user system elapsed
13.59 0.00 13.68

> system.time(q4 <- STAR::qinvgauss(p, mu = 1, sigma2 = 1))
user system elapsed

266.41 0.06 267.25

Timings shown here are for a Windows laptop with a 2.7GHz Intel i7 processor running 64-bit R-devel
(built 31 January 2016). The statmod qinvgauss function is 40 times faster than the rmutil or STAR
functions about 3 times faster than SuppDists.

Reliability is perhaps even more crucial than precision or speed. SuppDists::qinvGauss fails
for some parameter values because Newton’s method does not converge from the starting values
provided:

> options(digits = 4)
> SuppDists::qinvGauss(0.00013, nu=1, lambda=3)
Error in SuppDists::qinvGauss(0.00013, nu = 1, lambda = 3) :
Iteration limit exceeded in NewtonRoot()

By contrast, statmod::qinvgauss runs successfully for all parameter values because divergence of the
algorithm is impossible:

> qinvgauss(0.00013, mean = 1, shape = 3)
[1] 0.1504

qinvgauss returns right tail values accurately, for example:

> qinvgauss(1e-20, mean = 1.5, disp = 0.7, lower.tail = FALSE)
[1] 126.3

The same probability can be supplied as a left tail probability on the log-scale, with the same result:

> qinvgauss(-1e-20, mean = 1.5, disp = 0.7, log.p = TRUE)
[1] 126.3

Note that qinvgauss returns the correct quantile in this case even though the left tail probability is
not distinguishable from 1 in floating point arithmetic on the unlogged scale. By contrast, the rmutil
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and STAR functions do not compute right tail values and the SuppDists function fails to converge for
small right tail probabilities:

> SuppDists::qinvGauss(1e-20, nu = 1.5, lambda = 1/0.7, lower.tail = FALSE)
Error in SuppDists::qinvGauss(1e-20, nu = 1.5, lambda = 1/0.7, lower.tail = FALSE) :
Infinite value in NewtonRoot()

Similarly for log-probabilities, the rmutil and STAR functions do not accept log-probabilities and the
SuppDists function gives an error:

> SuppDists::qinvGauss(-1e-20, nu = 1.5, lambda = 1/0.7, log.p=TRUE)
Error in SuppDists::qinvGauss(-1e-20, nu = 1.5, lambda = 1/0.7, log.p = TRUE) :
Infinite value in NewtonRoot()

All the statmod IGD functions allow variability to be specified either by way of a dispersion (φ) or
shape (λ) parameter:

> args(qinvgauss)
function (p, mean = 1, shape = NULL, dispersion = 1, lower.tail = TRUE,

log.p = FALSE, maxit = 200L, tol = 1e-14, trace = FALSE)

Boundary or invalid p are detected:

> options(digits = 4)
> qinvgauss(c(0, 0.5, 1, 2, NA))
[1] 0.0000 0.6758 Inf NA NA

as are invalid values for µ or φ:

> qinvgauss(0.5, mean = c(0, 1, 2))
[1] NA 0.6758 1.0285

The statmod functions dinvgauss, pinvgauss and qinvgauss all preserve the attributes of the
first input argument provided that none of the other arguments have longer length. For example,
qinvgauss will return a matrix if p is a matrix:

> p <- matrix(c(0.1, 0.6, 0.7, 0.9), 2, 2)
> rownames(p) <- c("A", "B")
> colnames(p) <- c("X1", "X2")
> p

X1 X2
A 0.6001 0.3435
B 0.4919 0.4987
> qinvgauss(p)

X1 X2
A 0.8486 0.4759
B 0.6637 0.6739

Similarly the names of a vector are preserved on output:

> p <- c(0.1, 0.6, 0.7, 0.9)
> names(p) <- LETTERS[1:4]
> qinvgauss(p)

A B C D
0.2376 0.8483 1.0851 2.1430

Random deviates

The functions statmod::rinvgauss, SuppDists::rinvGauss and STAR::rinvgauss all use the same
algorithm to compute random deviates from the IGD. The method is to generate chisquare random
deviates corresponding to (X − µ)2/(φXµ2), and then choose between the two possible X values
leading to the same chisquare value with probabilities worked out by Michael et al. (1976). The
SuppDists function is faster than the others because of the implementation in C. Nevertheless, the
pure R statmod and STAR functions are acceptably fast. The statmod function generates a million
random deviates in about a quarter of a second of elapsed time on a standard business laptop computer
while STAR takes about half a second.

The rmutil::rinvgauss function generates random deviates by running qinvgauss on random
uniform deviates. This is far slower and less accurate than the other functions.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 349

Discussion

Basic probability calculations for the IGD have been available in various forms for some time but
the functions described here are the first to work for all parameter values and to return close to full
machine accuracy.

The statmod functions achieve good accuracy by computing probabilities on the log-scale where
possible. Care is given to handle special limiting cases, including some cases that have not been
previously described. The statmod functions trap invalid parameter values, provide all the standard
arguments for probability functions in the R and preserve argument attributes on output.

A new strategy has been described to invert the cdf using a monotonically convergent Newton
iteration. It may seem surprising that we recommend starting the iteration from the same value
regardless of the quantile required. Intuitively, a starting value that is closer to the required quantile
might have been expected to be better. However using an initial approximation runs the risk of
divergence, and convergence of Newton’s method from the mode is so rapid that the potential
advantage of a closer initial approximation is minimized. The statmod qinvgauss function is 40 times
faster than the quantile functions in the rmutil or STAR packages, despite returning 16 rather than
6 figures of accuracy. It is also 3 times faster than SuppDists, even though SuppDists::qinvGauss is
written in C, uses the same basic Newton strategy and has a less stringent stopping criterion. The
starting values for Newton’s method used by SuppDists::qinvGauss are actually closer to the final
values than those used by statmod::qinvgauss, but the latter are more carefully chosen to achieve
smooth convergence without backtracking. SuppDists::qinvGauss uses the log-normal approximation
of Whitmore and Yalovsky (1978) to start the Newton iteration and the STAR::qinvgauss uses the same
approximation to setup the interval limits for uniroot. Unfortunately the log-normal approximation
has much heavier tails than the IGD, meaning that the starting values are more extreme than the
required quantiles and are therefore outside the domain of monotonic convergence.

As well as the efficiency gained by avoiding backtracking, monotonic convergence has the advan-
tage that any change in sign of the Newton step is a symptom that the limits of floating point accuracy
have been reached. In the statmod qinvgauss function, the Newton iteration is stopped if this change
of sign occurs before the convergence criterion is achieved.

The current statmod functions could be made faster by reimplementing in C, but the pure R
versions have benefits in terms of understandability and easy maintenance, and they are only slightly
slower than comparable functions such as qchisq and qt.

This strategy used here to compute the quantile could be used for any continuous unimodal
distribution, or for continuous distribution that can be transformed to be unimodal.

> sessionInfo()
R Under development (unstable) (2016-01-31 r70055)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1

locale:
[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252
[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C
[5] LC_TIME=English_Australia.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] statmod_1.4.24 STAR_0.3-7 codetools_0.2-14 gss_2.1-5
[5] R2HTML_2.3.1 mgcv_1.8-11 nlme_3.1-124 survival_2.38-3
[9] SuppDists_1.1-9.2 rmutil_1.0

loaded via a namespace (and not attached):
[1] Matrix_1.2-3 splines_3.3.0 grid_3.3.0 lattice_0.20-33
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Appendix: asymptotic right tail probabilities

Here we derive an asymptotic expression for the right tail probability, p̄(q; µ, φ), when q is large.
Without loss of generality, we will assume µ = 1. First, we drop the 1/x term in the exponent of the
pdf (1), leading to:

d(x; 1, φ) ≈
(

2πφx3
)−1/2

exp
(
− x

2φ
+

1
φ

)
for x large. Integrating the pdf gives the right tail probability as:

p̄(q; 1, φ) ≈ exp
(

φ−1
)
(2πφ)−1/2

∫ ∞

q
x−3/2 exp

(
− x

2φ

)
dx

for q large. Transforming the variable of integration gives:

p̄(q; 1, φ) ≈ exp
(

φ−1
)
(2πφ)−1/2(2φ)−1/2

∫ ∞

q/(2φ)
x−3/2 exp(−x)dx.

Finally, we approximate the integral using∫ ∞

a
x−3/2 exp(−x)dx ≈ (a + 1)−3/2 exp(−a),

which gives

p̄(q; 1, φ) ≈ exp
(

φ−1
)

π−1/2 (2φ)−1
(

q
2φ

+ 1
)−3/2

exp
(
− q

2φ

)
and

log p̄(q; 1, φ) ≈ 1
φ
− 0.5 log π − log(2φ)− 1.5 log

(
q

2φ
+ 1
)
− q

2φ

for q large.
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