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Abstract

Background: The increasing affordability of DNA sequencing has allowed it to be widely deployed in pathology
laboratories. However, this has exposed many issues with the analysis and reporting of variants for clinical diagnostic
use. Implementing a high-throughput sequencing (NGS) clinical reporting system requires a diverse combination of
capabilities, statistical methods to identify variants, global variant databases, a validated bioinformatics pipeline, an
auditable laboratory workflow, reproducible clinical assays and quality control monitoring throughout. These
capabilities must be packaged in software that integrates the disparate components into a useable system.

Results: To meet these needs, we developed a web-based application, PathOS, which takes variant data from a patient
sample through to a clinical report. PathOS has been used operationally in the Peter MacCallum Cancer Centre for two
years for the analysis, curation and reporting of genetic tests for cancer patients, as well as the curation of large-scale
research studies. PathOS has also been deployed in cloud environments allowing multiple institutions to use separate,
secure and customisable instances of the system. Increasingly, the bottleneck of variant curation is limiting the
adoption of clinical sequencing for molecular diagnostics. PathOS is focused on providing clinical variant curators and
pathology laboratories with a decision support system needed for personalised medicine. While the genesis of PathOS
has been within cancer molecular diagnostics, the system is applicable to NGS clinical reporting generally.

Conclusions: The widespread availability of genomic sequencers has highlighted the limited availability of software to
support clinical decision-making in molecular pathology. PathOS is a system that has been developed and refined in a
hospital laboratory context to meet the needs of clinical diagnostics. The software is available as a set of Docker
images and source code at https://github.com/PapenfussLab/PathOS.

Background
The transition from single gene assays to multiple can-
cer gene panels has highlighted the need for scalable
reporting systems capable of supporting increasing assay
volumes.
Clinical diagnostics often involves a complex chain of

technology, software and expertise interoperating to
achieve a robust, clinically defensible report. Increasingly,

computer software and databases are involved in expand-
ing the scope, accuracy and detail of diagnostic assays.
Clinical cancer next-generation sequencing (NGS) assays,
in particular, are dependent on many software subsystems
and databases to deliver their results. The authors have
previously highlighted a number of issues surrounding
these dependencies [1] and in this paper we present a so-
lution to address the lack of decision support tools in mo-
lecular diagnostics.
The Peter MacCallum Cancer Centre (Peter Mac) is

Australia’s largest hospital dedicated to cancer. The
Department of Pathology at the Peter Mac performs a
wide variety of assays for internal patients as well as re-
gional and national pathology laboratories. In 2012, the
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lab undertook a transition from traditional Sanger-based
DNA sequencing to higher volume NGS allowing mul-
tiple genes and multiple samples to be routinely se-
quenced in a single sequencing run. Additionally, a large
prospective pan-cancer study [2] required the storage
and analysis of thousands of research samples and their
variants in addition to operational patient samples. At
this time, the lack of software applications capable of
storing, analysing and reporting on NGS variants led to
the development of the in-house system described in
this paper.
The intrinsic nature of cancer highlights many chal-

lenges for sequencing. Germline samples contain homo-
zygous and heterozygous variants present at allele
frequencies of 100% and 50%, respectively. These values
are well above the background level of low-frequency se-
quence variants associated with sequencing errors typ-
ical of NGS. In contrast, tumour specimens can contain
an unknown mix of tumour and non-tumour cells,
resulting in reduced variant allele frequency. Addition-
ally, tumour heterogeneity can further dilute the muta-
tional signal of variants.
The need to reliably identify low-frequency somatic

variants has led Peter Mac to employ targeted deep se-
quencing of samples via custom and off the shelf ampli-
con panels or targeted capture panel technology. In
contrast to whole-exome or whole-genome sequencing,
this allows high sensitivity through very deep sequencing
(>1000× coverage) across cancer implicated genes and
mutational hot spots.
A consequence of building software systems for

clinical use is the mandatory requirements of reliabil-
ity and reproducibility imposed by diagnostic labora-
tory accreditation bodies such as Clinical Laboratory
Improvement Amendments (CLIA), National Association
of Testing Authorities (NATA) [3] and the International
Organisation for Standardisation (ISO 15189). In addition
to regulatory obligations, medical systems storing patient
level genetic data should operate as an operationally crit-
ical system and encompass functionality such as password
protection, role-based access, audit trails, high availability
and version controlled release cycles. Many of these fea-
tures are not found in research software, the common
pedigree of genomics software.
The adoption of NGS in a clinical diagnostic setting

has highlighted the need for laboratories to automate
previously manual processes. This trend will continue as
the demand for more complex assays increases and im-
proving technology allows patients to be tested multiple
times during their health system encounter with tech-
niques such as liquid biopsies [4]. The last few years
have seen many software systems appear which assist in
the automation of NGS assay validation, analysis,
curation or reporting. Of these, few can perform all

these tasks and the majority of these are commercial
packages [5–10].
A review of the non-commercial systems highlights

the diversity of approaches used by NGS analysis groups.
Some systems focus on the web presentation and filter-
ing of VCF files but without the ability to curate and re-
port variants [11, 12]. There are systems that focus on
translational research and the analysis or exploration of
large datasets (such as TCGA) but not the reporting of
patient clinical results [13–18]. For a review of publicly
available research platforms, see this paper [19]. Clinical
trial reporting has also given rise to systems for the
management of large cohort trials but these lack clinical
reporting capabilities [20, 21]. The need to curate vari-
ants in a gene-centric fashion has produced locus-
specific database (LSDB) systems [22, 23] but again
without clinical reporting facilities. There are also
Mendelian disease-focused systems [24, 25] unsuitable
for cancer diagnostics. In the area of open access web re-
sources for cancer variant evidence, the contribution of
CIViC [26] is a significant and valuable resource. Future
releases of PathOS will enable compatible data exchanges
with CIViC to leverage the community knowledgebase it
represents. More complete systems that appear suitable
for clinical reporting of NGS assays are from Emory
Genetics [27] and from the University of Pittsburgh [28]
but neither of these appear to be publicly available.
Interestingly, a survey of seven of the largest gen-

etic laboratories in the US [29] identified that all had
developed in-house systems for the analysis, curation
and reporting of NGS assays and were not using
commercial tools apart from Brigham and Women’s
Hospital–Harvard Medical School who use GeneInsight
[10]. Significantly, none of these institutions are making
their systems available for public use. This leaves less
resourced diagnostic laboratories around the world with
difficult choices. Either they attempt to develop complex
decision support systems in-house and keep them current
in a rapidly changing environment or they purchase a
commercial license and rely on the vendor’s product
meeting the needs of their assays and laboratory integra-
tion requirements. PathOS addresses this lack of clinical-
quality NGS decision support systems with a web applica-
tion that can ingest results from a bioinformatics pipeline
generating compliant VCF [30] files and manage the path-
ology laboratories workflows through to a professional
clinical genetics report. The current focus is on amplicon
and capture panel assays rather than whole-genome se-
quencing (WGS) as these assays currently have the most
clinical utility for high volume cancer diagnostics, al-
though the system can operate with any valid VCF pipe-
line data. The genesis of PathOS has been for the clinical
reporting of cancer samples; however, the filtering, cur-
ation and reporting of any NGS data can be performed by
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the system. The scaling of PathOS to WGS scale ana-
lysis is only limited by underlying database perform-
ance. The current data storage platform is MariaDB
[31] (a MySQL compatible DB, as used by Google®).
This paper describes PathOS’ features and workflows

incorporating variant filtering, curation and reporting
and their integration into a complete system.

Implementation
The processing of patient samples through to a clinical
report involves wet lab, bioinformatic and analysis steps
[1]. PathOS addresses the analysis and reporting steps of
the process but should be viewed in the context of an
entire diagnostic ecosystem.
The following sections describe features of PathOS

from a workflow perspective. PathOS currently supports
a number of commercial assays and custom panels for a
variety of tumour streams. The respective volumes of
these assays are shown in Table 1. Since the introduction
of PathOS in 2013, the volume of assays processed has
grown at approximately 26% per month. In addition to
the clinical reporting of the Pathology Department, a re-
search instance of PathOS has been used to manage var-
iants from a number of clinical trials and research
projects [2, 32–34] (see Fig. 1). Current variant types
supported include single nucleotide variants (SNV) and
small insertions and deletions (indels). Copy number
variants (CNV) are also displayed from the upstream
pipelines and new features are actively being developed,
such as support for structural variants (SV) and muta-
tional signatures. A schematic of the end-to-end work-
flow is shown in Additional file 1: Figure S1 and in an
earlier paper (Supplementary Figures) [1].

Sequencing
The Peter Mac Molecular Pathology Laboratory registers
patient samples from within the hospital and from exter-
nal pathology labs. These are usually formalin-fixed

paraffin-embedded (FFPE) solid tumour samples for
somatic assays or blood samples for haematopathological
or familial cancer assays. Samples are processed to DNA
by a Hamilton liquid handling system under the control
of in-house and LIMS software. This process extracts
and quantitates DNA prior to polymerase chain reaction
(PCR) amplification in preparation for sequencing. Som-
atic samples are sequenced as technical replicates to
control for the false-positive rate inherent in amplicon-
based NGS. The amplicon panel samples have high read
coverage (mean 2297×) which captures low frequency
variants from both the wet lab PCR processes and se-
quencer errors (Fig. 2). PathOS flags variants that appear
in only one replicate and these may be filtered from sub-
sequent processing. Typical somatic sequencing runs
contain 22 patient samples, NA12878 [35] control sam-
ples and non-template controls, making a total of 48
samples per sequencing run.
Sequencing the production targeted somatic assay

on an Illumina MiSeq instrument typically yields
around 50 million reads at a median coverage depth
of 3800×. A number of quality control (QC) metrics
are collected from the sequencing and pipeline pro-
cesses such as total reads, unmapped reads and poor
coverage regions. A number of common bioinformatic
tools are used which generate QC data and are de-
tailed in Table 2.
The total reads per run metrics are used to compare

the current run to historical runs of the same assay. The
total reads generated should fall within ± 2 standard de-
viations of the previous ten runs (derived from the
Westgard rules for clinical validity). Graphs are dis-
played on the run QC screen are indicators of run, sam-
ple and assay quality (Fig. 3). The software does not pass
or fail runs or samples, but the user must determine this
from multiple displayed metrics in conjunction with the
standard operating procedures (SOP) for laboratory
sequencing.

Table 1 Diagnostic assay types

Assay Origin Type Description (genes) Size of panel
(bases)

Sample volumes
(up to June 2016)

Germline Custom in-house Amplicon Predictive and diagnostic panel for routine
germline assays (4)

28.6 Kb 7822

Somatic Custom in-house Amplicon Multiple tumour stream panel for routine
somatic assays (16a)

18.4 Kb 4325

Myeloid Custom in-house Amplicon Myeloid panel for routine haem. assays (26a) 29.9 Kb 1311

Lymphoid Custom in-house Amplicon Lymphoid panel for routine haem. assays (21a) 20.0 Kb 495

Clinical trials Illumina Dual strand amplicon Panels for volume clinical trial (41) 26.4 Kb 1323

Clinical cancer panel Custom in-house Hybrid capture General purpose somatic cancer gene
panel for routine clinical use (391a)

2.34 Mb 343

aTargeted at gene hotspot regions
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Pipelines
Although the clinical pipelines used for production
sequencing is not part of the PathOS web application,
it is versioned in the Bitbucket [36] source code con-
trol system and shares the same test and release
cycles (see “Software Deployment” section). This
alignment ensures that the data loaded into the sys-
tem matches the expected fields and semantics. The
bioinformatic pipelines are matched to the assay types
and have been validated as part of the NATA [3] ac-
creditation to the ISO 15189 (Medical Laboratories)
standard. Each new PathOS release undergoes a re-
gression test cycle to ensure that any software
changes will not impact the data processing of the
system.
The pipeline operation in PathOS has been imple-

mented in the Bpipe framework [37]. This allows
pipelines to be constructed and tested in a modular
fashion and allows rapid adoption of new technology
and bioinformatic tools into clinical assays. Within
the pipeline stages, all third-party tool dependencies
and parameters are explicitly defined to prevent inad-
vertent tool version changes outside of PathOS re-
lease cycles. This ensures overall integrity of assay
performance in which PathOS and the pipeline par-
ticipate. The Amplicon pipeline tools are described in
Table 2. Additional tools are used in hybrid capture
pipeline and are currently being detailed (manuscript
in preparation).

Variant shifting and nomenclature
All SNVs and indel variants are stored in PathOS and
identified using genome build hg19 (GRCh37) and
HGVS [38] nomenclature. Although hg19 is not the lat-
est genome build, clinical nomenclature and much re-
cent medical literature uses this build. Future software
versions will need to accommodate both hg19 and
GRCh38/hg38 as newer literature adopts the later build
in its nomenclature. To remove multiple representations
of the same variant, the variants undergo a normalisa-
tion process. Multi-allele variants are split into their
constituent parts and then all variants are trimmed to
their simplest representation and left shifted along the
chromosome if possible [39]. PathOS maintains a table
of all transcripts for genome builds together with their
exon positions. Administrators may assign a reportable
transcript for each gene, as determined by the scientist
responsible for the assay, and is usually the transcript
most frequently cited in clinical literature or reported in
variant databases. This may not always coincide with the
longest transcript denoted as the canonical transcript by
Ensembl. Variants occurring within reportable tran-
scripts are further normalised by shifting towards the 3’
end of the gene if possible, in line with HGVS standards.
This process takes advantage of the Mutalyzer SOAP
API [40] and also assigns an HGVSc and HGVSp anno-
tation and changes insertions (ins) to duplications (dup)
if required. Any 3’ shifted variants also have their
HGVSg positions adjusted. A similar normalisation is

Fig. 1 Sample and variant volumes. Chart of the increase of sample and unique sequenced variants by month from January 2012. 2016 cancer
diagnostic volumes for the Peter MacCallum Molecular Diagnostic Laboratory were 151 sequencing runs of 6023 samples yielding 213,581
unique variants
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applied to variants imported from external data sources
such as global variant databases. Normalisation is the
key to ensuring that sequenced variants may be unam-
biguously matched to variants in global knowledge bases
and be appropriately annotated.

Annotation
The variants identified in a sequencing run are anno-
tated as a single group for efficiency. A typical run of 24
samples against a 30 kb amplicon panel (on an Illumina
MiSeq) will usually yield 50 million reads with a mean of
101 variants per sample while a 568 cancer gene capture
panel (on an Illumina NextSeq) covering 3 Mb yields
600 million reads and a mean of 5750 variants per
sample.

Samples and their variants are batched when a sequen-
cing run completes. Because samples within a run often
have many common variants (recurrent assay artefacts,
common polymorphisms), it is efficient to annotate all
run variants as a batch and only annotate distinct vari-
ants within the batch. Additional efficiencies are gained
by caching annotations so that they do not need to be
reannotated when seen in subsequent runs. Over a re-
cent two-week period (13 sequencing runs), the median
percentage of distinct variants was 30.4%. Of these, a
median percentage of 13.5% variants were novel to pre-
vious annotations cached within the PathOS database.
The caching of annotation data and aggregated variant
annotation over this period gave a 24-fold reduction in
annotation time per run (the median percentage of

0 20 40 60 80 100

Myeloid Amplicon Panel (artefact variants)

Allele Frequency (%)

V
ar

ia
nt

 C
ou

nt

1
10

10
0

10
00

10
00

0

0 20 40 60 80 100

Myeloid Amplicon Panel (replicate variants)

Allele Frequency (%)

V
ar

ia
nt

 C
ou

nt

1
10

10
0

10
00

10
00

0

0 20 40 60 80 100

Clinical Cancer Hybrid Capture Panel

Allele Frequency (%)

V
ar

ia
nt

 C
ou

nt

1
10

10
0

10
00

10
00

0

0 20 40 60 80 100

0
50

10
0

15
0

Reported Variants

Allele Frequency (%)

V
ar

ia
nt

 F
re

qu
en

cy

Fig. 2 Variant allele frequency (VAF) distributions. The variant data for the first six months of 2016 have been aggregated to show the VAF
distributions for amplicon and hybrid capture panels. All scatter plots display a bimodal distribution with a peak at 50% allele frequency for
heterozygous variants and 100% for homozygous variants. The top left plot shows all variants in the custom myeloid amplicon panel prior to
filtering (n = 66,210). It shows a number of peaks that are due to technical panel artefacts. The top right plot shows variants remaining (n = 13,649
20.6%) after removing; variants occurring in one sample replicate only, variants occurring in more than 35% of samples in the myeloid panel
(panel artefacts) and variants with less than 100 total reads or less than 20 alternative reads. The resulting distribution is far smoother and free
from technical artefacts. Note the large peak at low VAF%. The amplicon panel samples have high read coverage (mean 2297×) which captures
low frequency variants from both the wet lab PCR processes and sequencer errors. In contrast, the bottom left plot shows variants from the
hybrid capture cancer panel and has no low VAF peak (mean coverage 246×). This is due to multiple factors including lower coverage meaning
fewer low VAF variants pass the variant caller threshold (3.0%), more stringent pipeline filtering for hybrid capture and different wet lab
processing. The histogram shows all manually reported somatic variants over this period and shows a skew towards low VAF% due to tumour
purity (samples of mixed tumour and normal cells) and tumour heterogeneity (variants occurring only within clones in a heterogeneous tumour)
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variants needing annotation for all runs was 30.4% ×
13.5% = 4.1%).
Annotated variants are cached and keyed by data

source which currently includes VEP [41], Annovar
[42, 43], Mutalyzer [38], Clinvitae [44] and IARC
[45]. These data sources in turn aggregate a number
of other sources such as Clinvar [46], kConFab [47]
and COSMIC [48–50]. In addition to speeding up
variant processing, caching facilitates independently
refreshing each data source and is currently per-
formed as part of a PathOS regression testing release
cycle. Each data source contains varying numbers of
attributes for each variant. These attributes are not
normalised by the system but maintained together
with metadata, which categorises and describes each
attribute. The attribute metadata also contains a cus-
tomisable list of tags to allow users to search for spe-
cific types of variant attributes or customise their
screen information during data review.

Filtering
There are two mechanisms for filtering annotated vari-
ants produced by the pipelines. The first is automatically
applied by PathOS at data load time based on the assay
being performed while the second is user selectable
through the web GUI. In the second case, the user is
permitted to report on any variant regardless of its fil-
tered state. Appropriate workflow processes are enforced
to match laboratory practices (see “Curation” section).
Multiple in-built filtering flags are applied to each vari-

ant when it is loaded into PathOS at the completion of a

sequencing run. A filtering configuration file contains
threshold parameters for each assay including minimum
variant depth, minimum read depth, minimum variant
frequency, maximum variant frequency for samples
within an assay and a blacklist of variants for the assay.
These automatic filtering flags are described in Fig. 4.
In addition to the filtering of variants based on these

automatically applied flags, the user may also apply com-
plex multi-clause filters based on any of 93 annotations
associated with each variant (Fig. 4, Additional file 2:
Table S1). Specific gene sets can be selected by the user
with clauses such as:
[Gene ‘Is In’ BRAF,KRAS,RNF43,NRAS] where the gene

list may be hundreds of genes long.
A number of preset filter templates allow filters to

be applied for particular clinical scenarios. For ex-
ample, choosing the “Colorectal” filter will display all
variants in the genes BRAF, KRAS and NRAS that
are not blacklisted, occur in both replicates, have in-
ferred protein coding consequences, have < 1% allele
frequency in population databases and do not occur
frequently in other assay samples. Users can inspect
these filtered variants first as these are most likely to
include reportable variants. Other preset filters and
their genes include: Melanoma (BRAF, NRAS, RAC1,
KIT); Lung (BRAF, EGFR, KRAS, MET); Gastro Intes-
tinal Stromal Tumour (KIT, PDGFRA); BRCA Only
(BRCA1, BRCA2); and MNP Simple (JAK2, MPL,
CALR, KIT, SF3B1, CSF3R, ASXL1). There are also
filters for large gene sets such “Rahman Genes” [51]
and TARGET Genes [52].

Table 2 Pipeline dependencies

Tool Version Description Link

Bpipe 0.9.8 Pipeline workflow framework http://download.bpipe.org/

vt 1.0 Vcf manipulation tool set http://genome.sph.umich.edu/wiki/Vt

Igvtools 2.3.72 IGV tools, used for indexing VCF files for use by IGV https://www.broadinstitute.org/igv

Fastqc 0.10.1 Fatsq file quality assessment tool http://www.bioinformatics.babraham.ac.uk/projects/fastqc

Samtools 0.1.18 BAM and other file manipulation tool https://sourceforge.net/projects/samtools

VarScan 2.3.3 Variant caller for SNPs and indels http://sourceforge.net/projects/varscan

Gatk 3.4 Genome analysis toolkit from Broad Institute https://software.broadinstitute.org/gatk

Primal
aligner

1.01 In-house developed amplicon aligner in Perl

Canary 0.9 In-house developed amplicon aligner and variant
caller in Java

Manuscript in preparation

NormaliseVcf 1.2 In-house VCF normalisation tool for annotating VCFs
with gene, transcript and HGVS nomenclature

Manuscript in preparation

Picard 1.141 Tools for manipulating high-throughput
sequencing (HTS) data

http://sourceforge.net/projects/picard

Ensembl DB 78 - 85 Annotation and consequences database http://www.ensembl.org

Bcl2fastq 2.17.1 Illumina BCL to fastq file convertor https://support.illumina.com/sequencing/sequencing_software/
bcl2fastq-conversion-software.html

The upstream amplicon pipeline has a number of external tool dependencies which are shown in this table
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PathOS is used for routinely reporting germline and
somatic samples. The automatically applied filters and
the preset filter templates differ for these two sample
types: germline panels are configured with higher mini-
mum VAF% threshold (15%) and the panel blacklists re-
flect known germline polymorphisms as well as poor
sequencing regions such homopolymer regions. A zygos-
ity column is displayed for germline assays only on the
tabular variant page flagging variants as heterozygous,
homozygous or other.
The tabular columns of sample variants can be custo-

mised and saved by users to suit their needs. Columns
can be reordered by dragging the headers left or right or
hidden if not needed. A user may save their customised
layout in their personal settings, however, once a sample
has passed first review, the variant filters and column
layouts are fixed to prevent other scientists from missing
key attributes of the data. Any of the annotated attri-
butes are available for display for each variant. All

tabular data may be exported from the system as either
a CSV or MS Excel file.

Curation
The data analysis workflow within PathOS is dictated by
the laboratory’s standard operating procedures (SOP)
and reflects common practice within diagnostic labora-
tories. PathOS supports role-based access controls
(RBAC) assigned by username. RBAC applies for both
page level access and also at a more granular level within
pages by controlling which actions can be performed by
that role. The currently defined roles and descriptions
are shown in Table 3.
The standard laboratory workflow within PathOS is

for a run to be assessed for quality control (QC), and if
accepted, QC of samples is undertaken. Individual sam-
ples must then be assessed using alignment metrics such
as percent mapped reads, unmapped reads, low read
amplicons and read quality as determined by FASTQC

A

B

C

Failed 
samples

Control 
samples

Failed 
amplicons

D

Poor 
quality 

samples

Fig. 3 Quality control of runs and samples. Screen shots of graphical quality control metrics. Quality control is monitored at the sample,
sequencing run and amplicon level. a A sequencing run’s read yield is compared to all previous runs of the same assay and should reside
between ± 2 standard deviations for the last ten runs. Failed runs can be seen here dropping below the lower bound. b All samples within a run
can be compared and samples with below average reads are highlighted in red. c The per amplicon reads over all samples in the run are binned
and graphed to highlight their distribution and highlight any amplicons with less than 100 reads. Non-template controls are included in each run
and are flagged if they contain any reads. Both a sequencing run and samples within the run must be QC passed or failed by the user prior to
curation reports being produced. d The configurable heatmap of number of reads by amplicon and sample. Lighter horizontal bands indicate
poorly performing amplicons while lighter vertical bars show poorly sequenced samples, typically due to insufficient or fragmented sample DNA
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[53]. Both run and sample QC must be passed by a la-
boratory user. The analysis of variants from an individ-
ual sample takes place on a page displaying patient
details, assay requested and review status. All variants
found by sequencing and associated with a preferred
transcript can be displayed, irrespective of which in-built
filter flags are set. The filter flags assist the scientist to
identify variants of likely relevance to the patient’s can-
cer. At any time, the scientist can inspect the raw reads
in the region of a variant by viewing them with the em-
bedded genome browser [54] (see Fig. 5). Alternatively,
users can click on a link to an external IGV [55] instance
which loads a PathOS-generated IGV session file for
each sample. For both actions, the current variant is dis-
played in context using the pipeline generated BAM,
BED and VCF files and shows relevant tracks such as
amplicon locations for the regions targeted by the assay.
The pipeline data repository used by the in-built browser
or IGV is served by an Apache web instance. The

architecture of the system allows for the database, the
pipeline data repository and the PathOS website to be
located on different servers or in different institutions as
required. Once inspected, variants can then be selected
for curation and optionally reporting by the lab scientist.
Curation refers to the expert interpretation of sequence
variants in the clinical context in which they present.
When complete, the “Authorise First Review” button is
clicked to change the sample workflow status. A second
review stage can then be authorised which, optionally,
can generate a work ticket in the laboratory issue track-
ing system to notify the curation team. The Peter Mac
laboratory uses Atlassian JIRA [56] for tracking variant
curation operations, but the interface is customisable for
other issue tracking systems. Integration of PathOS
workflows with JIRA provides a framework for managing
and documenting curation activities.
The PathOS users with a curation role may create per-

sistent curation variant records within the database.

Annotated 
variants

Multi-clause 
filtering 

dialogue box

Common preset 
filters

Currently 
applied filter

Authorisation
review 
buttons

Automated 
filter flags

Curated 
variants

Fig. 4 User filtering of variants. Screenshot showing multi-clause filtering dialogue box. Users can construct complex multi-clause filters from over
70 variant attributes or choose from common preset filters. PathOS automatically applies one or more flags (when uploading samples) to each
variant based on its annotations. These flags are available for user filtering as shown in the filter being applied in the screen shot. The flags are
listed with typical filtering criteria in parenthesis: pass: Passed all filters. vaf: Low variant allele frequency (<8% Somatic, < 15% Germline). vrd:
Low total read depth (<100 reads). vad: Low variant read depth (<20 reads). blk: Assay specific variant black list (user defined). oor: Out of assay
specific region of interest (user defined). con: Inferred benign consequences (system defined). gmaf: High global minor allele frequency (>1%).
pnl: Frequently occurring variant in assay (>35%). sin: Singleton variant in replicate samples (not in both samples)
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These records are independent of sequenced variants
and are unique for each variant (recorded using HGVS
[38] nomenclature) and optionally differentiated by pa-
tient disease context. For example, the BRAF V600E has
a different clinical consequence when detected in colo-
rectal cancer than in melanoma and should be curated
distinctly for each context. Curated variants records
need only be created once within PathOS. Once created,
all subsequent samples containing the variant and pa-
tient condition will be automatically matched with the
persistent curation record and its corresponding evi-
dence (Fig. 6).
The curation of germline variants differs from somatic

variants in the genes assayed, reference databases used
(BIC [57], IARC TP53 [58]) and the artifact criteria used
in filtering. In addition, germline curation must account
for inheritance mode and familial genetics such as co-
segregation with disease. PathOS provides germline-
specific criteria on the curation evidence page (Fig. 6).
Curating novel variants can be routine for common

types (e.g. a frame-shift mutation in a known tumour
suppressor) to complex (e.g. a missense mutation in rare
cancer gene with no associated literature). Acquiring the

Table 3 User roles

Role Description

ROLE_ADMIN • Full system access
• Create and remove users
• Assign user roles

ROLE_DEV • Same rights as ROLE_ADMIN except,
• Patient names and DOBs are suppressed on screen
and in reporting

• Additional diagnostics are available within all
environments (including Production)

ROLE_CURATOR • The curators can create variant evidence
• Assign the pathogenicity for curated variants.
• If all checks pass they can lock a sample into the
final review state

• Produce final reports

ROLE_LAB • The user can update the Seqrun QC
• Update Sample QC
• Submit variants for curation
• Submit a sample for first review
• Produce draft reports

ROLE_EXPERT The user has the same access as a curator but can
subscribe to certain curation categories of interest
such as genes, variants or patients

ROLE_VIEWER The user only has access to the splash page and
the reference tables

PathOS supports multiple roles for access control and workflow

Coverage graph

Gene exon

Annotated 
Variants

Pipeline 
variant calls

Compressed 
reads

Amplicons 
with primers

Assay region 
of interest

Fig. 5 Validating variants with the embedded genome browser. PathOS links directly to the highlighted variant locus in the browser and
preloads the correct tracks for reads, variants and amplicon tracks
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necessary curation evidence from websites, literature
and clinical studies takes 0.5–5 h making high-quality
curation the limiting factor within diagnostic laborator-
ies. These figures are in line with previous studies [59]
highlighting the difference in effort between well under-
stood genes and their variants and less-studied genes.
PathOS expedites this effort through a number of

strategies:

� Matching sequenced variants with the existing
PathOS curated knowledge base,

� A powerful search facility returning context
sensitive results for data within system. Users
may perform a free text search on the main
PathOS data objects: patients, samples, sequenced
variants, curated variants, PubMed articles as well
as user and system-defined tags. Matching text
is highlighted showing the context of the hits
(Fig. 7).

� Richly annotating all variants with inferred
consequences, currently including nine in silico
prediction algorithms and ten global variant
knowledge bases which in turn aggregate additional
databases (Additional file 2: Table S1),

� Providing links to existing global data sources
including prebuilt Google® searches,

� Calculating pathogenicity classifications based on
ACMG guidelines for germline variants,

� A searchable PubMed database of over 12,000
cancer specific literature linkable to article PDFs.
The initial load of PubMed data was from articles
cited within the COSMIC database of somatic
variants. Users may optionally attach an article’s
PDF to the database for ease of access but the
system does not retrieve PDFs from external
sources due to publication restrictions.

Due to the effort and expertise required to curate vari-
ants effectively, supporting the curation process is a key
focus of future PathOS development efforts.
Once variants are curated, the curator can then pass

the sample and its documented variants through to the
“Final Review” stage. At this point, final reports may be
generated with the findings.

Reporting
There is a wide range of diagnostic reporting preferences
for diagnostic labs and even within labs. The reporting

Fig. 6 PathOS screenshots showing the curation workflow. The curator navigates to the screen on the left displaying all variants (filtered and
unfiltered) for a sample. Using an existing search template or a user configurable search dialogue, high priority variants are selected for curation.
Previously curated and known variants are shown at the top of the list together with their classification. New variants can be added to the
curation database by selecting the “Curate” checkbox. The curator then selects from a set of evidence checkboxes (right screen) characterising the
mutation. Details are displayed when the mouse hovers over the checkbox to guide the curator’s selection. When the evidence page is saved,
the five-level classification is automatically set as adapted from the ACMG guidelines for classification of germline variants
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requirements for research clinical trials are very different
again than for a specific clinical assay. To encompass
this range, PathOS passes a defined set of values from
the database into the reporting module, which is respon-
sible for the rendering of that information. Each assay is
a member of an Assay Group, which has an associated
reporting template in MS Word. The template can be
formatted in any manner and can include any of the
merge fields representing data passed from PathOS
(Fig. 8 and Additional file 3). The reporting engine can
render the template, incorporating the data, as a PDF
file, a Word document or HTML. Current practice
within the laboratory is to archive generated reports into
the Hospital Pathology LIMS system. PathOS also ar-
chives previous reports allowing users to view them for
comparison with generated reports. The number of vari-
ants in a patient’s report depends on many factors such
as the number of genes in the assay, mutational burden

and type of cancer. A greater number of less studied
genes in a targeted gene assay will increase the curation
effort and turnaround time to achieve a clinically accept-
able result.

Platform
PathOS has taken advantage of many open-source and
public Java libraries to implement an enterprise-grade
application suitable for hospital use and secure storage
of patient medical data. It interfaces to laboratory LIMS
systems for input of patient demographic details and
sample and assay registration data. An HL7 interface is
currently being developed to interface with hospital re-
cords systems.
The web application is implemented in Java, Javascript,

Groovy [60] and Grails [61] deployable on any server
supporting java servlet containers such as Tomcat. This
allows for deployment in a wide range of environments.

Search Hits

Search hit 
navigator

Search query

Context 
highlightingNavigation 

panel

User command 
history

Search metrics

Fig. 7 Search results page. Key fields within PathOS objects are designated to be globally searchable by the integrated Apache Lucene search
engine. This allows users to easily retrieve the main PathOS data objects: patients, samples, sequenced variants, curated variants, PubMed articles
as well as user and system-defined tags. Matching text is highlighted showing the context of the search string within the hits. This screenshot
shows hits found within PathOS for the string “braf”
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Access to the system is controlled by the Spring Security
Library which optionally uses an organisations LDAP
server for authentication or the internal database for au-
thorisation and role assignment. Web traffic is moni-
tored by Google® Analytics to monitor user activity for
workflow and user interface refinement.
The backend database is implemented with MariaDB,

a MySQL-compatible relational database, which stores

the variant annotation cache and persistent java objects
via Spring and Hibernate. The code base is managed in
Atlassian Bitbucket on an instance outside the organisa-
tion firewall allowing distributed developer access via
Git. In addition, a GitHub repository is maintained for
public access (https://github.com/PapenfussLab/PathOS).
Build management uses Gradle to build system modules
and create shared artefacts such as JARs, WARs and TAR

Fig. 8 Example MS Word template clinical report. An example of the MS Word mail merge style template that can be used for the format of PathOS
clinical reports. Any Word template containing the fields matching PathOS database content may be used for a report template. PathOS with populate
the report from patient, sequencing and curation data in PDF or MS Word format when users click on the generate draft report button
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files. Atlassian Bamboo is used to perform builds of sys-
tem modules triggered by developer commits to the code
repository. The PathOS search engine is implemented in
Apache Lucene. This is a powerful search framework
allowing customised search capabilities over any text field
in the PathOS domain model.
Project management uses JIRA for issue tracking

while project and laboratory documentation is held in
Confluence. All Atlassian products used within Peter
Mac have been made available through a Community
License for not-for-profit organisations from Atlassian.

Continuous integration and deployment
PathOS developers can operate both within the hospital
intranet and/or externally. Code commits to the main
development branch trigger an automatic build in
Bamboo which then runs 293 unit tests (April 2016).
If successful, deployment artifacts are created and
automatically deployed to the development environ-
ment and the WAR file is deployed to the test Tom-
cat server. Automatic test execution of the main
development branch gives early notice of any code er-
rors or build conflicts. The availability of an up-to-
date development instance of the application allows
all stakeholders to assess progress and provide early
feedback on functionality. Deployment of signed off
releases after user acceptance testing (UAT) to the
production environment uses the same build and de-
ploy processes as continuous integration to ensure
consistent build states.

Deployment environments
Multiple independent instances of PathOS with their
own databases have been deployed to meet the re-
quirements of a number of external stakeholders. The
same code base is used for all environments and de-
ployment behaviour, such as file locations and server
names, is controlled by a properties file. The main
production server is used by the hospital Molecular
Pathology Laboratory (35 users) for clinical opera-
tions. The hospital also supports over 400 researchers
and a research instance of PathOS is provided for re-
search samples. A development server is used for CI
and also serves as a UAT platform when releasing
new versions.
PathOS has been deployed on Amazon cloud nodes

for organisations without the resources to support in-
house IT infrastructure, as well as the demonstration
PathOS instance. A cloud instance of PathOS has been
made available to the Zero Childhood Cancer Program
headed by Children’s Cancer Institute at UNSW, Sydney
for a multi-Institutional collaboration studying paediatric
cancers [62].

Results and discussion
PathOS has been used operationally in the Peter
MacCallum Cancer Centre since July 2013 for the ana-
lysis, curation and reporting of genetic tests for cancer
patients as well as the curation of large-scale research
studies. As at May 2016, a total of 978 sequencing runs
have been processed, comprising 37,651 patients and
yielding 3,856,446 variants, of which 297,652 are unique.
The curated biological variants within the system num-
ber 1068 and are a mixture of germline and somatic.
They have been manually curated and classified as
“Pathogenic” (797), “Likely pathogenic” (63), “Unknown
pathogenicity” (176), “Unlikely pathogenic” (8) and “Not
pathogenic” (94) (Fig. 9). Variant curation involves
reviewing the automatic variant annotations, assessing
the inferred mutational consequences and searches of
clinical literature. Each curated variant contains evidence
to support the classification and links to literature (if
available) and a description of the variant, which is auto-
matically embedded in system-generated reports. Of the
pathogenic variants, 293 are indels (ins, dup, del, delins)
and 497 were substitutions including 51 splice site vari-
ants. The small number of curated variant relative to the
overall number of variants reflect the large numbers of
technical artefacts found in NGS as well as the small
number of genes in the cancer panel assays (Table 1).
Bioinformatics pipelines contain many complex al-

gorithms with a large range of parameters controlling
their behaviours. These parameters are typically set at
the time of pipeline execution. A key design aim of
PathOS is to provide web tools for downstream filter-
ing giving the curation user interactive control of
variant filtering and behaviour. For example, in our
clinical pipelines, all called variants are passed unfil-
tered into PathOS where complex filtering can be ap-
plied on any variant attribute rather than the pipeline
filtering in an opaque fashion.

Conclusions
Clinical molecular diagnostics for cancer is presently
undergoing a transformation driven by the widespread
availability of an affordable generation of high through-
put sequencers, which can describe a patient’s genetic
data in nucleotide level detail. This holds the promise of
a step change in our understanding of the impact of can-
cer biology on patient care. The realisation of this prom-
ise in the diagnostic lab has been limited by the lack of
quality decision support tools that can interpret the out-
put of sequencers and produce integrated reports suit-
able for a clinical audience.
PathOS is the response of our laboratory to this need

and addresses many of the issues cited in our previous
paper [1]. Built with commercial software engineering
standards, it has been shown to be robust through two
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years of production diagnostic use in a rapidly evolving
environment.
A key goal of the system is to minimise the time-

consuming expert curation effort required for each novel
variant. Curation throughput can be significantly im-
proved by minimising the number of variants in the grey
area between clearly reportable and clearly benign. By
providing the decision support tools and evidence
needed by curators to classify variants, the clinical turn-
around time of diagnostic reporting can be reduced to
the benefit of patients and clinicians.
PathOS is actively being developed and future effort

will involve: improving the curation bottleneck to im-
prove diagnostic throughput; scaling the system to ac-
commodate a wider range of capture technologies;
larger gene panels; and better visualisation of complex
variants such as copy number variants and structural
variants.

Availability and requirements
Project Name: PathOS
Project Home Page: https://www.petermac.org/about/

signature-centres/centre-clinical-cancergenomics/molecular-
diagnostic-software
Project Repository: https://github.com/PapenfussLab/

PathOS
Operating System(s): Docker compatible OS eg

(Linux,Mac,AWS,Azure,Windows)

Programming Languages: Groovy, Java
Other requirements: Reference data
License: GNU license - GPL 3.0

Additional files

Additional file 1: Figure S1. PathOSAnalysisWorkflow.pdf: Schematic
of the typical data analysis workflow from sequencer to diagnostic
pathology report. (PDF 65 kb)

Additional file 2: Table S1. AnnotationMetaData.xlsx: List of variant
attributes kept in PathOS annotation cache. List of data sources used to
annotate variants. (XLSX 17 kb)

Additional file 3: NGS Report Template.docx: Example MSWord Mail
Merge template for PathOS reporting. (DOCX 674 kb)
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