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Abstract

Background: A precise understanding of structural variants (SVs) in DNA is important in the study of cancer and
population diversity. Many methods have been designed to identify SVs from DNA sequencing data. However, the
problem remains challenging because existing approaches suffer from low sensitivity, precision, and positional
accuracy. Furthermore, many existing tools only identify breakpoints, and so not collect related breakpoints and
classify them as a particular type of SV. Due to the rapidly increasing usage of high throughput sequencing
technologies in this area, there is an urgent need for algorithms that can accurately classify complex genomic
rearrangements (involving more than one breakpoint or fusion).

Results: We present CLOVE, an algorithm for integrating the results of multiple breakpoint or SV callers and
classifying the results as a particular SV. CLOVE is based on a graph data structure that is created from the
breakpoint information. The algorithm looks for patterns in the graph that are characteristic of more complex
rearrangement types. CLOVE is able to integrate the results of multiple callers, producing a consensus call.

Conclusions: We demonstrate using simulated and real data that re-classified SV calls produced by CLOVE improve
on the raw call set of existing SV algorithms, particularly in terms of accuracy.
CLOVE is freely available from http://www.github.com/PapenfussLab.
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Background
A structural variant (SV) is a rearrangement of the gen-
ome caused by at least two double strand DNA breaks
followed by DNA repair. Typically, the term SV is used
for events that are greater than 1 kb in size [1]. SVs
include large insertions, inversions, balanced or unbal-
anced translocations, and amplifications and large dele-
tions, collectively referred to as copy number variations
(CNVs). A precise understanding of SVs is important in
the study of population diversity, cancer [2–4] and other
diseases (e.g. Charcot-Marie Tooth [5] and autism [6]).
The increasing usage of high throughput sequencing

technologies has led to advances in the discovery and
genotyping of structural variants in germline and somatic
cells [7–9]. Consequently, a variety of methods have been
developed to detect SVs from DNA sequencing data.
Different approaches can be classified into four distinct
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categories: read depth (RD), discordant read pair (DR), split
reads (SR), and de novo assembly (DN). RD methods in-
volve counting reads in windows and segmenting the
counts [10]. They identify only one class of structural
variation (CNVs) and provide neither direct evidence for
breakpoints, nor information about genomic organization.
Their resolution and accuracy is dependent on sequencing
coverage and window size, but is typically of the order of
kilobases. Examples of RD methods include readDepth
[10] and CNVnator [11]. DR methods use pair end-
sequenced DNA fragments that span a breakpoint (typic-
ally in the un-sequenced region between the reads). These
reads map anomalously or discordantly to the reference
genome—further apart or closer together than expected
based on the selected fragment size, to different chromo-
somes or with inverted orientation [12]. The signal of a
rearrangement is a cluster of anomalous alignments. The
resolution of DR methods is related to fragment size
distribution and genome coverage. However, in general,
single-nucleotide resolution is not possible with DR
methods. BreakDancer [13] is an example of a DR method.
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SR methods rely on individual reads, which span the
breakpoint and are capable of single-nucleotide resolution,
although micro-homologies at breakpoint sites may intro-
duce uncertainty. Examples of SR methods include Split-
read [14] and Socrates [15]. DN methods use some form of
assembly following other evidence to locate the locus of a
rearrangement. DN methods typically provide single
nucleotide resolution, but can be slow. Examples of DN
methods are Cortex [16] and SOAPdenovo [17, 18].
Many tools utilize a hybrid approach that combines

multiple lines of evidence to predict SVs. For example,
Delly [19] and PRISM [20] use DR evidence and incorp-
orate SR evidence through a targeted Smith-Waterman
alignment. CNVer [12] uses DR and RD signals to
identify potential copy number changes. CREST [21]
uses SR then DN to directly map SVs at single nucleo-
tide resolution, while SMUFIN [22] uses DN first and
SR subsequently.
Another strategy is the “consensus” caller approach.

For example, MetaSV [23] integrates a set of multiple
tools into a pipeline. This approach aims to leverage the
specific strengths of tools regarding different aspects of
SV calling as well as confidence through agreement of
multiple tools, and is therefore considered a meta-caller.
Nevertheless, the identification of SVs remains

challenging. Existing methods suffer from a variety of
issues relating to sensitivity and precision, positional
accuracy and error profiles, and classification into one of
the various types of SV. The majority of existing
methods only identify breakpoints (a pair of connected
breakends), also called genomic fusions (henceforth
referred to as fusions), but do not classify the rearrange-
ments further. Several SV callers are capable of limited
classification of genomic events, such as insertions and
deletions, but fail to classify more complex rearrange-
ments. SVs may be simple (involving only a single
fusion, such as an deletion) or more complex events
(involving two or more fusions, such as a balanced
translocation or inversion). Yang et al. [24] noted the
lack of more complex events in the output of SV
algorithms and introduced complex deletions, as well as
inference of underlying DNA repair mechanisms. The
study by Sudmant et al. [25] analysed a large cohort of
human genomes for SVs including mobile element
insertions. Another notable exception is the work by
Escaramis et al. [26], which detects more complex events
from aligned read data. However, the method is neither
widely used nor cited, and failed to run on our data for
purposes of comparison.
Here, we present a new method, CLOVE, which

integrates calls from one or more breakpoint (or SV)
detection methods and (re-)classifies the SV. Our
method creates a graph data structure from the provided
breakpoint information and then looks for patterns that
are characteristic of more complex rearrangement types
(e.g. balanced translocations). CLOVE is not another SV
caller, but integrates multiple independent breakpoint
predictions from other tools into a single, more accurate
and potentially more complex event. This makes the
output of these other tools more interpretable and
increases the precision. A better-categorized output
allows for better filtering or prioritization of specific
events that are most relevant to the biological interpret-
ation or experimental validation. CLOVE is the first
meta-SV-caller that (i) can use any set of input (from
current or future SV algorithms) to (ii) re-classify the
data into more complex SVs than the original call sets.

Methods
Our algorithm is capable of handling the breakpoint or
SV calls produced by a variety of tools – in fact, it can
handle multiple sets of fusion at the same time, benefit-
ing from the increase in sensitivity in raw calls. CLOVE
can be thought of as augmenting existing breakpoint
callers. It allows for stratification of SVs into (i) sets of
simple events that collectively present the signature of a
complex event, and (ii) remaining simple events that
pass or don’t pass a read depth check. CLOVE presents
the stratified SVs in VCF format with additional SV
types, statistics about the read depth of events, and the
levels of support for events (i.e. how many SV callers
support the SV). In the following, we distinguish be-
tween the notion of basic and complex SV types. Simple
or basic SV types are those that are fully represented by
a single fusion. Complex SVs contain more than one
fusion.

Basic SV types
We introduce the following terminologies and conven-
tions in order to discuss the different types of SVs that
can be identified in sequencing data:

(1)A fusion is a pair of loci that are adjacent in the
donor genome but on different chromosomes or
separated on the same chromosomes in the
reference. The two separate locations of a fusion are
referred to as breakends.

(2)Each breakend has an orientation. We define the
orientation to be “+” if the breakend occurs on the
3′ end of the fused region (on its right) in the
reference, and “−” if it occurs at the 5’ end (on its
left). If a fusion has DR support, the discordant
reads flanking the breakend will be aligned
“pointing” towards the break and the read strand
will coincide with breakend orientation. Similarly,
for a fusion with SR support, if the aligner maps the
paired reads to the same side (left) of the breakend
with the 3′ end of the fragment clipped, then the
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breakend has a “+” orientation. Figure 1 illustrates
an example of a breakend in an intra-chromosomal
event and DR support.

(3)Based on the definitions above, we define a fusion as
a pair of loci and directions: chromosome1 (chr1),
position1, orientation1, chromosome2 (chr2),
position2, orientation2.

(4)If a fusion is an intra-chromosomal event, i.e. the
event occurs in the same chromosome (chr1==chr2),
by convention, we assume position1 ≤ position2.

Based on our definitions, a single fusion can be classified
into eight categories (Table 1). Furthermore, we have
assigned an event type to each category. These definitions
are in line with the literature [19]. The labels are moti-
vated by the fact that some of the more basic structural re-
arrangements in DNA bear the corresponding signatures.
Note that the sub-classifications of inter-chromosomal
translocation types require a chromosome ordering and
assume chr1 < chr2. This definition is arbitrary but neces-
sary to distinguish the two non-inverted events. Most SV
callers that do provide event classification often follow the
naming scheme presented in Table 1, or something simi-
lar. However, while the breakend signatures for these types
are indeed consistent with the events that give them their
names, these are not the only events that can cause such a
signature. Overlooking this fact is often a source of classi-
fication error and confusion when interpreting fusions.

Complex SV types
The computation and output of more complex SVs, such as
translocations or inversions, is typically not addressed by
existing SV calling algorithms (or only parts thereof as dis-
cussed below). Figure 2a and b illustrate the rearrangement
patterns created by interspersed duplications and transloca-
tions on a single chromosome. Both patterns consist of two
to three lower order events of the tandem duplication or the
deletion type. This observation motivates our approach to
further classify SV calls: the SV output referring to deletions
5’
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Fig. 1 Example of a simple structural variant that illustrates how the signature
the double-stranded DNA of a chromosome. Two read pairs are depicted as h
DNA (the reads in the pairs are enumerated as pxry — pair x, read y). Assumi
expected value, an SV caller would call a deletion event from the two read pa
breakends are connected by an arrow labelled “fusion”, which corresponds to
“+” and “−“next to the breakends according to the mapping orientation of th
and duplications at sites where a more complex event has
occurred is often confusing to the user, and not easily identi-
fiable from the list of breakends. Note that duplications and
translocations upstream of the insertion site have a slightly
different pattern with the deletion event pointing at the in-
sertion site. Figure 2c shows the signature of an inversion
event. Some SV algorithms, e.g. CREST, can classify this type
of rearrangement. Figure 2d shows the signature of inverted
interspersed duplications on the same chromosome. Similar
to the classifications in Fig. 2a-d, parts e-g show the signa-
tures for complex inter-chromosomal events. The list of re-
arrangements presented here is probably not complete as
far as all potential complex events go, but we believe covers
the majority of relevant classes. The signal of complex
events shown above is consistent with existing discussion of
structural variants (such as by [26]). To our knowledge
CLOVE is the first meta caller that categorises such a com-
prehensive list of SVs from fusion calls.
The complex SV events described above share a

common principle: there is at least one locus in the
rearrangement pattern where two or more breakpoints
(or simple SV events) have a common breakend coord-
inate. This observation guides the design of CLOVE to
discover rearrangement patterns in SV data.
With one exception, the patterns for each of the re-

arrangement events are also unique and specific. Due to
the symmetric nature of the intra-chromosomal trans-
location event, it cannot be determined whether the
block has moved as shown in Fig. 2b, or indeed the
block marked with an “A” has translocated to just after
the second deletion event. Notice that both alternatives
result in the same string of DNA. We define the conven-
tion that the smaller of the two alternative blocks is
considered to have translocated.

Breakpoint graph construction and analysis
CLOVE has two major components, i.e. complex re-
arrangement pattern matching and read depth valid-
ation. Before these stages commence, the breakend calls
5’

3’

bp2

-

p1r2
p2r2

n

s of fusions are defined. The horizontal structure in the middle represents
orizontal arrows mapping to the positive and negative strand of the
ng that the insert size of the two pairs are significantly above their
irs. The two dashed vertical lines indicate two breakends in the DNA. The
the deletion event. The orientation signature of the fusion is indicated as
e reads that constitute the evidence to the fusion call



Table 1 Simple SV event labels defined by their breakend signature

Chromosomes| Orientations

+ −

chr1 = chr2 + Inversion type 1 (INV1) Deletion type (DEL)

− Tandem duplication (TAN) Inversion type 2 (INV2)

chr1 ≠ chr2 + Inter-chromosomal inversion type 1 (INVTX1) Inter-chromosomal translocation type 1 (ITX1)

− Inter-chromosomal translocation type 2 (ITX2) Inter-chromosomal translocation type 2 (INVTX2)

Rows refer to the orientation of the first breakend and columns to the orientation of the second breakend. Simple events may be combined into complex event
types; for example, an inversion (an inverted segment of DNA) is comprised of the two simple events INV1 and INV2
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are parsed into the algorithm. At the time of publication,
the method supports outputs from Socrates, Delly,
CREST, Gustaf [27], and BedPE (a standard format for
fusion data). Furthermore, any SV caller can be re-
classified, as long as it provides the sextet of information
for each fusion introduced in Section 2.1. Any number
of call sets can be input to CLOVE at the same time,
which increases sensitivity if this adds non-redundant
information.
The main internal data structure of CLOVE is a graph

where nodes represent genomic coordinates (or coordinate
intervals) and edges the fusions predicted by the SV callers.
Fusions are added one at the time, and their coordinates
are compared to the existing set of nodes. If a coordinate is
within a user defined distance of a node, it is added to that
node (modifying its coordinate interval if necessary). Other-
wise, a new node (or pair of nodes) is created and added to
the graph. Furthermore, one edge per fusion is added to the
appropriate node(s). The edges (fusions) are labelled with
one of the eight variant types introduced in Table 1. This
data structure is similar, but not identical, to the breakpoint
graph proposed by Bafna and Pevzner [28].
After the graph is constructed, CLOVE refines the

existing edges in the graph. CLOVE scans the graph for
redundant edges, i.e. edges between the same pair of
nodes with identical SV type and merges them.
The refined graph is subsequently analysed to identify

complex rearrangement patterns. Afterwards, the classi-
fied SV events are validated using read depth informa-
tion from the original short read dataset. Figure 3
illustrates the workflow of CLOVE to classify provided
fusion data into improved SV calls.
The two main steps are now explained in more detail.

(1)Complex rearrangement pattern matching: The
initial classification step analyses the breakpoint graph
in order to search for patterns described in Section
2.2. We iterate over the nodes in ascending coordinate
order on each chromosome. If a node is adjacent with
at least two edges, every edge-pair is investigated upon
matching one of the complex SV rearrangement
patterns (illustrated in Fig. 2). Intra-chromosomal
duplication types are investigated first by matching
tandem duplication and deletion types (or inversion1/
2) accordingly. A further search for a deletion of the
duplicated interval may then change the classification
to a translocation. Any identified complex event is
added to the graph and the (up to three) contributing
events are removed from the graph. This step
concludes once every node has been visited.

(2)Read depth validation: The second stage of the
classification procedure again traverses the graph in
order to analyse the breakpoint consistency with the
read depth within the according intervals. Deletion
events are expected to include a relatively low read
depth in-between the two breakends, while tandem
duplications are expected to include an increased
coverage. The read depth is established for each
individual interval by querying the input BAM file.
This value is compared to the expected coverage
and standard deviation. A single deviation value is
used in this step independent of the size of the
interval. Although this is not the most rigorous
approach, it works well in practice. The expected
deviation is a user-supplied parameter – to be
chosen reflecting the coverage spread of the analysed
read data. It is key for this step to take place after the
classification step. This way deletion types and tandem
duplication type events have already been merged into
higher order events that do not change the read depth
(for example, translocations). Events that do not fulfil
the expected coverage response are rejected from the
classification, and instead output as events of second-
ary interest due to read depth inconsistency.

After the classification stages, CLOVE presents the re-
sults in a new output file in VCF format. The read depth
is presented along with the levels of support for each
event (informing about the number of tools that support
an event and the number of events within the call sets).
Clove is implemented in java and makes use of the htsjdk

samtools implementation to handle genomic intervals.

Results and Discussion
To evaluate our method, we investigate results on simu-
lated and real genomic data. The motivation behind the



a) Intrachromosomal duplication:
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b) Intrachromosomal translocation:
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c) Inversion:
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Fig. 2 Rearrangement patterns (or signatures) for complex SVs. The
connectors identify simple event types by color and arrowheads (for
“−”orientation). a-d show events on the same chromosome, e-g show
inter-chromosomal rearrangements. Intra-chromosomal duplications
upstream of the insertion site are not shown in a) and are slightly
different as they reverse the order of the deletion and tandem
duplication events. Translocated rearrangements are not explicitly
shown in d-f as they simply require a single deletion additional to the
event types shown (see b))
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usage of simulated data is to allow full control over the
sequence content, making an assessment of the sensitiv-
ity and precision of different tools possible. In the ideal
case every simulated structural variant should be found
and classified in the sequencing data, and no additional
ones. Application to real data is important, but our
knowledge about the variants present is incomplete.
We demonstrate that CLOVE is able to assign mean-

ingful labels to rearrangement events. Furthermore, it
increases the accuracy of the output of existing SV tools
by removing a large proportion of false positive events.
In the following two subsections, we compare the initial
call set of different SV algorithms with the re-classified
calls produced by CLOVE. For these comparisons, we
investigate the sensitivity, precision, and accuracy statis-
tics, which calls for the classic contingency tables of true
positives (TP), false positives (FP), false negatives (FN)
(and true negatives). Furthermore, we modify the
standard approach as follows: we introduce a fifth
contingency called half-true-positives (HTP). HTPs are
defined as SV calls at the correct location but with the
wrong event label (and potentially with too few fusions).
This type allows us to make a fair comparison between
the raw output (which often has few actual TPs) and the
classified calls, without being overly harsh on existing
methods – meaning, in the following HTPs are going to
be counted as TPs for the calculations of recall,
precision, and accuracy.

Simulated data results
For this experiment, we use chromosomes 21 and 22 of
the human reference (hg19) as the underlying genome.
The simulation workflow is as follows:

(1)The genetic material is divided into non-overlapping
bins of length 500kbp. The binning strategy prevents
events from overlapping and thus generating
unresolvable complexities.

(2)A random event type is chosen for each bin. The
types we use here are deletion, tandem duplication,
inversion, intra- and inter-chromosomal duplications,
intra- and inter-chromosomal translocations, intra-
and inter-chromosomal inverted duplications, and
intra- and inter-chromosomal inverted translocations.
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classification

Stage 2: 
read-depth check

Algorithm 1
SV calls

Algorithm 2
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Algorithm n
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Fig. 3 Outline of the workflow and key components of the CLOVE algorithm
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For each event a random starting or insertion position
is chosen within the bin, as well as a random length
or duplication/translocation interval, respectively.

(3)A new reference is generated that contains the
above modifications.

(4)Reads are simulated from the alternative reference
(using SimSeq [29]) at a sequencing depth of 30×
and 100 bp read length.

(5)The reads are aligned to the original reference
containing chromosomes 21 and 22 with Bowtie2
[30] in local alignment mode.

(6)SVs are called with a variety of tools from the
aligned read data. All tools are run with standard
parameters.

(7)CLOVE re-classifies the output of the SV methods
generated in the previous step, and the results are
compared to the list of variants created in Step 2).
Clove is run without any parameters, except the
coverage option, which is set to “-c 30 8” for this
experiment.

Steps 1–3 of the simulations is done by using tools in-
troduced in [31]. This simulation workflow is repeated
five times, generating new random events and reads
each time. The classified SV calls of CLOVE (v0.14) are
based on the outputs of Socrates (v1.13.1), Delly (v0.76)
and CREST (v0.0.1) for each simulated dataset. Tests are
conducted using both the output of each individual tool
as input and outputs combined from two or all three
tools as input. CLOVE results are then compared to the
raw results of the corresponding SV algorithm(s) that
have been used as input. Additionally, we include infor-
mation about runs of MetaSV (using version 0.5.4 and
calls provided by Pindel, Lumpy, and BreakDancer) by
itself. The performance is measured in terms of sensitiv-
ity, precision, and accuracy. Figure 4 summarises the
results for the accuracy metric. Note that Fig. 4 is based
on calculations treating HTPs as TPs for the purpose of
calculating accuracy – specifically, accuracy≔ (TP +
HTP)/(TP +HTP + FP + FN). The detailed individual
results and performance per SV type are listed in the
supplement (Additional file 1: Table S1). These results in-
clude the performance of Lumpy – not shown in Fig. 4.
Lumpy performs with an average raw accuracy of 0.71,
which improves to 0.82 when applying CLOVE. Interest-
ingly, Lumpy’s performance is better than MetaSV’s,
which uses its data as input.
The results show the following trends. First, there is

increased accuracy due to the classification of events. Al-
though some tools already call complex variants, there is
not a single tool capable of the same level of accuracy as
clove when run on multiple inputs. Consolidating the
trend with more specific results in the supplementary
material, we can conclude that this effect is caused by
the increase in precision of re-classified breakpoints.
Conversely, the recall is decreased after classification.
Obviously, the recall cannot increase, since CLOVE does
not create any additional events in the SV input – and a
decrease is inevitable if an event does not pass the read
depth check, or a complex event is missing an edge leav-
ing the remaining one(s) to be discarded, whereas it is
counted as HTP in the raw input. A summary of the
sensitivity for each SV tool and CLOVE can be found
seen in Additional file 2: Figure S1. It shows that there is
no clear strengths and weaknesses for individual types
(except for MetaSV struggling with anything but inver-
sions, deletions, and tandem duplications), and that
CLOVE’s sensitivity is competitive, but not (greatly)
superior to that of individual tools.
Do these results allow us to answer the question if the

genotyping is improving a given set of SV calls? This de-
pends on the application. It is obvious that the precision
is greatly improved, which is often desirable, sometimes
critical to an experiment. This improvement effect is in
fact stronger than the loss of sensitivity caused by the
genotyping step, leading to overall increased accuracy.
To demonstrate this, we can compare accuracy values
before and after classification and apply a pairwise t-test.
The change in means is statistically significant for each
of the analysed methods. Finally, CLOVE allows usage of
separate call sets of SVs in a single run of the classifica-
tion algorithm. The graph cleaning steps discussed above
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Fig. 4 SV detection accuracy in simulated data before (raw) and after classification with CLOVE (classified). The scatter plots indicate performance
for individual runs and the lines the average on the data. The significance of change in means is indicated by a p-value at the top of each panel
(except for MetaSV, which is shown without CLOVE classification)
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facilitate the removal of redundant edges (events that
have been called by two or more of the input methods).
Taking the union of all input events, CLOVE has (poten-
tially) more data to classify, which reduces the drop-off
in recall after classification. We can indeed observe that
the maximum average accuracy is achieved by CLOVE
when using input from Crest, Delly, and Socrates at the
same time. This is not quite the case for MetaSV, which
shows overall low performance values (for both preci-
sion and sensitivity) despite having access to the output
of multiple tools.
The simulated data and predicted SVs are available

from http://bioinf.wehi.edu.au/clove/.

Results for Escherichia coli K-12 strain
The utilized data set is a collection of single-end Illu-
mina HiSeq 2500 reads from the K12 Beta 10 E. coli
strain (http://www.ncbi.nlm.nih.gov/sra/SRX803011).
The data is not affected by any specific conditions and
thus should resemble the laboratory strain fairly closely.
To introduce rearrangements into the sequence context,
we compare the read data to a slightly distant reference
strain: E. coli K12. This causes a number of relative
genomic rearrangements in the donor genome on which
we can test the effectiveness of CLOVE. Due to the
single-ended nature of the data we are restricted to a
subset of SV callers to evaluate for this experiment: Soc-
rates and CREST. The experimental setup is as follows:

(1)Align the reads to the K12 strain E. coli reference.
For this purpose we use Bowtie2 (version 2.2.3) with
the “–local” option. 6,254,124 reads align, amounting
to an average haploid sequence coverage of 135×.

(2)Run the SV calling algorithms. The tools produce a
number of breakpoints, of which most are in
concordance with each other. Again, we use
standard parameters for the algorithms, except for
the runs of Socrates where we set the minimum
mapping quality to 0, as indicated below.

(3)Establish which calls relate to real rearrangement
events in the data and which relate to false positive
predictions. This is a crucial step and the nature of
the data allows us to make the required distinctions
with high confidence. For once, the data is from a
haploid genome without any expected changes
except for those differences in strains (and maybe
some mutations acquired in culture). Consequently,
the allele frequencies of rearrangement events
should be close to 100% for real events, except those
involving multiple copies of the same genomic
region. We use this property effectively by
establishing the mutant allele frequency at each
break and observing its ratio over reads that do not
support the break at the same locus, but support the
reference allele. Secondly, E. coli being a relatively
small genome of relatively low complexity, we can
manually check the predictions made by the SV
callers upon credibility. With this we came across
the issue of transposable elements in the E. coli
reference: There are at least two groups of repetitive
sequence in the reference that occur at 6 and 15
spots in the sequence. These elements actually drive
the majority of the complex rearrangements that we
observe in the donor genome. The problem that
they present is mapping ambiguity (and therefore
also rearrangement ambiguity). For example, the
first such mobile element mentioned here is inserted
into a new locus in the donor genome, but the
question is, which of its six instances has been
moved (or copied) to the new locus? For the sake of
simplicity, we do not dwell on this problem too long,
but assign a correct breakpoint call if any of the

http://bioinf.wehi.edu.au/clove
http://www.ncbi.nlm.nih.gov/sra/SRX803011
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instances has been identified. It still poses a
challenge to SV calling because copying an element
to a new locus requires two fusions (see Section 2),
and if not both fusions have been called for the
same instance, CLOVE is not able to establish the
correct event. A possible solution to this might be
the creation of a new reference strain that
consolidates all such repetitive elements into a single
instance for the sake of mapping specificity.
Unfortunately, this approach would also remove
slight sequence differences that actually exist
between the instances, and thus we refrained from
this option.

(4)Run CLOVE on the various input data for matched
comparison to the raw output from SV calling
algorithms. CLOVE is set to use the following
coverage parameter for all input data sets: “-c 135 20”.

The following results are for the Socrates and Crest al-
gorithms. Table 2 shows the results of SV discovery in
the E. coli genome. We compare two different runs of
Socrates where we select two different choices of the
minimum mapping quality of re-aligned soft-clips. The
motivation here is to demonstrate that CLOVE increases
the precision of the re-classified output so much that it
is beneficial to go for a more sensitive calling approach
upfront. Table 2 demonstrates this gain in accuracy
(from 0.6 on the standard parameters (M5) to 0.9 with
heightened sensitivity (M0)). Unlike for the simulated
data, the accuracy of Crest does not improve from the
classification on this particular data set. However, preci-
sion is increased due to classification once again, but not
Table 2 Results for SV recovery from the output of Socrates and Cre
sequencing data

Organism Tool Data TP HTP F

Ecoli
(SRX803011)

Socrates M5R 8 7 3

M5C 12 0 0

M0R 8 13 4

M0C 17 2 0

Crest R 7 7 4

C 10 0 0

Socrates + Crest R 8 13 5

C 17 3 0

Human
(NA12878)

Delly R 1447 0 6

C 1437 0 0

Socrates R 900 0 3

C 894 0 0

Delly + Socrates R 1819 0 1

C 1816 0 0

Columns refer to true positive events (TP), half true positives (HTP), false positives (
Confidence intervals calculated through binconf in R are supplied for the latter thre
by enough to make up for the drop in sensitivity. The
reason for this strong decrease is the ambiguity in map-
ping location as highlighted above. The best results on
this data are achieved by combining the available results
from both algorithms (Crest plus Socrates), as was the
case on simulated data. While the raw data suffers from
high numbers of false positives after combination, the
classified data has perfect precision making it the most
useful set of SV events to investigate.

Results for NA12878
Finally, we demonstrate how CLOVE performs on the
widely studied NA12878 cell line (Illumina sequencing
data to 50× coverage with 100 bp PE reads; ENA acces-
sion: ERA172924). As there are previously validated
deletion calls [32], we have a truth set for this type of
variant to compare to. We subset the output of Delly
and Socrates to those of deletion calls only and then run
CLOVE on the data. Similar to our observations in
Sections 3.1 and 3.2, the precision is greatly increased
while the sensitivity suffers slightly. More specifically,
the details of the experiment can be seen in Table 2, and
highlight the gain in accuracy by up to 0.42.
When using the entire set of fusions produced by Delly

and Socrates, CLOVE is able to classify complex events
from the data. When filtering events which insertion point
(where applicable) is in a repetitive region, there is a total of
1922 events in called for the cell line. The variants are dele-
tions (1338), tandem duplications (332), inter-chromosomal
(/inverted) duplications (104/87), interspersed (/inverted)
duplications (35/12), and inversions (13). We randomly
selected 4 such events (an inversion, duplication, inter-
st before (R) and after (C) classification with CLOVE in real

P FN Sn (95% CI) Pr (95% CI) Acc (95% CI)

3 6 0.71 (.50,.86) 0.31 (.20,.45) 0.28 (.18,.40)

8 0.60 (.39,.78) 1.00 (.76,1.0) 0.60 (.39,.78)

9 0 1.00 (.85,1.0) 0.30 (.21,.42) 0.30 (.21,.42)

2 0.90 (.71,.97) 1.00 (.83,1.0) 0.90 (.71,.97)

6 0.70 (.48,.85) 0.77 (.55,.91) 0.58 (.39,.76)

10 0.50 (.30,.70) 1.00 (.72,1.0) 0.50 (.30,.70)

0 0 1.00 (.85,1.0) 0.30 (.20,.41) 0.30 (.20,.41)

1 0.95 (.77,1.0) 1.00 (.84,1.0) 0.95 (.77,1.0)

818 1932 0.43 (.41,.44) 0.18 (.17,.18) 0.14 (.14.15)

1942 0.43 (.41,.44) 1.00 (1.0,1.0) 0.43 (.41,.44)

781 2361 0.28 (.26,.29) 0.19 (.18,.20) 0.13 (.12.14)

2403 0.27 (.26,.29) 1.00 (1.0,1.0) 0.27 (.26,.29)

0,394 1464 0.55 (.54,.57) 0.14 (.14,.16) 0.13 (.13,.14)

1493 0.55 (.53,.57) 1.00 (1.0,1.0) 0.55 (.53,.57)

FP), false negatives (FN), sensitivity/recall (Sn), precision (Pr), and accuracy (Acc).
e columns
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chromosomal duplication and inverted duplication) and
were able to demonstrate that for each of these the map-
ping of Pacbio long read data [33] could be improved when
aligning to an alternative reference containing the predicted
reference (we consider a variant validated if a Pacbio read
maps across the SV including all fusions, and the alignment
has a higher score than in the original reference). For more
detail see the Additional file 3: Data S1.

Future work
CLOVE has been developed for and experimented with
on germline data. In other types of data, such as cancer
genomes, types of variants other than those currently
identified by CLOVE may be present. For example, there
are large scale chromosomal rearrangements, such as
chromothripsis and breakage fusion bridge, common
among some cancers. Further, compound events, where
two or more of the events described in this work co-
occur at the same locus, have also been observed in
tumour genomes. It would be desirable to add rules and
functionality to CLOVE to deal with such events. How-
ever, this is met with technical challenges of potentially
incomplete fusion signatures (false negative calls), and
an explosion of the rule set (for all potential compound
events).

Conclusions
We have presented a new method for classifying com-
plex rearrangement from breakpoint calls generated by
different algorithms. We have demonstrated CLOVE’s
ability to improve the output of standard SV methods by
highlighting biologically relevant features, prioritizing,
enhancing the precision of the calls, and generally im-
proving accuracy. CLOVE’s independence of the input
algorithm makes it a flexible tool to utilize in any SV
calling pipeline. Its ability to process joint inputs from
multiple methods is an attractive feature, which often
leads to even better rearrangement classification, as has
been indicated by our results. CLOVE is the first meta-
caller that can use the input of any SV algorithm (pro-
vided it outputs sufficient information).
Additional files

Additional file 1: Figure S1. Description of data: Sensitivity of
individual tools and one run on CLOVE for different event types.
Sensitivity is measured including half true positives (wrong event type).
Events are considered recalled if any one of its fusions is found in the
output. (PDF 9 kb)

Additional file 2: Table S1. Description of data: Detailed results of
simulated data analysis. The spreadsheet shows runs of the tested
structural variant tools as well as CLOVE re-classified results by variant
type and for the individual runs of simulated data. (XLSX 139 kb)

Additional file 3: Data S1. Description of data: VCF file of variant calls of
CLOVE on the NA12878 genome. (VCF 271 kb)
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