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Abstract

The central role of the Bcl-2 family in regulating apoptotic cell death was first
identified in the 1980s. Since then, significant in-roads have been made in
identifying the multiple members of this family, characterizing their form and
function and understanding how their interactions determine whether a cell lives or
dies. In this review we focus on the recent progress made in characterizing the
proapoptotic Bcl-2 family members, Bax and Bak. This progress has resolved
longstanding controversies, but has also challenged established theories in the
apoptosis field. We will discuss different models of how these two proteins become
activated and different “modes” by which they are inhibited by other Bcl-2 family
members. We will also discuss novel conformation changes leading to Bak and Bax
oligomerization and speculate how these oligomers might permeabilize the

mitochondrial outer membrane.
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FACTS

- Bax and Bak are activated by BH3-only proteins and inhibited by prosurvival Bcl-2
proteins via direct interactions

- Bax and Bak undergo major conformation changes during transition from inactive
monomers to activated oligomers

- Bax and Bak oligomers are responsible for permeabilization of the mitochondrial

outer membrane

OPEN QUESTIONS

- Are both proposed binding sites on Bax essential for its activation by BH3-only
proteins?

- What molecular features present in Bax and Bak but not in the prosurvival
proteins allow conformation change, oligomerization and pore formation?

- Does Bax and Bak pore formation involve insertion of their a5/a6 helices as a
membrane-spanning hairpin?

- What protein:protein interfaces allow Bax and Bak to form high molecular weight

oligomeric pores?



The Bcl-2 family: Guardians at the “mitochondrial gate”
Mitochondria have a critical role in cell survival through their generation of ATP via
oxidative phosphorylation. However, these organelles also have a dark side, as
lurking at their surface are the Bcl-2 family of proteins that second mitochondria
into the cell death pathway. Two key players of the Bcl-2 family are the proapoptotic
proteins Bax and Bak, which convert from harmless monomers into deadly
oligomers that form pores in the mitochondrial outer membrane (MOM). These
pores are conduits for proapoptotic factors such as cytochrome c to translocate to
the cytoplasm. The result is 2-fold: the loss of cytochrome ¢ from mitochondria
disables energy production; and cytosolic cytochrome c instigates a proteolytic
cascade that dismantles the cell.1

Given their critical role in mediating mitochondrial apoptosis,?3 Bax and Bak
have to be strictly regulated by other members of the Bcl-2 family (Figure 1a). At
least five mammalian “prosurvival” proteins have been identified that can inhibit
Bax and Bak via three distinct mechanisms: MODE 0, MODE 1 and MODE 2 (Figure
1b). MODE 1 and MODE 2 were recently assigned to describe the indirect and direct
inhibition of Bax and Bak, respectively.* Here we assign MODE 0 to the newly
described mechanism in healthy cells by which prosurvival proteins regulate Bax
mitochondrial localization. On the other hand, eight or more proapoptotic “BH3-
only” proteins have been found to initiate apoptosis by triggering Bax and Bak
activation (Figure 1c). Historically, BH3-only proteins have been placed into discrete
subsets, with those able to activate Bax and Bak directly termed “activators” and

those that target prosurvival proteins to indirectly activate Bax and Bak called



“sensitizers”.> However, recent evidence suggests that this strict categorization may
no longer be appropriate.6-10 We therefore discuss BH3-only proteins only by their
ability to either “activate” Bax and Bak (Box 1) or “derepress” prosurvival proteins.

Dys-regulated Bcl-2 proteins are associated with a plethora of diseases,
making the Bcl-2 family members and their interactions a focus for novel
therapeutics.1112 BH3-mimetics such as ABT737, its derivative ABT263, and the
newly developed ABT199, which bind and inhibit prosurvival Bcl-2 proteins,
provide the stepping stones towards customized, selective drugs that activate the
apoptotic program in cancer cells13-1> and have encouraged the search for anti-
cancer drugs that directly activate Bax and Bak.16

Conversely, as excess apoptosis contributes to ischemia reperfusion injury
and diseases such as amyotrophic lateral sclerosis!”-18 there is interest in developing
inhibitors of Bax and Bak.1® Although treating chronic degenerative conditions may
not be tractable, acute inhibition of apoptosis, for example in preventing reperfusion
injury following organ transplantation, may be of significant benefit. Thus, defining
the regulatory landscape that exquisitely controls Bax and Bak will unlock the
clinical potential of these critical effector proteins.

In this review, we focus on recent insights into the structural transitions of
Bax and Bak from inactive monomers to active oligomers, and the major
checkpoints employed by the cell to regulate this transition. The findings are
summarized in a model that incorporates both biochemical and structural data

supporting the transitions (Figure 2).



Bax and Bak in healthy cells: wolves in sheep’s clothing

Like the prosurvival proteins, Bax and Bak protein sequences contain all four Bcl-2
homology (BH) domains, including the re-defined BH4 domain?0 (Figure 2a). In
addition, several structures of inactive Bax and Bak?1-23 reveal that the protein fold
of the two proapoptotic proteins is strikingly similar to that of their prosurvival
counterparts.2425 Thus, based on sequence and structure, what distinguishes Bax
and Bak from the prosurvival Bcl-2 proteins is unclear.

Bax and Bak contain nine a-helices, with a hydrophobic a5 at the protein
core, surrounded by amphipathic helices (Figure 2 and 3a). The C-terminal a9 helix
contains a transmembrane domain (TM) that anchors the proteins in the MOM. The
hydrophobic BH3 domain, located in a2, is nicely tucked away in inactive Bax and
Bak and becomes exposed during activation to facilitate hetero- and homo-
oligomerization.?2627 In addition, a hydrophobic groove is located on the surface of
Bax and Bak involving residues from the C-terminus of a2 to the N-terminus of a5
and residues in a8. Notably, a similar surface groove in the prosurvival proteins has
been characterized as the receptor site for the BH3 domain of proapoptotic Bcl-2
members.28-34 Given the importance of this structural motif in regulating protein-
protein interactions of the prosurvival proteins, one may predict that Bax/Bak
regulation could also occur via binding of proapoptotic BH3 domains to the groove
of Bax and Bak. However, in inactive Bax, the groove is normally occupied by its own
TM.22 Interestingly, on the opposite side of Bax, and masked by the al/a2 loop, is a

shallower groove or “rear pocket” involving a1/a6 helices (Figure 2a and 3a). As



this rear pocket has a similar distribution of hydrophobicity and charge as the
canonical surface groove, it may be a trigger site for Bax activation.353¢

Sequestration of the TM of Bax into its own groove renders the protein
mainly cytosolic in healthy cells. However, a small portion of Bax is loosely attached
to mitochondria,3’-3° as it can be extracted using sodium carbonate.*0 Until very
recently, it was thought that after an apoptotic stimulus, Bax actively translocates to
mitochondria.4142 However, elegant studies using FLIP (fluorescence loss in
photobleaching) and FRAP (fluorescence recovery after photobleaching) indicate
that Bax localizes to mitochondria in healthy cells, but is actively retro-translocated
to the cytosol (discussed below).374043 In such a model, inhibition of retro-
translocation following apoptotic insults causes Bax to accumulate at mitochondria,
thereby sensitizing cells to apoptosis.

In contrast to Bax, Bak is constitutively inserted into the MOM in healthy
cells,*445 presumably via a9. The Bak a9 is more hydrophobic than that of Bax, and
appears to prefer the hydrophobic membrane environment rather than the
amphipathic environment of the Bak groove. Consistent with this, when the Bak tail
was mutated to make it more hydrophilic (Bax-like), the mutant Bak protein became

more cytosolic with binding of the tail to the groove.4446

Bax and Bak activation: the Jekyll to Hyde metamorphosis
When Bax and Bak become activated, they undergo major conformation changes
involving the C-terminus (of Bax only), N-terminus, the BH3 domain and the a5 and

a6 helices, resulting in proteins that have been literally turned inside out (Figure



2b).26:354547-49 How these changes are triggered, the sequence of events and which
changes are actually required for oligomer formation and apoptotic function is still

under investigation (reviewed in 59).

a) Direct activation of Bax and Bak by BH3-only proteins
Bax and Bak can be activated by direct binding of certain BH3-only proteins (Figure
1c). While BH3-only family members bind readily to prosurvival Bcl-2 proteins, an
interaction of the former with Bax and Bak has been difficult to capture. In the “hit
and run” model it was proposed that binding of BH3-only proteins to Bax and Bak is
only transient,°! presumably because the induced changes in Bax and Bak
conformation lead to the disengagement of the activating proteins from Bax and Bak.
Some of the first evidence for direct activation derived from a Bid mutant that was
unable to bind to prosurvival proteins, but could still bind and activate Bax.>Z Since
then, several studies have captured or implicated direct binding and activation of
Bax and Bak by BH3-only proteins using biochemical, structural, as well as genetic
approaches.*7:3536:46,53-56 However, Bax and Bak activation may also be caused by
other factors such as changes in intracellular environment, post-translational
modification and interaction with mitochondrial membrane components and non-
Bcl-2 proteins (Box 2). Thus, whether direct activation of Bax and Bak by BH3-only
proteins is needed in all circumstances remains to be elucidated.>7->8

The MOM may play a significant role in direct activation, as two landmark
papers using full-length recombinant Bcl-2 proteins in liposomes in combination

with FRET (Forster resonance energy transfer) showed that Bax and tBid only



interact when a membrane is present.>%60 After membrane insertion, tBid could
then drive the membrane insertion of Bax.5%6! This led to the “embedded
together“ model, which proposed an important role for the mitochondrial outer

membrane in all interactions between the Bcl-2 family members.62

b) Bax and Bak conformation changes triggered by BH3-only proteins
An early conformation change in Bax is eversion of a9 from the Bax groove, to allow
the peripherally attached protein to integrate into the MOM. From the structure of
inactive Bax it was inferred that BH3-only proteins may not be capable of directly
displacing a9 from the groove.?? However, several studies indicate that BH3-only
proteins or peptides can bind to the al/a6 side (rear pocket) of Bax,%93646.63 and
thus might provoke Bax a9 exposure indirectly. Indeed, an NMR study showed that
binding of a stapled BimBH3 peptide to the rear pocket of Bax induced chemical
shifts in residues belonging to the a9 helix (Figure 3b).35 As Bak is constitutively
localized at mitochondria, presumably with its a9 helix already inserted into the
membrane, initial activation at the rear pocket would not be required. In support of
this, BH3 peptides from activating BH3-only proteins do not bind to the al/a6
region of Bak.#6

As well as Bax a9 exposure, several other conformation changes were
associated with binding of a stapled BimBH3 peptide to the Bax rear pocket (Figure
3b). Displacement of the loop between al and a2 coincided with exposure of the
6A7 epitope in a1l and the BH3 domain, both hallmarks of Bax activation.3> While

these hallmark conformation changes may have been a direct consequence of Bim



binding to the rear pocket they may also have been caused by subsequent binding of
Bim to the canonical groove once it is vacated by a9. This sequential binding was
first highlighted by Kim et al,? and is supported by linkage of BH3 peptides to Bax
residues in the rear pocket as well as the canonical groove.*® A two-step activation
for Bax would also explain why the Bax S184V variant that constitutively inserts a9
in the MOM, is inactive until stimulated by proapoptotic factors.*34?

Supporting the importance of the groove as an activation site, a crystal
structure of Bax lacking the a9 helix, and thereby representing Bax with an
unoccupied groove analogous to Bax S184YV, displayed BH3 peptides of Bid and Bax
bound to its groove (Figure 3c).>3 The peptides bound to the Bax groove in a similar
manner to which they bind to the groove of prosurvival proteins. However, binding
to Bax results in increased movement of the a2/a3 side of the Bax groove away from
the bound peptide, with a partial displacement of the a2 helix. This opening of the
groove might weaken the contact between the BH3 peptide and Bax, providing a
structural rationale for transient binding of BH3-only proteins to Bax. The Bax
crystal structures also provided evidence for a novel conformation change, termed
the “core/latch dissociation” in which a5 and a6 unhinge allowing the a.6-a.8 helices
(termed “latch”) to dissociate from the al-a5 helices (termed “core”) (Figure 3c).
This conformation change was required for Bax function in mitochondrial assays, as
its proapoptotic function was inhibited upon cysteine-tethering of a5 and a6.%3
Interestingly, the structural re-organization that occurs during core/latch

dissociation exposes the N-terminus of a1, providing a structural mechanism for the
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exposure of the N-terminal epitopes during Bax (and possibly also Bak)
activation.4>49

The Bax a5 and a6 helices have previously been implicated in its pore-
forming function, by everting from their inactive localization and inserting as a
hairpin into the MOM, analogous to the pore-forming domains of bacterial toxins
such as colicin A and Diphtheria toxin.24#64 Consistent with this hypothesis, peptides
based on Bax a5 and/or a6 helices of Bax have pore-forming activity.6>67 Most
compelling were cell studies in which the Bax a5/a6 helices became buried in the
MOM prior to oligomerization.#” Our recent structural studies indicate that a5 and
a6 of Bax dissociate during activation®3 suggesting that membrane insertion of
these helices may not occur as a hairpin (see below).

Several biochemical and structural approaches show that, in contrast to Bax,
Bak activation involves BH3-only protein or BH3 peptide binding only to the
canonical groove.”4655 Firstly, by testing different mutants of Bak and BH3-only
proteins (including reciprocal size-swap variants) in binding and Bak
oligomerization assays, the activation site of BH3-only proteins was mapped to the
Bak groove.” Secondly, BH3 peptides can link to the groove of Bak, but not to its
al/a6 region.#¢ Thirdly, in a very recent NMR structure, a BidBH3 peptide bound to
the groove of Bak®5 in a similar manner to its engagement with the Bax groove.53
Binding of BH3 peptides to the Bak groove coincided with the exposure of the Bak
BH3 domain and the N-terminus,>> both of which are similar conformation changes
to those seen in Bax.53 Intriguingly, these Bak conformation changes were blocked

by tethering the peptide to the groove, suggesting that Bak can only change
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conformation when the activating peptide leaves the groove,>> consistent with the
hit and run model. Whether Bak undergoes core/latch dissociation like Bax remains

to be determined.

c) Restraint of Bax and Bak by prosurvival proteins
The prosurvival Bcl-2 family members have long been recognized as critical
guardians of Bax/Bak activity. It has now become clear that they can act via

different “MODES” to prevent Bax and Bak activation and oligomerization.*

MODE 0: The level of Bax at mitochondria is tightly regulated in healthy cells as Bax
is trafficked away from the MOM to the cytosol,374043 As Bcl-x;, was found to ferry
peripherally associated Bax to the cytosol,3740 this represents a new way of keeping
Bax in check and is defined here as “MODE 0” inhibition (Figure 1b). The molecular
mechanism underpinning this newly described “retro-translocation” remains
obscure. Although binding of Bax and Bcl-x;, during retro-translocation has not been
shown, mutagenesis of the BH3 domain of Bax and the groove of Bcl-x. inhibited
retro-translocation implicating a direct interaction.3” This BH3:groove interaction
indicates that the peripheral Bax “cargo” has undergone at least certain activation
steps including exposure of its BH3 domain, but has not yet reached the stage of
membrane integration or oligomerization. Such conformation changes that are
normally associated with activation during apoptosis may have been induced by the

association of Bax with membranes.68
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Once retro-translocated, the complex of the cargo (Bax) and ferry (Bcl-xv)
must dissociate as Bax in the cytosol is monomeric and does not require interactions
with other proteins to maintain its inactive conformation.t%79 Further, as cytosolic
Bax does not expose its N-terminus or its BH3 domain, Bax must revert to its
inactive conformer consistent with the reversible conformation change in Bax
induced by interaction with membranes.®8

Bax retro-translocation independent of prosurvival Bcl-2 proteins has
recently been reported.*3 However, retro-translocation in this case involved Bax
that was tail-anchored in the MOM rather than peripherally associated, suggesting
that different populations of Bax may exist in a healthy cell with distinct
mechanisms governing their subcellular localization.

Although the molecular mechanism governing Bax retro-translocation and
whether prosurvival Bcl-2 proteins are necessary requires further investigation,
controlling Bax subcellular localization clearly represents an important mechanism
to regulate apoptotic function. Considering that only 100 molecules of Bax per
mitochondria are necessary for pore formation,”! retro-translocation might be

critical in fine-tuning a cell’s response to apoptotic stimuli.

MODE 1: In response to apoptotic stimuli prosurvival proteins can sequester BH3-
only proteins to prevent them from activating Bax and Bak. This “MODE 1”
inhibition* (Figure 1b) is likely facilitated by sequestering the BH3 domain of the
BH3-only proteins into the prosurvival groove.?82934 However, recent evidence

suggests that regions other than the BH3 domain might also be involved, as

13



mutation in the BH3 domain of Bim (Bim2A) that was sufficient to abrogate binding
of a BimBH3 peptide to Bcl-xi, in vitro’2 did not abolish interaction of full-length Bim

with Bcl-x;, in live cells.”3

MODE 2: Irrespective of the activating mechanism (see Box 2), once Bax and Bak
are activated, prosurvival proteins directly bind to the activated proteins to prevent
their homo-oligomerization resulting in MODE 2 inhibition (Figure 1b).* Again,
MODE 2 occurs via sequestration of the exposed BH3 domain of Bax and Bak into
the groove of the prosurvival proteins,273132 putting the BH3:groove interaction
central to the myriad of interactions that govern cell fate.

MODE 1 and MODE 2 may require a conformation change in the prosurvival
proteins induced by binding of BH3-only proteins.>® This “activation” of prosurvival
Bcl-2 proteins may simply anchor a9 in the MOM,’* or involve a more drastic
insertion of the a5 and a6 helices,”>7¢ similar to the proposed conformation change
in Bax.#” That proapoptotic proteins “activate” prosurvival proteins seems at first
glance to be counter-intuitive. However, BH3-only proteins may bind to and induce
conformation change in any of the structurally similar multi-domain Bcl-2 proteins,
regardless of whether they are prosurvival or proapoptotic. The prosurvival
proteins might thus act as a dominant negative form of Bax, competing with Bax for
binding of BH3-only proteins and later on for activated Bax to prevent Bax homo-

oligomerization (reviewed in 77).
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d) Derepression of MODE 1 and MODE 2: Indirect activation of Bax and Bak by
BH3-only proteins

MODE 1 and MODE 2 inhibition by prosurvival proteins can be overcome by up-
regulating BH3-only proteins, which bind and inhibit the prosurvival Bcl-2 family
members and thus indirectly promote Bax and Bak activation (Figure 1c). When
these up-regulated BH3-only proteins interact with prosurvival proteins to compete
off activating BH3-only proteins,>8607879 the process is termed “MODE 1
derepression”.# In addition, derepression also takes place when the BH3-only
proteins compete off activated Bax and Bak from the prosurvival proteins, termed
“MODE 2 derepression”,* akin to the “indirect activation” model.588081 Notably,
according to Llambi et al,* derepression of MODE 2 complexes is more difficult than
MODE 1 complexes.

Taken together, the prosurvival proteins, the BH3-only proteins, and
Bax/Bak partake in a dynamic triad of competitive interactions (Figure 1a). The
relative affinities of these interactions and the cellular concentration of each player
determine whether Bax and Bak (i) remain inactive, (ii) become activated but bind
prosurvival proteins (in which case the cell is reprieved) or (iii) become activated

and self-associate to form a pore (in which case the cell is generally doomed).

Bax and Bak oligomerization: making doughnuts and daisy chains

Once activated, Bax and Bak have exposed hydrophobic regions that need to be
buried in a membrane or a protein interface, leading to the formation of membrane

spanning high molecular weight oligomers.
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Two main oligomer models have been proposed. An asymmetric, single
interface oligomer model, or “daisy-chain” model, was originally suggested for Bax82
and is supported by studies that define a BH3:a1/a6 interface.3> A recent model of a
Bak octameric pore was also based on a single-interface mechanism.83

An alternative symmetric or two-interface model was proposed for Bak,
based on a cysteine-linkage approach in mammalian cells2¢ and was later supported
for Bax in different linkage studies.848> In this model, the exposed Bak BH3 domain
engages the canonical hydrophobic surface groove of a partner Bak molecule, in a
similar manner to its interaction with the prosurvival groove. However, the
BH3:groove interaction in a Bax or Bak homodimer is symmetric, with the BH3
domain of the second Bax/Bak molecule binding into the groove of the first in a
reciprocal fashion (Figure 2b). The symmetric BH3:groove dimer model was
supported by electron paramagnetic resonance (EPR)-spin labeling of recombinant
Bax and Bak in liposomes, 8687 and more recently by evidence that the basic
oligomeric unit of activated Bak is a homodimer under native conditions.88

The symmetric model is also supported by a recent crystal structure of the
Bax a2-a5 region.>3 The a2-a5 of Bax, which contains the BH3 domain and the
hydrophobic surface groove, was shown to be sufficient for oligomerization.8?
Intriguingly, when a similar a2-a5 Bax construct was expressed as a GFP fusion
protein and crystallized, it spontaneously formed a symmetric BH3:groove dimer
(Figure 3d).53 In this dimer structure, the BaxBH3 domain bound to the Bax groove
in a similar fashion as activating BH3 peptides (Figure 3e), indicating that similar

BH3 domain residues might be crucial for Bax activation as well as Bax dimerization.
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This also indicates that for a Bax homodimer to form, the activating BH3 domain
must first leave the Bax groove, consistent with the hit and run model.

Interestingly, one half of the BH3:groove homodimer closely resembles the
“core” of the Bax:BidBH3 complex (Figure 3e), suggesting that no major
rearrangements of the Bax core, other than the BaxBH3 exposure, are necessary to
form the BH3:groove dimer. Thus, the a5 helix remains adjacent to a3 and a4, and,
together with o4, lines the base of the BH3:groove dimer, projecting a high
concentration of hydrophobic aromatic residues into the milieu (Figure 3d). One
may therefore speculate that core/latch dissociation exposes lipophilic residues of
o4, a5 and a6 and that BH3:groove homodimers nucleate the oligomerization of
this activated form. The locally concentrated lipophilic residues could then
penetrate the membrane bilayer to displace the phospholipid headgroups to
provoke positive membrane curvature and eventually membrane rupture. Such a
mechanism is potentially analogous to the “carpet model” of pore formation
described for certain bacterial toxins such as melittin, whereby antimicrobial
peptides aggregate in the plane of the membrane leading to membrane rupture.®%.91

This proposed mechanism for permeabilization of the MOM by Bax and Bak
by an in-plane interaction with the membrane (Figure 2b) is consistent with the
reduced labelling of the Bax a5/a6 helices with a hydrophilic label during
activation.#”87 However, it suggests that Bax and Bak a5/a6 helices may not
traverse the MOM as a membrane-spanning hairpin and therefore may not function
analogously to colicin A and Diphtheria toxin. That the Bax or Bak a5/a6 helices

may not insert as a hairpin is supported by several lines of evidence. Firstly, the a5
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is not everted in the structure of dimerized Bax.>3 Secondly, a disulphide tether
between a4 and a5 helices of Bax did not inhibit apoptotic function, providing
further support that the a5 remains associated with the “core” domain.>3 Thirdly, a5
and a6 must separate for Bax to mediate cell death.>3 And finally, EPR spin labelling
indicates that a5 remains associated with the core in activated Bak and that a6
exhibits only shallow insertion into liposomal membranes.8”

That the basic oligomeric unit of Bax and Bak is a symmetrical homo-
dimer,26:5385-88 s not consistent with the daisy-chain model of oligomerization.
Rather in a symmetric model a second interface is necessary for dimers to
multimerize in order to form the higher order oligomeric pore.84 Regions outside of
the core a.2-5 domain such as the a6 helices have been implicated in this requisite
second interface in Bax and Bak.8>87.8892 Therefore, core-latch dissociation may not
only serve to expose a lipophilic surface to engage the MOM, it may also reposition
the latch domain, including a6, to facilitate higher order oligomerization. However,
how this second interface enables dimers to multimerize, and consequently the
structure of the putative apoptotic pore, is unknown. Whether the apoptotic pore
involves dimers assembled in a closed conformation (a “doughnut”), a linear
assembly, or a disordered aggregate, as well as whether lipids are critical

constituents of the pore remains to be determined.

What's next?

Although recent novel approaches have provided significant insight into how Bax

and Bak are activated to Kkill cells, further research is clearly needed. A structure of a
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high molecular weight oligomer of Bax and/or Bak would be a major step forward
and would determine whether Bax and Bak form proteinaceous pores (reviewed in
5093), The alternative is that they form lipidic pores.67.94 If so intercalated lipids will
significantly hinder characterization of the pore by conventional structural
approaches and so elegant biophysical approaches in the presence of a membrane
may be needed to study the oligomeric pore.

Exciting times lie ahead. We anticipate that future advances in our
understanding of how Bax and Bak are activated and how they function will expose

these critical apoptotic proteins as targets for novel therapeutics.
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Box 1: Molecular features of activating BH3-only proteins

In early studies, only Bid and Bim were categorized as BH3-only proteins that can
activate Bax and Bak.> This has been challenged with evidence that Puma can
activate Bax,®?> that Noxa can bind to and induce Bak activation” and that peptides
from all BH3-only members can trigger Bax- and Bak-mediated permeabilization of
liposomes if used at high concentrations.1?

Recent structural and mutational studies allow a more detailed definition of
which residues in the BH3 domain promote binding and activation of Bax®3 and
Bak.55 In general, BH3-only proteins bind in a similar manner to the grooves of
Bax/Bak and the prosurvival proteins. Specifically, as seen in the BidBH3 peptide
binding to Bax, four hydrophobic residues (h1 to h4) in the BH3 make contact with
four hydrophobic pockets in the groove, and a salt bridge forms between a
conserved aspartate (BidD95) and a conserved arginine (BaxR109) (Figure 4).
Notably, a new h0 position in Bid and Bim as well as Noxa and Bad contributes to
their activating function.>3,55

Mutagenesis has indicated that both the hydrophobic interactions and the
salt bridge are essential for the binding of activating BH3 peptides to the Bax
groove.>355 A single substitution of the hl residue in the Noxa BH3 domain
(NoxaC25I) was sufficient to turn Noxa into an activating BH3 peptide,>3 whereas
Bad required at least 3 substitutions to be able to activate Bax and Bak.>355 At the
other end of the BH3 domain (beyond h4), there is little contact with Bax, and
mutation did not affect binding to Bax.8>3 However substitution at the h5 of Bad and

Noxa seemed to contribute to their gain-of-function activity for Bak.5> In addition,
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the glycine in the GDE sequence was important, as Bid G94A lost binding to Bax>2
and the Bad S118G change contributed to its gain-of-function for Bax and Bak.535
Finally, BidA91W lost its ability to activate Bak.>> Together the data suggest that not
one single residue, but rather a combination of residues determines whether a BH3-
only protein can activate Bax and Bak.

Binding of BH3 peptides to the rear pocket of Bax requires at least some of
the above described residues,®353696 consistent with the rear pocket and
hydrophobic groove displaying a similar distribution of charge and hydrophobicity.
Further analysis may identify mutations that distinguish between the two potential
activation sites in Bax to better understand their role in triggering Bax anchorage

into the membrane versus Bax conformation change and oligomerization.
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Box 2: Non-Bcl-2 factors regulating Bax and Bak
Several factors have been implicated in regulating Bax and Bak independently of, or
in concert with, other Bcl-2 family members.

Stimuli that initiate Bax and Bak activation include mild heat, hydrogen
peroxide, and low or high pH,%7-100 as well as non-Bcl-2 proteins such as p53 and Bif-
1.101-103 [n addition, post-translational modification such as dephosphorylation of
Bax and Bak has been implicated in their activation and oligomerization.104-106
However, an absolute requirement for this dephosphorylation seems unlikely, given
that recombinant Bax and Bak can permeabilize liposomes’9107.108 and that Bak
proapoptotic function does not rely on dephosphorylation.19® In addition,
membrane components such as cardiolipin (reviewed in 119) and sphingolipids!
may co-operate with BH3-only proteins to promote Bax and Bak activation.

On the other hand, certain interactions can regulate Bax and Bak negatively.
For example, in healthy cells, the voltage-dependent-anion-channel2 (VDA(C2)112.113
is proposed to enhance recruitment of Bak to the mitochondriall4 and to keep Bak
in an inactive state.112113115 [ jkewise, Pin1 and the E3 ligase IBRDC2 may function
as negative regulators of Bax, presumably by affecting its conformation or targeting
it for degradation.116:117

Finally, the mitochondrial fission and fusion machinery may remodel the
membrane environment to regulate Bax and Bak activation and
oligomerization118119 (reviewed in 110).

Whether all of the above-mentioned non-Bcl-2 factors are necessary for

regulating Bax and Bak requires further investigation. However, it is conceivable
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that these factors may tweak an apoptotic response in certain cell types under

certain conditions.
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Titles and legends to Figures

Figure 1 Schematic representation of the Bcl-2 family interaction network. (a)
The Bcl-2 family can be divided into 3 classes: the proapoptotic Bax/Bak proteins,
the proapoptotic BH3-only proteins and the prosurvival proteins. The prosurvival
proteins inhibit the activity of the proapoptotic Bcl-2 family members. The BH3-only
proteins activate Bax and Bak either directly (activation) or indirectly
(derepression). Despite Bok’s amino acid sequence similarity to Bax and Bak, its
apoptotic role is currently unclear.12? (b) Inhibition by prosurvival proteins may
occur via three “MODES”. During MODE 0 inhibition (MO0), prosurvival proteins such
as Bcl-x;, bind to peripheral Bax at mitochondria and retro-translocate it to the
cytosol. During MODE 1 inhibition (M1), prosurvival proteins sequester BH3-only
proteins to stop them activating Bax and Bak. During MODE 2 inhibition (M2),
prosurvival proteins bind to activated Bax and Bak to prevent their homo-
oligomerization. (c) The BH3-only proteins can cause Bax and Bak activation in two
ways. While certain BH3-only proteins can directly bind to and activate Bax and Bak,
other BH3-only proteins interact with prosurvival proteins to compete off the
activating BH3-only proteins (Derepression of MODE 1, D1) or activated Bax/Bak

(Derepression of MODE 2, D2).

Figure 2 Bax and Bak transitions are regulated by other Bcl-2 family members.
(a) Schematic representation of the Bax/Bak protein sequence indicating the

location of the nine a-helices. Helices of interest are colored in red (a2), green (a5),
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black (a9) or blue (latch helices a6, a7, a8). In addition, the four Bcl-2 homology
(BH) domains and regions that constitute the groove and rear pocket are marked.
(b) Schematic representation of a model for Bax and Bak activation and
oligomerization. Bax and Bak proteins are represented as cylindrical bundles using
the same color scheme as in (a). Bax in healthy cells: peripheral Bax shuttles
between the mitochondrial outer membrane (MOM) and cytosol mediated by
prosurvival Bcl-2 proteins (blue box) (MODE 0 inhibition, M0). Note that in healthy
cells a tail-anchored population of Bax has also been observed to retro-translocate
independent of prosurvival Bcl-2 proteins. Bak is constitutively inserted in the MOM
in healthy cells. Bax/Bak activation: BH3-only proteins (yellow box) activate Bax
and Bak and cause a9 exposure and membrane insertion (Bax only), a2/BH3
domain exposure, N-terminal exposure, al/a2 loop displacement and core/latch
dissociation. To prevent Bax and Bak activation, prosurvival proteins sequester the
activating BH3-only proteins (MODE 1 inhibition, M1). In turn, certain BH3-only
proteins promote apoptosis by binding the prosurvival proteins and thereby
compete off the activating BH3-only proteins (Derepression of MODE 1, D1).
Bax/Bak dimer/oligomerization: Activated Bax and Bak dimerize by interaction
of the exposed BH3 domain of one molecule with the groove of a second molecule
and vice versa. These symmetric dimers further oligomerize to form a complex of
unknown size (n) that permeabilizes the membrane. By directly binding and
sequestering activated Bax and Bak, prosurvival Bcl-2 proteins prevent dimerization

(MODE 2 inhibition, M2). In turn, BH3-only proteins interfere with the prosurvival
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inhibition by binding the prosurvival proteins and thereby competing off activated

Bax and Bak (Derepression of MODE 2, D2).

Figure 3 Binding of BH3 peptides to the groove and rear pocket of Bax
promotes conformation change and oligomerization. Cartoon and surface
overlays of Bax structures and models that support the transitions of Bax and Bak
described in Figure 2. Color scheme of the helices as in Figure 2. (a) NMR structure
of the full-length Bax monomer (1F16). Note, the locations of the hydrophobic
surface groove, rear pocket, BH3 domain and transmembrane domain (TM) are
indicated. (b) Model of a BimBH3 peptide (magenta tube) bound to the rear pocket
of full-length Bax calculated from NMR data. Note that binding of the BimBH3
peptide displaced the a1/a2 loop (red arrow). Bim BH3 binding coincided with the
exposure of the N-terminal 6A7 epitope (marked in yellow), a9 helix and the BH3
domain (black arrows). (c) Crystal structure of a BidBH3 peptide (magenta tube)
bound to the groove of BaxAC21 (4BD2). Note that BidBH3 peptide binding induced
partial a2 displacement (short red arrow) and dissociation of the C-terminal a.6-0.8
helices (latch) from the N-terminal al-a5 helices (core) (long red arrow). (d)
Crystal structure of the a2-a5 Bax “core” forming a BH3:groove dimer (4BDU). Note
that aromatic residues (dark grey) on helices a4 and a5 form a lipophilic surface.
Although the lipophilic surface is concave in the homodimer structure, whether this
curvature is retained when Bax is associated with the MOM and whether the
curvature is important for membrane permeabilization is unknown. (e). Overlay of

the Bax:BidBH3 complex (colored:magenta, from c) with one half of the Bax
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BH3:groove dimer (in grey, from d). Note, to form the BH3:groove dimer, no major
rearrangements of the “core” helices occur other than the exposure of the BH3

domain (a2, red arrow).

Figure 4 BH3 domain residues involved in binding to the groove of Bax or Bak.
(a) Surface representation of a Bax structure that has a BidBH3 peptide bound to
the Bax groove (4BD2). Note that the hydrophobic residues (grey side chains) and
the aspartate residue (red side chain) in the BidBH3 peptide make contact with the
hydrophobic pockets and the arginine (indicated in blue) in the groove of Bax,
respectively. (b) Sequence alignment of the indicated BH3 domains, highlighting
five conserved hydrophobic residues (grey bars) and the invariant aspartate (red

bar). Residues in orange are discussed in the text.
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