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SUMMARY

A thorough understanding of cellular development is
incumbent on assessing the complexities of fate and
kinetics of individual clones within a population.
Here, we develop a system for robust periodical
assessment of lineage outputs of thousands of tran-
sient clones and establishment of bona fide cellular
trajectories. We appraise the development of den-
dritic cells (DCs) in fms-like tyrosine kinase 3 ligand
culture from barcode-labeled hematopoietic stem
and progenitor cells (HSPCs) by serially measuring
barcode signatures and visualize these multidi-
mensional data using developmental interpolated
t-distributed stochastic neighborhood embedding
(DiSNE) time-lapse movies. We identify multiple
cellular trajectories of DC development that are
characterized by distinct fate bias and expansion ki-
netics and determine that these are intrinsically pro-
grammed. We demonstrate that conventional DC
and plasmacytoid DC trajectories are largely sepa-
rated already at the HSPC stage. This framework al-
lows systematic evaluation of clonal dynamics and
can be applied to other steady-state or perturbed
developmental systems.
INTRODUCTION

Dendritic cells (DCs) represent a distinct branch of hematopoie-

sis and are responsible for pathogen sensing and activation of

the adaptive immune response (Merad et al., 2013). There are

three major subtypes, including plasmacytoid DCs (pDCs),

type 1 conventional DCs (cDC1s), and type 2 cDCs (cDC2s)

(Guilliams et al., 2014). DC development is relatively well estab-

lished at the population level and can be recapitulated in fms-like
Cell R
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tyrosine kinase 3 ligand (FL) cultures (Naik et al., 2005). Accord-

ing to the current hierarchical model of hematopoiesis (Guo et al.,

2013; Månsson et al., 2007), all DC subtypes can be generated

from a restricted common DC progenitor (CDP) population

downstream of hematopoietic stem and progenitor cells

(HSPCs) (Naik et al., 2007, 2013; Onai et al., 2007) via discrete

subtype-committed precursor stages (Grajales-Reyes et al.,

2015; Naik et al., 2006; Onai et al., 2013; Schlitzer et al., 2015).

However, clonal evidence has suggested earlier lineage

imprinting (Ema et al., 2014; Lee et al., 2017; Naik et al., 2013;

Notta et al., 2016; Sanjuan-Pla et al., 2013; Yamamoto et al.,

2013) or even DC subtype imprinting (Helft et al., 2017; Lee

et al., 2017; Naik et al., 2007; Onai et al., 2007) within individual

HSPCs. Importantly, most lineage tracing studies measured

clonal fate at only a single time point. Therefore, questions

remain as to whether the fate bias observed at one snapshot in

time is consistent over time.

Some studies have assessed clonal contribution longitudinally

(e.g., by serially sampling progeny derived from HSPCs in the

blood) and have been instrumental in highlighting clonal proper-

ties, including repopulation kinetics and lineage bias (Dykstra

et al., 2007; Kim et al., 2014; Naik et al., 2013; Sun et al., 2014;

Verovskaya et al., 2013; Wu et al., 2014; Yamamoto et al.,

2013). However, these approaches are not feasible in tracking

DC development, as DCs are rare, and most are residential in

lymphoid tissues such that serial sampling in vivo is not possible

(Shortman and Naik, 2007). Long-term imaging can allow accu-

rate reconstruction of pedigrees from transient progenitors that

produce rare progeny such as DCs in vitro. However, because

of technical demands it generally only allows assessment of

10–100 s clones for a short period of days to weeks, which might

not be sufficient to allow full differentiation (Dursun et al., 2016;

Skylaki et al., 2016). Recent ‘‘pedigree’’ tools that measure

evolving barcodes in progeny can infer developmental history

(Frieda et al., 2017; Kalhor et al., 2017; McKenna et al., 2016)

but are limited in their assessment of clonal kinetics.

Another method that aims to recapitulate the dynamic aspects

of development and differentiation is ‘‘pseudo-time’’ analyses,
eports 22, 2557–2566, March 6, 2018 ª 2018 The Author(s). 2557
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which infer developmental trajectories by assuming that single

cells within a population represent different ‘‘snapshots’’ along

archetypal paths and align cells on the basis of their proteomic

or transcriptomic profiles (Wagner et al., 2016). These models

can be of great benefit in understanding the order of gene and

protein expression in developmental pseudo-time. A confound-

ing factor, however, is the inability to assess individual clones, as

data are derived from a snapshot assessment or with no lineage

connection when assessed between time points. Therefore,

such archetypal trajectories may mask heterogeneity at the

clonal level, including features such as kinetics, lineage bias,

and division destiny (Marchingo et al., 2014).

Cellular barcoding allows tracking of clonal fate by differential

tagging of individual progenitors with unique and heritable DNA

barcodes (Bystrykh et al., 2012; Naik et al., 2014). Quantification

and barcode comparison between progeny cell types allows

inference of lineage relationships (i.e., barcodes shared between

cell types implies common ancestors, whereas differing barco-

des implies separate ancestors). Here we combine cellular

barcoding and DC development in FL cultures to facilitate longi-

tudinal assessment of clonal kinetics in a robust, controlled, and

high-throughput manner by serially sampling progeny from the

samewells atmultiple time points. Our results highlight that there

are several distinct classes of cellular trajectories in DC develop-

ment: each consists of clones with a similar pattern of DC sub-

types produced over time but with varying properties including

the timing, duration, andmagnitude of clonal waves. Importantly,

using clone-splitting experiments, we demonstrate that many of

these cellular trajectories are ‘‘programmed’’ within individual

HSPCs. Furthermore, we demonstrate that pDC and cDC devel-

opment has already largely diverged at the HSPC stage, not

downstream in the CDPs, as is currently assumed. Our results

offer a powerful analytical and visualization framework that re-

veals the diversity of clonal kinetics and cellular trajectories.

RESULTS

Longitudinal Tracking of Clonal DC Development
Reveals Time-Varying Patterns
To track clonal DC development longitudinally, we barcode-

labeled mouse Sca1+ cKithi cells that contained early HSPCs

and cultured them with FL to allow DC generation (Figures 1A

and S1A). The cultures were serially split in two at various times

such that half of the cells were sorted for the DC subtypes using

flow cytometry for subsequent barcode analysis, and half were

kept in culture with a compensating amount of fresh media (Fig-

ure 1A). To accurately define the DC subtypes, we used CD11c,

major histocompatibility complex class II (MHCII), Siglec-H, C-C

chemokine receptor type 9 (CCR9), Sirpa, and CD24 (Figure 1B).

In addition, we sorted cells that were outside these DC gates

collectively as ‘‘non-DCs’’ to allow estimation of the recovery

of barcodes in the culture at any given time points and track

clones that still contained DC progenitors. CCR9 inclusion was

critical to define bona fide pDCs as Siglec-H+CCR9– cells gener-

ated cDCs upon re-culture (Figure S2) (Schlitzer et al., 2011).

Importantly, individual samples were separated into technical

replicates after sorting and cell lysis to allow assessment of

technical variation of barcode recovery (Figure 1A). Furthermore,
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control experiments (Figure S1B) were performed and demon-

strated that serial sampling of barcoded progeny at the indicated

time intervals was a robust approach to measure DC clonal ki-

netics (Figures S1C and S1D).

Our method assessed DC developmental dynamics and re-

vealed time-varying patterns. The percentages of barcodes de-

tected at each time point over total seeded barcoded cells varied

and were consistently lower than the percentages of detected

barcodes across time (Table S1). Stacked histograms of the

number of cells produced by each detected clone over time (Fig-

ures 1C and 1D) showed a temporal shift of DC contribution by a

spectrum of large and small clones, and this pattern was

apparent for all DC subtypes. This indicated that DC generation

was not sustained by a set of ‘‘stable’’ clones within the tracking

period, and the contribution by different clones was not equal.

We also generated a heatmap showing the barcode contribution

to the number of DCs (biomass) from all cell types at all time

points to capture the entirety of the data (Figure 1E). Again, the

shift of clonal contribution to cell types over time was apparent,

as was their bias.

Next, we reasoned that the asynchronous waves of clonal

contribution could affect classification of clone output. For

example, if a multipotent clone generated pDCs at an early

time point and cDCs later, it would be classified as having a

pDC-only or cDC-only fate depending on which time point was

assessed. To test this, we first categorized clones into four clas-

ses (noDCs, pDConly, cDConly, and pDC/cDC) and determined

that only�30%–40%of clones generated DCswhen considered

at any given single time point (Figures 2A and S1E). However,

when we compared the ‘‘across time’’ fate, taking into account

a clone’s capacity to produce DCs at multiple time points, that

proportion of DC-generating clones increased to nearly 90%.

In addition, �20% of clones were re-classified from unipotent

(pDC or cDC only) when measured at single time points to multi-

potent (pDC/cDC) when all time points were considered (Fig-

ure 2A). The asynchronous contribution to different DC subtypes

over time was indeed apparent in the majority of clones using

violin plots (Figure 2C). Therefore, fate should be considered in

the context of time for a full appreciation of a clone’s potential.

We further quantified the contribution to the number of DC sub-

types by different classes of clones on the basis of the definition

‘‘across time’’ and observed lower contribution by multipotent

(�40%) than unipotent (�60%) clones to both pDCs and cDCs

(Figure 2B). These results highlight the importance of tracking

development longitudinally to accurately and thoroughly inter-

pret cellular output. Furthermore, our results indicate that

cDCs and pDCs are largely generated by progenitors that have

already branched.

DiSNE Movies Allow Visualization of Clonal Dynamics
To facilitate interpretation of the kinetics of clonal contribution,

we developed a dynamic visualization tool termed develop-

mental interpolated t-distributed stochastic neighborhood

embedding (t-SNE) (DiSNE) time-lapse movies (Movies S1, S2,

and S3). First, t-SNE (Van der Maaten and Hinton, 2008) was

applied to reduce the dimensionality of the dataset to a two-

dimensional (2D) map in which the properties of clones in terms

of subtypes and number of cells produced at different times
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Figure 1. Longitudinal Tracking Reveals Asynchronous Waves of DC Generation

(A) Experimental setup. HSPCs (cKit+Sca1+) from mouse bone marrow (BM) were transduced with lentivirus containing DNA barcodes and cultured in

FL-supplemented DC conditioned medium. At each time point, cells were equally split for either DC subtype isolation or further development in culture. Non-DCs

(non1 + non2 + non3), pDCs, cDC1s, and cDC2s were sorted as in (B) at each time point. Samples were then lysed and split into technical replicates, and

barcodes were amplified and sequenced.

(B) Gating strategy to isolate pDCs, cDC1s, cDC2s, and non-DCs using CD11c, MHCII, Siglec-H, CCR9, Sirpa, and CD24. Numbers represent percentages of

cells from parent gate.

(C) Number of DC subtype generation over time at the population level.

(D) Stacked histogram showing clonal contribution (i.e., per barcode) to each DC subtype number over time. Clones are shown in the same order for each

subtype. It is apparent that clones differ in size and also in timing of expansion.

(E) Heatmap representation of clonal output to DC subtypes from individual time points.

Data in (C) are average ± SEM of three independent cultures from one experiment, representative of three independent experiments. (D) and (E) show all clones

from one representative culture.
dictated the position of each barcodedHSPC. To visualize clonal

fate and DC biomass, we created ‘‘t-SNE pie maps’’ by gener-

ating a pie chart representing the proportional output to different

DC subtypes and altering point size, respectively (Figure 3).

Finally, changes in pie size and composition were interpolated

between flanking data points during DC development for dy-

namic visualization.

We performed DiSNE visualization on data pooled from

three independent wells, incorporating all time points available

(Figure 3; Movie S1). Similar to the heatmap representation,

heterogeneity was observed, but patterns were more easily

distinguishable considering that the bias was incorporated into

one pie, rather than four elements, and that clone size was better
represented through dot size rather than color. These DiSNE

movies (Movies S1, S2, and S3) portrayed the dynamic process

of DC development encompassing the complexities of qualita-

tive, quantitative, and now temporal characteristics of each

clone underlying development. Therefore, DiSNE movies are

an effective and powerful tool for visualization of clonal dy-

namics, and this technique has been packaged into a stand-

alone software package PieMaker (https://data.mendeley.com/

datasets/9mkz5n9jtf/1).

Multiple Trajectories of DC Development
To further characterize the clonal dynamics of DC development,

we compared several clustering methods and observed similar
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Figure 2. Longitudinal Tracking Allows Accurate Interpretation of Clonal Fate

(A) Categorization of clones into four classes, including no DCs, pDC only, cDC only, and pDC/cDC, on the basis of subtype output at a single time point or

across time.

(B) Percentage contribution to cell types from three classes of clones on the basis of across-time definition.

(C) Violin plots showing clonal output of individual barcodes over time. The width of the violin is proportional to the contribution of the clone to the corresponding

cell type at that time point.

Data in (A) and (B) are average + SEM of three independent cultures from one experiment, representative of three independent experiments. (C) shows the same

clones as in Figures 1D and 1E, from one representative culture.
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Figure 3. Visualizing Diversity of DC Cellular Trajectories Using DiSNE

Static t-SNE pie map at each time point (seeMovie S1 for a dynamic visualization). Each circle represents a barcode-labeled progenitor and the size scaled to the

number of cells produced by that clone per time point. Each sector in the pie chart represents the proportion of each cell type produced. Data are pooled from

three independent cultures (368 data points each [out of 368, 410, and 384] for equivalence) from one experiment, representative of three independent

experiments. Movies S2 and S3 show results from the other two experiments.
results (Figure S3). We then applied density-based spatial clus-

tering of applications with noise (DBSCAN) (Ester et al., 1996),

which best cohered with our DiSNE visualization and identified

16 clusters (Figure 4A). Visualization using spindle plots for

each cluster showed that clusters were mainly separated by

distinct fate bias or timing of contribution with similar fate output

(Figure 4B). Interestingly, t-SNEmostly positioned clusters with a

similar fate but asynchronous waves of contribution across a

band in the plot (see manually annotated circles in Figure 4A)

to form four major groups of trajectories, including cDC biased,

pDC biased, multipotent, and a group of very small clones with

mixed output (Figures 4B and 4F). There was large variation in

the number of clones and DC biomass produced by each cluster

(Figure 4C). The most prominent trajectory was cDC biased,

which comprised �43% of clones that contributed �60% of

cDC generation (Figures 4D and 4E). Similarly, �33% of clones

followed a pDC-biased trajectory, which generated more than

half of pDCs (Figures 4D and 4E). Only 12% of clones were iden-

tified in the multipotent clusters, which contributed to 36% of

pDCs, 31% of cDC1s, and 39% of cDC2s (Figures 4D and 4E).

In addition, cluster 2 was in a region containing very small clones

that were mostly unipotent. These represented 12% of total

clones and fewer than 1% of the total number of DCs generated

(Figures 4D and 4E). Importantly, independent wells within the

same experiment were reproducible by comparing the occur-

rence of barcodes in each cluster (Figure 4G) and between ex-
periments using Jensen-Shannon (JS) divergence (Amir et al.,

2013) to holistically assess similarity between datasets (Fig-

ure 4H). Thus, we have identified multiple major trajectories of

DC development and demonstrated the majority of clones within

the HSPC fraction, but not all, follow cDC- or pDC-biased trajec-

tories that contribute to the majority of their biomass.

Cellular Trajectories Are Intrinsically Programmed
Next, we asked whether the cellular trajectories of siblings

derived from a single clone are highly correlated. To this end,

we applied clone splitting by first pre-expanding barcoded pro-

genitors for 4.5 days and then equally split the wells into two par-

allel FL cultures (Figure 5A). We then performed serial sampling

and barcode analysis on both arms of the experiment as

described. We compared the fate and clone size of shared barc-

odes (58% in experiment 1 and 73% in experiment 2) in parallel

cultures across all time points (Figures 5B–5D and S4). Fate con-

servation was defined using JS divergence or cosine similarity, in

which both measured similarity in clonal kinetics (types of prog-

eny produced and the order) and produced similar results (Fig-

ure S4B). Size conservation was measured as the base two

logarithm of the ratio of biomass between the shared barcodes,

which essentially measured the discrepancy in division number

between splits. Interestingly, we found that many sisters were

concordant in their cellular trajectories, implying that descen-

dant cells carried a ‘‘memory’’ of what DCs to make, when to
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Figure 4. Identification of Major Classes of DC Cellular Trajectories

(A) DBSCAN-based algorithm identifies 16 clusters on the t-SNEmap (as in Figure 3). Most clusters correlate well with the overlaid barcode density heatmap. The

clusters are manually annotated into four major classes of trajectories on the basis of distinct fate output.

(B) Spindle plots showing contribution to each subtype over time by clones from individual clusters. The width of the spindle is proportional to the contribution of

the cluster to the corresponding cell type at that time point, and each partition of the spindle (varying color shades) represents individual clones within the cluster.

(C) Each cluster is quantified in terms of both the number of clones (out of a total of 1,104, pool of three independent cultures) it includes (x axis) and DC biomass

(the number of DCs it contributes) (y axis, pie radius). Pie charts show cluster compositions in terms of DC subtypes.

(D) Percentage progenitors from each trajectory class as defined in (A) and (B).

(E) Percentage contribution to cell types by each trajectory class. In (D) and (E), average + SEM of three independent cultures is shown.

(legend continued on next page)
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(A) Schematic of clone-splitting experiment. Barcoded progenitors were pre-expanded in FL culture for 4.5 days and split into two parallel cultures (a and b). Serial

sampling was then performed from both arms as described in Figure 1A. Asterisk, data from day 10.5 are lacking in experiment 1, and data from day 12.5 are

lacking in experiment 2 because of technical issues.

(B) Conservation of shared barcodes across all time points. Each point represents a barcode with reads detected in both halves of the split culture. For each

barcode, size conservation is defined as the base 2 logarithm of ratio of total read counts, and fate conservation is defined as JS divergence. Clones inside the

gate represent 80% of total shared barcodes, which contributes to 80% of total biomass. Data are a pool of two sets of parallel cultures from experiment 1,

representative of two independent experiments.

(C) Summary of fate and clone conservation value comparing split barcodes with randomly paired unrelated barcodes. Boxplots span interquartile range: The

central line indicates the median; the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively; the whiskers extend to the most

extreme data points not considered outlier; an outlier is a point further than 1.5 interquartile ranges from the box in either direction. Pooled data from both in-

dependent experiments are shown. Statistical significance is measured using Mann-Whitney U test.

(D) Paired violin plots comparing cellular trajectories from two arms of split culture (a versus b). Eight examples of clones with high conservation values are shown.

Full list of clones from experiment 1 is shown in Figure S4.
make them, and howmany cells to produce (Figures 5 and S4A).

These results are consistent with fate being a heterogeneous, yet

intrinsic and heritable property of individual founder cells when

measured in similar environments.
(F) Ternary plot showing subtype bias of each cluster. Circle size is proportional

(G) Barcode representation from the three independent cultures (replicates) in ea

(H) JS divergence measuring the similarity between independent cultures withi

independent experiments (low value, reproducible pattern), and between uniforml
DISCUSSION

The framework developed here provides a statistically robust,

quantitative, visually intuitive approach for high-throughput
to DC biomass of the cluster. Asterisk denotes the population average.

ch cluster.

n the same experiment (very low value, highly similar pattern), between two

y distributed pattern on the defined t-SNE region (high value, dissimilar pattern).
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tracking of clonal kinetics. It allows systematic examination of

lineage trajectories of any developmental system, whereby cells

can be cultured ex vivo and subsampled at desired time inter-

vals. Our results indicate that assessment of bona fide clonal

cellular trajectories is crucial to accurately determine clonal

fate, as opposed to measuring fate at a fixed time point. In addi-

tion, by incorporating clone splitting, we demonstrate that clonal

fate and waves of contribution to DCs is heterogeneous yet

largely programmed early in the developing clone. This provides

the rationale to combine our methodwith other approaches such

as single-cell RNA sequencing in parallel to not only measure

cellular trajectories but the underlying molecular trajectories

that guide these properties or to test the effect of biological vari-

ation or perturbation such as drug treatment and genetic manip-

ulation on one arm of the clone-splitting experiment.

Importantly, we demonstrate that the majority of HSPCs

already have a cDC- or pDC-biased fate by measuring clonal

output across multiple time points in FL cultures of DC develop-

ment. Our results do not support the current model, which im-

plies a common origin of cDCs and pDCs from CDPs (Guilliams

et al., 2014). This could be partly explained in that many prior

studies do not incorporate CCR9 to define pDCs, leading to

possible misallocation of cDC precursors as pDCs. Similarly,

two recent studies (See et al., 2017; Villani et al., 2017) using sin-

gle-cell profiling of the human DC compartment independently

identified contaminating DCprecursorswithin the phenotypically

defined pDCs. Future studies should determine whether those

populations and murine Siglec-H+CCR9– cells represent the

same precursor population. Our observation of early cDC and

pDC bifurcation is also partly supported by the identification of

cDC-, cDC1-, and cDC2-committed progenitors in various frac-

tions of HSPCs and downstream progenitors (Grajales-Reyes

et al., 2015; Schlitzer et al., 2015; Schraml et al., 2013). Impor-

tantly, our results indicate that a pDC-committed progenitor

population likely exists within HSPC fraction, indicative of early

branching, similar to a recent study (Lee et al., 2017).

Our results highlight a remarkable degree of heterogeneity

within early HSPC population. Longer term efforts should

appraise not only progenitors but also their progeny at a sin-

gle-cell level to determine how origin dictates functional hetero-

geneity. This information, combined with the molecular drivers

that underlie true cellular trajectories, and within an in vivo

context, are necessary for a full understanding of development.

EXPERIMENTAL PROCEDURES

Mice

All mice were bred and maintained under specific pathogen-free conditions

at the Walter and Eliza Hall Institute (WEHI), according to institutional guide-

lines. Either C57BL/6 (CD45.2) or C57BL/6 Pep3b (CD45.1) male mice aged

8–16 weeks were used.

Cellular Barcoding

Barcode transduction, amplification, and data processing were performed

largely as described previously (Naik et al., 2013). See the Supplemental Infor-

mation for detailed procedures.

FL Culture and Serial Sampling

Labeled cells (53 103) were cultured with 200 mLDC conditionedmedium sup-

plemented with hFL (BioXcell, 800 ng/mL) per well in a 96-well round-bottom
2564 Cell Reports 22, 2557–2566, March 6, 2018
plate. After 6.5 days of culture, cells were gently mixed a few times with a

pipette, half were removed for subtype isolation by flow cytometry, and

another half were kept in culture with medium topped up to 200 mL. The

same procedure was repeated every 2 days. At the last time point, all cells

from each well were harvested and sorted.

Clone-splitting experiments were performed to assess conservation of fate

between shared barcodes over time. Briefly, wells were split into two at day 4.5

and both cultured until day 6.5. After that, serial sampling was performed on

both splits every 2 days, and analysis was performed from each split well as

the other samples.

Barcode Categorization

Each barcode was categorized into four classes: ‘‘no DCs’’ (produced no

mature DCs), ‘‘pDC only’’ (produced pDCs but no cDC1s or cDC2s), ‘‘cDC

only’’ (produced cDC1 and/or cDC2 cells but no pDCs), and ‘‘pDC/cDC’’ (pro-

duced pDCs and either one or both cDC types). Barcode categorization was

done on the basis of minimal read count and minimal proportion. In Figure 2A,

minimal read count was set to 750, and minimal proportion was set to 5%. For

example, if barcode A had 1,000 reads in pDC, 600 reads in cDC1, and 90,000

reads in cDC2, the cDC1 reads was first set to zero, as it did not pass the min-

imal read count threshold. As this barcode produced 1% pDCs (< 5%) and

99% cDC2s, it was classified as a cDC-only clone. Categorization was per-

formed on the basis of data at each time point independently or on the basis

of data across time. For categorization across time, a barcode was considered

to produce a certain subtype X if it produced subtype X at any of the time

points. Categorization was repeated using varying value combination of the

two thresholds to verify that small changes in the values of these parameters

qualitatively resulted in similar outcomes (Figure S1E).

Visualization Using t-SNE, Static Pie Maps, and DiSNE Movies

First, t-SNE was performed with default parameters to reduce the dimensions

of the dataset to 2D (Van der Maaten and Hinton, 2008). Hyperbolic arcsine-

transformed biomass counts from all time points were pooled from three inde-

pendent cultures as input for the t-SNE algorithm. Barcodes that did not

produce any DCs were excluded. The output of t-SNE was used for down-

stream visualization and clustering. To visualize clonal output and size on

the t-SNE map, each barcode was represented as a pie chart (t-SNE pie

maps). The segments of the chart depict the proportion of each subtype at a

particular time point. The radius of the pie chart reflects the total biomass of

the given barcode at the given time point. For the purpose of visualizing indi-

vidual cellular trajectories (developmental changes over time) and clusters

(see below), a cubic spline-based interpolation for time values between exper-

imental time points was applied. Depending on the settings for DiSNE movie

generation, linearly interpolated frames can be added between frames that

correspond to experimental time points (see manual for PieMaker software

at: https://data.mendeley.com/datasets/9mkz5n9jtf/1).

Clustering

To identify major patterns, several clustering methods were applied, including

DBSCAN (Ester et al., 1996), Gaussian-mixture clustering, and the affinity

propagation algorithm (Frey and Dueck, 2007). These methods were applied

on both raw data and using scatterplots derived from t-SNE as input. These

methods were capable of producing similar results. For example, raw data-

based clustering resulted in clusters that were spatially consistent when pro-

jected onto t-SNE plots (Figure S3A) and produced trajectories with similar

patterns (data not shown).

A barcode density plot using kernel density estimation via diffusion (Botev

et al., 2010) was generated to assess the feasibility of each particular clus-

tering method by first running each of the three algorithms on grids of param-

eter values and visually inspecting how well the resulting clustering aligned

with the barcode density plot. DBSCAN-based clustering was found to align

with the density plot best. Therefore, DBSCAN was used to identify cluster

centroids, and each unassigned point was assigned to the cluster with the

nearest centroids. The resulting clusters were manually categorized a ‘‘cDC

biased,’’ ‘‘pDC biased,’’ ‘‘multipotent,’’ or ‘‘mixed, small’’ on the basis of visual

inspection of the corresponding DiSNE movie, visualization of subtype output

per cluster using spindle plots (Figure 3B), and visualization of fate bias per

https://data.mendeley.com/datasets/9mkz5n9jtf/1


cluster using ternary plots (Figure 3F). The spindle plots are stacks of

biomasses of barcodes included in the corresponding cluster. Individual

barcodes can be distinguished by varying color shades. The ternary plot

was generated using proportions of pDC, cDC1, and cDC2 biomasses (non-

DCs excluded) to define coordinates for each cluster in the equilateral

triangles.

Conservation between Shared Barcodes in Split Cultures

Given a split culture, barcodes without any DC biomass in each of the split

parts (non-DCs only) and barcodes that were present only in one of the splits

were excluded, and the rest were identified as shared barcodes. Fate conser-

vation was computed to measure similarity between kinetics of DC subtype

production (e.g., whether split parts of the same clone produced same types

of DCs and in the same order). First, biomass values were hyperbolic

arcsine-transformed, and JS divergence and cosine similarity were computed.

Both methods produced very similar results (Figure S4B), and hence JS diver-

gence was used to estimate fate conservation in Figure 5. Size conservation

was computed to measure similarity in clonal expansion between the split

parts of the same clone. First, total biomass per barcode was calculated

(sum of biomass from all subtypes from all time points) for each split part.

Next, the ratio of the smaller total biomass to the larger was calculated, and

the base 2 logarithm of this ratio was computed as a measure of size conser-

vation. For example, a difference of 1 could be interpreted that one part of the

clone made on average one more division round. Note that biomass of non-

DCs was excluded during computation of both fate and size conservation.

Random controls were generated by randomly paired unrelated barcodes in

the same culture to assess whether the observed conservation was due to

chance.

Statistical Analysis

The Mann-Whitney U test was performed to measure the significance of the

observed difference between groups. All data are presented in boxplots that

span the interquartile range.
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