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Receptor interacting protein kinase 1 (RIPK1) promotes cell survival because mice 24 

lacking RIPK1 die perinatally, exhibiting aberrant caspase-8-dependent apoptosis 25 

and mixed lineage kinase-like (MLKL)-dependent necroptosis 1-3.  However, mice 26 

expressing catalytically inactive RIPK1 are viable 2,4,5, so an ill-defined pro-survival 27 

function for the RIPK1 scaffold has been proposed.  Here we show that the RIP 28 

homotypic interaction motif (RHIM) in RIPK1 prevents the RHIM-containing 29 

adaptor protein ZBP1 (Z-DNA binding protein 1; also called DAI) from activating 30 

RIPK3 upstream of MLKL.  Ripk1RHIM/RHIM mice expressing mutant RIPK1 with 31 

critical RHIM residues IQIG mutated to AAAA died around birth and exhibited 32 

RIPK3 autophosphorylation on Thr231 and Ser232, which is a hallmark of 33 

necroptosis 6.  Blocking necroptosis with catalytically inactive RIPK3 D161N, RHIM 34 

mutant RIPK3, RIPK3 deficiency, or MLKL deficiency prevented lethality in 35 

Ripk1RHIM/RHIM mice.  Loss of ZBP1, which engages RIPK3 in response to certain 36 

viruses 7,8 but has no known role during development, also prevented perinatal 37 

lethality in Ripk1RHIM/RHIM mice.  Consistent with the RHIM of RIPK1 functioning as 38 

a brake that prevents ZBP1 from engaging the RIPK3 RHIM, ZBP1 interacted with 39 

RIPK3 in Ripk1RHIM/RHIM Mlkl-/- macrophages, but not in wild-type, Mlkl-/- or 40 

Ripk1RHIM/RHIM Ripk3RHIM/RHIM macrophages.  Collectively, these findings indicate that 41 

the RHIM of RIPK1 is critical for preventing ZBP1/RIPK3/MLKL-dependent 42 

necroptosis during development.  43 
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Studies of RIPK1 deficiency show that RIPK1 suppresses RIPK3/MLKL-dependent 44 

necroptosis in some cell types, and FADD/caspase-8-dependent apoptosis in others 1-3,9-12.  45 

However, mutation of critical catalytic residues in RIPK1, or inhibition of RIPK1 46 

enzymatic activity with the small molecule necrostatin-1, does not promote cell death 47 

2,4,5,11,12.  Therefore, RIPK1 is hypothesized to form a pro-survival scaffold that is 48 

independent of its kinase activity.  In addition to its kinase domain, RIPK1 has RHIM and 49 

death domain (DD) protein interaction motifs 13 (Fig. 1a).  The DD mediates recruitment 50 

of RIPK1 to death receptors such as tumor necrosis factor receptor 1 (TNFR1) and to 51 

adaptor proteins such as Fas-associated via death domain (FADD), whereas the RHIM 52 

mediates interactions with RIPK3 13.  To determine if the RHIM of RIPK1 is an essential 53 

part of the RIPK1 pro-survival scaffold, we generated Ripk1RHIM/RHIM mice with RHIM 54 

core residues IQIG 14 mutated to AAAA (Fig. 1a). 55 

 56 

Ripk1RHIM/RHIM mice died around birth (Fig. 1b) with histologic lesions in the skin being 57 

the most striking and consistent phenotype (Fig. 1c).  At embryonic day 18.5 (E18.5), the 58 

epidermis was hyperplastic and the underlying dermis was expanded by edema and 59 

infiltrated with leukocytes.  Similar abnormalities in Ripk1-/- embryos require RIPK3 and 60 

MLKL-dependent necroptosis 1.  Of note, Ripk1RHIM/RHIM embryos lacked the caspase-8-61 

dependent intestinal lesions seen in Ripk1-/- embryos 1 (Extended data fig. 1a).  These data 62 

suggest that mutation of the RIPK1 RHIM primarily unleashes the RIPK3-MLKL 63 

necroptosis pathway (Extended data fig. 1b). 64 

 65 
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RIPK3 autophosphorylation on Thr231 and Ser232 is a hallmark of necroptosis 6.  A 66 

phospho-specific RIPK3 antibody recognizing these sites (Extended data fig. 1, c and d) 67 

stained many cells in the skin and thymus of Ripk1RHIM/RHIM embryos, but rare cells 68 

throughout multiple tissues including the bladder, liver, heart and intestine were also 69 

positive (Fig. 1c and Extended data fig. 1e).  Importantly, staining was absent in wild-70 

type (WT) embryos.  RIPK3 autophosphorylation in the Ripk1RHIM/RHIM skin coincided 71 

with increased cell death based on TUNEL staining, which marks dying cells with DNA 72 

damage (Extended data fig. 1f), and cleaved caspase-3 staining, which marks apoptotic 73 

cells (Fig. 1c).  Increased cell death was less evident in the Ripk1RHIM/RHIM thymus 74 

(Extended data fig. 1f), perhaps because MLKL was limiting.  Thymocytes expressed 75 

considerably less MLKL than necroptosis-competent macrophages (Extended data fig. 76 

1g). 77 

 78 

Lethality and the skin lesions in Ripk1RHIM/RHIM mice were prevented by either RIPK3 or 79 

MLKL deficiency, suggesting these defects stemmed from aberrant necroptosis (Fig. 1c-f 80 

and Extended data fig. 2a-d).  Although RIPK3 has been linked to apoptosis induction in 81 

some contexts 13, MLKL has not.  Therefore, increased apoptosis in the Ripk1RHIM/RHIM 82 

dermis may have been a secondary consequence.  Ripk1RHIM/RHIM Ripk3+/- mice were also 83 

viable and fertile, although 4 out of 7 mice developed severe dermatitis around the neck 84 

and ears after 6-9 months (Extended data fig. 2d).  Sensitivity to Ripk3 gene dosage was 85 

not unexpected because halving the Ripk3 gene dosage also averts perinatal lethality in 86 

Ripk1-/- Casp8-/- mice 2.  Ripk1RHIM/RHIM mice expressing RIPK3 with RHIM residues 87 

VQIG mutated to AAAA (Extended data fig. 3a) or catalytically inactive RIPK3 D161N 4 88 
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also survived beyond weaning, were fertile, and had no overt defects, albeit the eldest 89 

mice analyzed were only aged 3-6 months (Extended data fig. 3b-d).  These data provide 90 

further support for necroptosis driving the lesions in Ripk1RHIM/RHIM mice because both the 91 

RHIM and kinase activity of RIPK3 are critical for necroptotic signaling (Extended data 92 

fig. 3e-h) 15-17. 93 

 94 

RIPK1 deficiency compromises signaling by TNF in some cell types 9,18 so we compared 95 

WT, Ripk1-/-, and Ripk1RHIM/RHIM primary mouse embryo fibroblasts (MEFs) after TNF 96 

treatment.  Phosphorylation and degradation of IκBα, and phosphorylation of p38 and 97 

JNK were impaired in Ripk1-/- MEFs (Extended data fig. 4a) as reported 8, but occurred 98 

normally in Ripk1RHIM/RHIM MEFs (Extended data fig. 4b).  Ripk1RHIM/RHIM MEFs treated 99 

with TNF also maintained normal levels of FLIP (FLICE-inhibitory protein), the adaptor 100 

protein TRAF2 (TNF receptor associated factor 2), and the ubiquitin ligase cIAP1 101 

(cellular inhibitor of apoptosis protein 1), whereas these proteins were lost from Ripk1-/- 102 

MEFs (Extended data fig. 4c).  Therefore, these RIPK1-dependent signaling events 103 

triggered by TNF in MEFs do not require the RIPK1 RHIM. 104 

 105 

Next we examined necroptosis signaling in primary Ripk1RHIM/RHIM MEFs treated with 106 

TNF plus the pan-caspase inhibitor Z-VAD-FMK (hereafter abbreviated TZ).  Similar to 107 

WT macrophages (Extended data fig. 3g and 4d), WT or Ripk1RHIM/RHIM MEFs exhibited 108 

RIPK1 phosphorylation on Ser166 after TZ treatment (Fig. 2a).  We believe this 109 

modification represents RIPK1 autophosphorylation because it was absent when cells 110 

expressed catalytically inactive RIPK1 D138N.  Interestingly, RIPK1 Ser166 111 
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phosphorylation was detected as early as 5 min after treatment with TNF or TZ (Fig. 2b), 112 

indicating that it is not a necroptosis-specific modification.  Analysis of the TNFR1-113 

associated signaling complex induced by TZ (Fig. 2c) indicated that WT, catalytically 114 

inactive, or RHIM mutant RIPK1 were incorporated into the complex and modified in a 115 

manner consistent with their being ubiquitylated 19.  However, only WT and RHIM 116 

mutant RIPK1 were also phosphorylated on Ser166.  Ubiquitylation of RIPK1 is thought 117 

to contribute to TAK1 (Transforming growth factor β-activated kinase 1) and IKK 118 

activation 20-24, so our data implying that RIPK1 autophosphorylation is dispensable for 119 

RIPK1 ubiquitylation fits with TNF activating IKK- and TAK1-dependent signaling 120 

pathways normally in Ripk1D138N/D138N cells 4 (Extended data fig. 5b).   121 

 122 

We explored whether TNF-induced phosphorylation of RIPK1 Ser166 required RIPK1 123 

ubiquitylation by pretreating WT MEFs with the IAP (inhibitor of apoptosis protein) 124 

antagonist BV6 (Extended data fig. 5a) or by analyzing Tradd-/- macrophages (Extended 125 

data fig. 5b).  MEFs treated with BV6 lacked detectable cIAP1, consistent with BV6 126 

inducing proteasomal degradation of the ubiquitin ligases cIAP1 and cIAP2 25.  In 127 

addition, RIPK1 associated with TNFR1 no longer migrated as a high molecular weight 128 

smear, consistent with it being poorly ubiquitylated (Extended data fig. 5a).  However, 129 

RIPK1 phosphorylated on Ser166 was still detected, implying that RIPK1 130 

autophosphorylation does not require RIPK1 ubiquitylation.  Similar results were 131 

obtained using Tradd-/- macrophages having reduced RIPK1 ubiquitylation in the TNFR1 132 

signaling complex (Extended data fig. 5b).  Collectively, our data suggest that RIPK1 133 
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associated with TNFR1 undergoes ubiquitylation and autophosphorylation with one 134 

modification not requiring the other. 135 

 136 

TZ caused RIPK1 to interact with RIPK3 in WT MEFs, whereas TNF or Z-VAD-FMK 137 

alone did not (Extended data fig. 5c).  Consistent with previous studies 15,16, this 138 

interaction required both the RHIM and kinase activity of RIPK1 (Fig. 2a).  RIPK1 139 

interacting with RIPK3 promotes RIPK3 oligomerization and autophosphorylation 26.  140 

Therefore, as expected, TZ induced RIPK3 autophosphorylation in WT MEFs, but not in 141 

Ripk1D138N/D138N MEFs (Fig. 2a).  RIPK3 was not autophosphorylated in WT MEFs treated 142 

with TNF or Z-VAD-FMK individually (Fig. 2d).  Strikingly, both Ripk1RHIM/RHIM and 143 

Ripk1-/- MEFs exhibited RIPK3 autophosphorylation in medium alone (Fig. 2a and 144 

Extended data fig. 5d).  These data indicate that the RHIM of RIPK1 suppresses RIPK3 145 

activation in primary MEFs as well as in the skin and thymus of the developing mouse.  146 

RIPK3 autophosphorylation in the Ripk1RHIM/RHIM or Ripk1-/- MEFs did not induce 147 

significant cell death (Extended data fig. 5e), although it should be noted that WT MEFs 148 

were also considerably less sensitive to TZ than macrophages (Extended data fig. 3e) or 149 

immortalized MEFs 4.  Primary MEFs, like thymocytes, expressed less MLKL than 150 

macrophages (Extended fig. 1g) and this may contribute to their relative insensitivity to 151 

RIPK3 activation. 152 

 153 

How might the RIPK1 RHIM suppress RIPK3 activation when interactions between 154 

RIPK1 and RIPK3 were only detected after TZ treatment (Fig. 2 and Extended data fig. 155 

5c)?  Furthermore, does an upstream stimulus drive RIPK3 activation in Ripk1-/- or 156 
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Ripk1RHIM/RHIM cells, or does RIPK3 above a threshold level activate spontaneously?  Two 157 

other RHIM-containing proteins besides RIPK1 and RIPK3 are ZBP1 and TRIF.  158 

Therefore, we tested if loss of both ZBP1 and TRIF substituted for RIPK3 deficiency and 159 

rescued lethality in Ripk1-/- Casp8-/- mice 1-3.  After intercrossing Ripk1+/- Casp8+/- Zbp1-/- 160 

Trif-/- mice, we obtained viable Ripk1-/- Casp8-/- Zbp1-/- Trif-/- mice with a median survival 161 

of 17 weeks, whereas Ripk1-/- Casp8+/+ Zbp1-/- Trif-/- or Ripk1-/- Casp8+/- Zbp1-/- Trif-/- 162 

littermates died within 3 weeks (Fig. 3, a and b).  With the exception of two mice with 163 

severe malocclusion, all weaned Ripk1-/- Casp8-/- Zbp1-/- Trif-/- mice were euthanized due 164 

to lymphadenopathy from the accumulation of CD3+ B220+ T cells (Fig. 3, c and d), a 165 

known consequence of caspase-8 deficiency 27.  Lymphadenopathy was accompanied by 166 

significantly elevated serum IL-17A and CCL4/MIP-1β (Extended data fig. 6a).  The 167 

only other consistent phenotype revealed by histological analysis of all the major organ 168 

systems at 3-6 months of age was testicular atrophy in the Ripk1-/- Casp8-/- Zbp1-/- Trif-/- 169 

males (Extended data fig. 6b). 170 

 171 

Survival of Ripk1-/- Casp8-/- Zbp1-/- Trif-/- mice beyond weaning suggests that ZBP1 and/or 172 

TRIF promote RIPK3 activation when RIPK1 is absent.  Consistent with this notion, 173 

E18.5 Ripk1-/- Zbp1-/- Trif-/- skin had few cells containing autophosphorylated RIPK3 174 

when compared to Ripk1-/- skin (Fig. 3e).  Epidermal hyperplasia and dermatitis were still 175 

evident in Ripk1-/- Zbp1-/- Trif-/- skin, but presumably this was due to caspase-8-dependent 176 

apoptosis because neither occurred in the skin of Ripk1-/- Casp8-/- Zbp1-/- Trif-/- mice aged 177 

3-6 months (Extended data fig. 6c).  One Ripk1-/- Casp8-/- Zbp1-/- mouse was obtained 178 

from limited intercrossing of Ripk1+/- Casp8+/- Zbp1+/- Trif+/- mice and it lacked overt 179 
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defects at 7 weeks of age (Extended data fig. 6d).  Thus, ZBP1 potentially contributes 180 

more than TRIF to Ripk1-/- perinatal lethality.  Consistent with this idea, ZBP1 deficiency 181 

alone rescued perinatal lethality in the Ripk1RHIM/RHIM mice, whereas TRIF deficiency did 182 

not (Fig. 4a-c and Extended data fig. 7a).  Ripk1RHIM/RHIM Zbp1-/- mice aged 7 weeks lacked 183 

histologic skin lesions but they still exhibited some RIPK3 autophosphorylation in the 184 

dermis (Fig. 4d and Extended data fig. 7b).  Therefore, it is possible that TRIF-dependent 185 

RIPK3 activation might elicit lesions in older Ripk1RHIM/RHIM Zbp1-/- mice. 186 

 187 

We sought biochemical evidence for ZBP1 or TRIF engaging RIPK3 in Ripk1RHIM/RHIM 188 

macrophages, but found that Ripk1RHIM/RHIM fetal liver cells cultured with M-CSF yielded 189 

approximately 5-fold fewer Mac-1+ F4/80+ macrophages than their WT counterparts 190 

(Extended data fig. 7c).  Furthermore, Ripk1-/- or Ripk1RHIM/RHIM macrophages contained 191 

abnormally low amounts of ZBP1, RIPK3 and MLKL (Extended data fig. 7d), suggesting 192 

selection for cells unable to die.  To circumvent these issues, we analyzed Ripk1RHIM/RHIM 193 

Mlkl-/- bone marrow-derived macrophages.  No interaction between RIPK3 and TRIF was 194 

detected, but RIPK3 did coimmunoprecipitate with ZBP1 (Fig. 4e).   No RIPK3/ZBP1 195 

interaction occurred in WT, Mlkl-/-, or Ripk1RHIM/RHIM Ripk3RHIM/RHIM macrophages, 196 

indicating that ZBP1 engages the RIPK3 RHIM only when the RIPK1 RHIM is mutated.  197 

We explored whether RIPK1 might sequester ZBP1 in WT cells and thereby prevent it 198 

from interacting with RIPK3, but failed to detect a RIPK1/ZBP1 interaction.  Therefore, 199 

how the RIPK1 RHIM suppresses the ZBP1/RIPK3 interaction remains enigmatic. 200 

 201 
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ZBP1 has two N-terminal Z-DNA binding domains in addition to its C-terminal RHIMs 202 

28, and promotes necroptosis in response to murine cytomegalovirus 7 or influenza 8 203 

infection.  However, it is unclear if ZBP1 acts as a DNA sensor during infection.  ZBP1 204 

is also a type I interferon-inducible gene 29.  ZBP1 was more abundant in E18.5 205 

Ripk1RHIM/RHIM skin (Extended data fig. 7e), but this did not (?) coincide with a marked 206 

increase in Ifnb expression (Extended data fig. 7f).  ZBP1 was not increased in 207 

Ripk1RHIM/RHIM Ripk3-/- or Ripk1RHIM/RHIM Mlkl-/- skin, so it is possible that Ripk1RHIM/RHIM skin 208 

contained more ZBP1 because of infiltrating leukocytes.  Immune cells undergoing 209 

necroptosis may also have enhanced RIPK3 autophosphorylation in Ripk1RHIM/RHIM skin 210 

compared to Ripk1RHIM/RHIM Mlkl-/- skin (Fig. 1c and 4f).   211 

 212 

In sum, our analyses have revealed an unexpected role for ZBP1 in triggering necroptosis 213 

in the perinatal period.  Future studies will need to address if ZBP1 senses viral infections 214 

and/or DNA in this context, or if mutation of the RIPK1 RHIM is necessary and 215 

sufficient for ZBP1/RIPK3 interactions that induce necroptosis.    216 
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Figure Legends 308 

 309 

Figure 1. Mutation of the RIPK1 RHIM causes RIPK3/MLKL-dependent lethality. 310 

(a) Organization of the Ripk1RHIM mutant allele.  Black boxes indicate exons.  DD, death 311 

domain.  RHIM, RIP homotypic interaction motif. 312 

(b) Numbers of offspring from Ripk1RHIM/+ parents.  Strains 1 and 2 were derived from 313 

independent ES cell clones. 314 

(c) E18.5 embryo sections.  Cells containing autophosphorylated RIPK3 (p-RIPK3) or 315 

cleaved caspase-3 by immunohistochemistry (IHC) stained brown.  H & E, hematoxylin 316 

and eosin.  Scale bars, 100 μm.  Results are representative of 3-5 embryos of each 317 

genotype. 318 

(d and e) Numbers of offspring from compound heterozygote parents that survived 319 

beyond weaning at ~ 21 days. 320 

(f) Kaplan-Meier plot of mouse survival.  Mice were either found dead (&) or euthanized 321 

because of an enlarged abdomen (#) or skin lesions (*). 322 

 323 

Figure 2. The RIPK1 RHIM is dispensable for RIPK1 autophosphorylation but 324 

mediates interactions with RIPK3 in response to TZ. 325 

(a-d) Western blots of MEFs or immunoprecipitations (IP) performed with the indicated 326 

antibodies.  T, TNF.  Z, Z-VAD-FMK.  p-RIPK1, phosphorylated RIPK1 Ser166.  p-327 

RIPK3, phosphorylated RIPK3 Thr231 and Ser232.  Asterisks indicate non-specific 328 

bands.  Results are representative of 2 (c), 4 (a and b) or 5 (d) independent experiments. 329 

 330 
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Figure 3. Combined ZBP1 and TRIF deficiency rescues perinatal lethality in Ripk1-/- 331 

Casp8-/- mice. 332 

(a) Numbers of offspring of Ripk1+/- Casp8+/- Zbp1-/- Trif-/- parents. 333 

(b) Kaplan-Meier plot of mouse survival.  Note that animals clipped at P3-P6 and not 334 

found at weaning were recorded as dead at 21 d, but may have died earlier. 335 

(c) Spleen and lymph nodes (mesenteric, brachial, and inguinal) of male littermates aged 336 

18 weeks. 337 

(d) Flow cytometric analysis of lymph node cells from female mice aged 15-17 weeks. 338 

(e) E18.5 skin sections.  Cells containing autophosphorylated RIPK3 (p-RIPK3) by 339 

immunohistochemistry (IHC) stained brown.  Scale bar, 100 μm.  340 

Results in (c-e) are representative of 3-4 mice of each genotype. 341 

 342 

Figure 4. ZBP1 interacts with RIPK3 to trigger necroptosis in Ripk1RHIM/RHIM mice. 343 

(a and b) Numbers of offspring from compound heterozygote parents that survived 344 

beyond weaning at ~ 21 days. 345 

(c) Kaplan-Meier plot of mouse survival. 346 

(d) Skin sections from female littermates aged 7 weeks.  Cells containing 347 

autophosphorylated RIPK3 (p-RIPK3) by immunohistochemistry (IHC) stained brown.  348 

Scale bar, 100 μm.  Results are representative of 2 Ripk1RHIM/RHIM Zbp1-/- mice. 349 

(e) Western blots of macrophages or immunoprecipitates (IP).  Results are representative 350 

of 4 independent experiments. 351 

  352 
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Methods 353 

Mice 354 

Ripk3-/- 4, Ripk3D161N/D161N 4, Ripk1D138N/D138N 4, Ripk1-/- 4, Casp8-/- 4, Tradd-/- 22, Mlkl-/- 30, 355 

Zbp1-/- 31, and Trif-/- 32 mice were described previously.  A second Zbp1-/- strain generated 356 

by Taconic (Germany) using C57BL/6NTac ES cells was also crossed to Ripk1RHIM/RHIM 357 

mice and rescued perinatal lethality similar to the published Zbp1-/- strain 31 so results 358 

were pooled.  The Taconic strain lacked the Zbp1 5' UTR and exon 1 corresponding 359 

to NCBI37/mm9 chr2:173,043,537-173,045,687.  Ripk1RHIM/+ and Ripk3RHIM/+ mice were 360 

generated at Genentech using C57BL/6N C2 ES cells.  A FRT-flanked neomycin 361 

selection cassette inserted upstream of Ripk1 exon 10 at position chr13:34,029,090 362 

(GRCm38/mm10 assembly) or upstream of Ripk3 exon 10 at position chr14:55,785,501 363 

(reverse strand) was deleted from the targeted ES cells prior to microinjection by 364 

adenoviral delivery of Flpe.  Ripk1 sequence ATT CAG ATT GGA encoding RHIM 365 

residues IQIG was replaced with the sequence GCT GCG GCT GCA.  Ripk3 sequence 366 

GTG CAG ATT GGG encoding RHIM residues VQIG was replaced with the sequence 367 

GCA GCC GCG GCT. 368 

 369 

Ripk1RHIM genotyping primers 5’ CCA CAT TCT TGC CAA CAC TG and 5’ GCA AGT 370 

ATT GTT TGG TGG TTG amplified 299 base pair (bp) wild-type and 333 bp knock-in 371 

DNA fragments.  Ripk3RHIM genotyping primers 5’ AGC AGG CAC TAC TCT TTG 372 

AGC T and 5’ CTG TGC TTG GTC ATA CTT GGC amplified 325 bp wild-type and 373 

359 bp knock-in DNA fragments.  Zbp1 genotyping primers 5’ AGA CCA TTA GAA 374 

AGC ACA GAT C, 5’ TGG CCT CTC CTT CAT TCC and 5’ CTC CTA GGT CAG 375 
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TGA CTC TC amplified 145 bp wild-type and 294 bp knock-out (Taconic strain) DNA 376 

fragments. 377 

 378 

For timed pregnancies, mice were designated E0.5 on the morning a vaginal plug was 379 

detected.  When determining offspring numbers, pups were clipped between 3-6 days of 380 

age.  The Genentech institutional animal care and use committee approved all protocols. 381 

 382 

Immunohistochemistry 383 

Formalin-fixed, paraffin-embedded tissue sections were stained with 5 μg/ml rabbit anti-384 

mouse phospho-RIPK3 antibody (GEN135-35-9, Genentech) recognizing phosphorylated 385 

residues Thr231, Ser232.  Immunohistochemistry was performed on the Ventana 386 

Discovery XT platform with CC1 standard antigen retrieval.  The reaction was detected 387 

with the HQ amplification system using DAB as the chromogen and hematoxylin 388 

counterstain.  Josh to insert CC3 IHC and TUNEL staining methods. 389 

 390 

Cell culture 391 

Primary MEFs isolated from E13.5 or E14.5 embryos were grown in the high glucose 392 

version of Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% heat 393 

inactivated-fetal bovine serum, 2 mM glutamine, 10 mM HEPES (pH 7.2), 1X non-394 

essential amino acids solution, 100 U/ml penicillin, and 100 μg/ml streptomycin on tissue 395 

culture dishes pre-coated with 0.1% gelatin in PBS.  Primary macrophages were 396 

differentiated from bone marrow cells in non-treated plates using the same medium 397 

supplemented with 25 ng/ml M-CSF (R&D Systems) for 5-6 d.  Bone marrow-derived 398 
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macrophages (BMDMs) were then harvested and replated for experiments.  BMDMs and 399 

MEFs were stimulated with 100 ng/ml murine TNF (Genentech), 20 μM Z-VAD-FMK 400 

(Promega), 100 ng/ml ultra-pure LPS-EB (Invivogen), 50 μg/ml LMW poly I-C 401 

(Invivogen), 2 μM BV6 (Genentech), 1 μg/ml FlagTNF (Enzo Life Sciences) or 20 μg/ml 402 

cycloheximide (Sigma).  BMDM viability was assessed after YOYO-1 (Molecular 403 

Probes) staining and live cell imaging in an Incucyte system (Essen Bioscience).  404 

Alternatively, BMDMs were harvested from non-treated plates with a cell scraper into the 405 

culture medium along with any floating dead cells, stained with 2.5 μg/ml propidium 406 

iodide (PI; BD Biosciences), and analyzed in a FACSCanto II (BD Biosciences). 407 

 408 

E14.5 fetal liver cells were plated overnight in high glucose DMEM supplemented with 409 

10% heat inactivated-fetal bovine serum, 2 mM glutamine, 100 μM asparagine, 55 μM 2-410 

mercaptoethanol, 50 U/ml penicillin, and 50 μg/ml streptomycin.  2.5 x 106 viable, 411 

nucleated, non-adherent cells were then plated on a 15 cm non-treated dish in 50 ng/ml 412 

M-CSF (R&D Systems) for 7 days.  Adherent cells were harvested with a cell scraper, 413 

counted, and then analyzed by flow cytometry after staining with antibodies recognizing 414 

FITC-conjugated MCA497, CI:A3-1 anti-F4/80 (Bio-Rad), PE-conjugated M1/70 anti-415 

Mac-1 (BD Biosciences), and APC-conjugated RB6-8C5 anti-Gr-1 (BD Biosciences).  416 

Dead cells that stained with PI were excluded from analyses. 417 

 418 

Lymph node cells were stained with FITC-conjugated 145-2C11 anti-CD3 (BD 419 

Biosciences) and APC-conjugated RA3-6B2 anti-B220 (BD Biosciences) antibodies for 420 

flow cytometric analysis.  Dead cells that stained with PI were excluded from analyses. 421 
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 422 

To test the specificity of the GEN135-35-9 anti-phospho-RIPK3 antibody, 293T cells 423 

(ATCC) were transfected with N-terminal 3xFlag-tagged mouse RIPK3 variants in vector 424 

pCMV-3Tag-6 (Agilent) using lipofectamine 2000 (ThermoFisher). 425 

 426 

Immunoprecipitation and western blotting 427 

Cells were lysed in 20 mM Tris.HCl pH 7.5, 135 mM NaCl, 1.5 mM MgCl2, 1 mM 428 

EGTA, 1% Triton X-100, 10% glycerol, phosSTOP phosphatase inhibitor (Roche), and 429 

complete protease inhibitor cocktail (Roche) (Figure 2 and Extended data fig. 1c, 3, 4a-c, 430 

5 and 7g).  Insoluble material was removed by centrifugation at 14,000 rpm prior to 431 

immunoprecipitation or addition of LDS sample buffer.  Alternatively, cells were lysed in 432 

10 mM Tris.HCl pH 7.5, 150 mM NaCl, 2.5 mM MgCl2, 0.5 mM CaCl2, 1% NP40, 433 

phosphatase/protease inhibitors (Roche) and DNase (~80 U/ml, Qiagen) (Extended data 434 

fig. 1d, 4d and 7f).  The whole cell lysate was denatured directly in LDS sample buffer. 435 

 436 

Immunoprecipitating antibodies recognized RIPK1 (cat#610459, BD Biosciences), 437 

RIPK3 (cat#NBP1-77299, Novus Biologicals), ZBP1 (clone Zippy-1, Adipogen), FLAG 438 

(clone M2, Sigma), or were irrelevant control IgGs (Mouse IgG2a, BD Biosciences, 439 

553454; or Rabbit IgG, Millipore, 12-370).  Antibody complexes were recovered with 440 

magnetic protein A/G beads (Pierce) or magnetic FLAG beads (Sigma). 441 

 442 

Western blot antibodies recognized RIPK3 (1G6.1.4, Genentech), phosphorylated RIPK3 443 

Thr231, Ser232 (GEN135-35-9 raised against peptide ELVDK(pT)(pS)LIRET, 444 
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Genentech), RIPK1 (BD Biosciences), phosphorylated RIPK1 Ser166 (GEN150-33-4 445 

raised against peptide GVASFKTW(pS)KLTKEK, Genentech), FLAG (clone M2, 446 

Sigma), β-actin (MP Biomedicals, mouse clone C4), FADD (1.28E12, Genentech), 447 

caspase-8 (1G12, Enzo Life Sciences), FLIP (2.21H2, Genentech), MLKL (1G12, 448 

Genentech), TRAF2 (cat#7187, Santa Cruz Biotechnology), cIAP1 (cat#ALX-803-335-449 

C100, Enzo Life Sciences), and TRADD (GN-21-3, Genentech). The following 450 

antibodies were from Cell Signaling Technologies: p-ERK (cat#9101), ERK (cat#9102), 451 

p-JNK (cat#4668), JNK (cat#9258), p-IκBα (cat#2859), IκBα (cat#9242), p-p65/RelA 452 

(cat#3033), p65/RelA (cat#8242), p-p38 (cat#9211), and p38 (cat#8690).  RIPK3 453 

antibody 1G6 was biotinylated using a Biotin-xx Microscale Protein Labeling Kit 454 

(Molecular Probes) in order to detect RIPK3 in ZBP1 immunoprecipitates. 455 

 456 

Chemokines and cytokines 457 

E18.5 mouse skin was homogenized in ice-cold 50 mM Tris HCl pH 7.4, 150 mM NaCl, 458 

2 mM EDTA, 0.5% sodium deoxycholate, 0.1% SDS, 1% NP-40, and 1 mM DTT 459 

supplemented with complete protease inhibitor cocktail (Roche).  Insoluble material was 460 

pelleted at 20,000xg and the protein concentration in the soluble fraction measured by 461 

Bio-rad Protein Assay.  Skin lysates adjusted to 1 mg protein/ml or sera were analysed by 462 

Bio-Plex Pro Mouse Cytokine 23-plex (Bio-Rad). 463 

 464 

 465 
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Extended Data Figure Legends 475 

 476 

Extended data figure 1. Characterization of Ripk1 mutant mice with a monoclonal 477 

antibody recognizing autophosphorylated RIPK3. 478 

(a) E17.5 colon sections stained with hematoxylin and eosin.  Scale bar, 100 μm.  Results 479 

are representative of 3 mice of each genotype. 480 

(b) Model for RIPK3 activation following mutation of the RIPK1 RHIM. 481 

(c) Western blots of HEK293T cells transfected with Flag-tagged mouse RIPK3 variants, 482 

overexpression being sufficient to activate RIPK3 autophosphorylation on Thr231 and 483 

Ser232 based on mass spectrometry (data not shown).  p-RIPK3, RIPK3 phosphorylated 484 

on Thr231, Ser232. 485 

(d) Western blots of macrophages at 4 h after treatment.  T, TNF.  Z, Z-VAD-FMK.  486 

Results are representative of 5 independent experiments. 487 

(e and f) E18.5 embryo sections.  In (e), cells containing autophosphorylated RIPK3 are 488 

stained brown (rare positive cells are indicated by arrows).  In (f), dying cells that are 489 

TUNEL-positive are black.  Scale bar, 50 μm (except the skin and thymus, which have a 490 

100 μm scale bar).  Results are representative of 3-5 mice of each genotype.  Graph in (f) 491 

indicates quantification of p-RIPK3, cleaved caspase-3, and TUNEL staining in the E18.5 492 

skin and thymus. 493 

(g) Western blots of WT bone marrow-derived macrophages (BMDMs), MEFs, and adult 494 

mouse thymus.  Results are representative of 2 independent experiments. 495 

 496 
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Extended data figure 2. Characterization of Ripk1RHIM/RHIM mice lacking RIPK3 or 497 

MLKL. 498 

(a) E18.5 skin cytokines and chemokines.  Bars indicate the mean ± s.e.m.  n=5 embryos 499 

of each genotype.  Asterisks indicate significant differences in Ripk1RHIM/RHIM skin 500 

compared to WT by student t-test.  * p<0.05, ** p<0.01, ***p<0.001. 501 

(b) Body weights of mice aged 7-8 months.  Each symbol represents one mouse.  Lines 502 

indicate the mean. 503 

(c) Serum cytokines and chemokines of mice aged 8-12 months.  Bars indicate the mean 504 

± s.e.m of 3 females and 3 males of each genotype.  505 

(d) Hematoxylin and eosin stained skin sections of female mice aged 9 months.  Scale 506 

bar, 100 μm.  Results are representative of 3-4 WT, Ripk1RHIM/RHIM Ripk3-/-, and 507 

Ripk1RHIM/RHIM Mlkl-/- male or female mice. 508 

 509 

Extended data figure 3. Ripk1RHIM/RHIM mice expressing catalytically inactive or 510 

RHIM mutant RIPK3 are viable. 511 

(a) Organization of the Ripk3RHIM mutant allele.  Black boxes indicate exons.  RHIM, RIP 512 

homotypic interaction motif. 513 

(b and c) Numbers of offspring from compound heterozygote parents that survived 514 

beyond weaning at ~ 21 days.  515 

(d) Kaplan-Meier plot of mouse survival. 516 

(e) Graph indicates the percentage of macrophages that are viable and not stained by 517 

propidium iodide (PIneg) at 16 h after treatment.  T, TNF. L, LPS.  P, poly I-C.  Z, Z-518 
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VAD-FMK.  Bars are the mean ± s.e.m.  Cells from 3 mice of each genotype were 519 

analyzed. 520 

(f) Representative images of macrophages stained with YOYO-1 at 16 h after the same 521 

treatments as in (e).  Note that this assay does not reveal death in response to TNF, LPS 522 

or poly I-C individually.  Therefore, the death quantified in (e) due to TNF, LPS or poly 523 

I-C individually is probably linked to mechanical scraping of the cells prior to flow 524 

cytometry. 525 

(g and h) Western blots of macrophages.  Results are representative of 2 independent 526 

experiments. 527 

 528 

Extended data figure 4.  Comparison of Ripk1-/- and Ripk1RHIM/RHIM MEFs. 529 

(a-d) Western blots of MEFs (a-c) or macrophages (d). p- indicates an active, 530 

phosphorylated variant of the protein.  Results are representative of 2 (b), 3 (a) or 5 (d) 531 

independent experiments. 532 

 533 

Extended data figure 5. Biochemical analyses of RIPK1 following TNF stimulation. 534 

(a-d) Western blots of MEFs (a, c and d) or macrophages (b).  MEFs in (a) that received 535 

BV6 were pretreated for 2 h prior to stimulation with FlagTNF.  In (d), MEFs derived from 536 

3 different embryos of each genotype were analyzed. 537 

(e) Graph indicates the percentage of primary MEFs that are viable and not stained by 538 

propidium iodide (PIneg) at 25 h after treatment.  T, TNF. Z, Z-VAD-FMK.  C, 539 

cycloheximide.  Each symbol represents cells from a different embryo.  Lines indicate the 540 

mean. 541 
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 542 

Extended data figure 6. Characterization of Ripk1-/- Casp8-/- Trif-/- Zbp1-/- mice. 543 

(a) Serum cytokines and chemokines of mice aged 4-5 weeks (upper graph) or 3-6 544 

months (lower graph).  Bars indicate the mean ± s.e.m of 3-4 mice of each genotype.  545 

Asterisks indicate significantly different amounts by students t-test (p<0.05). 546 

(b) Hematoxylin and eosin stained testes sections from mice aged 12 weeks.  Scale bar, 547 

100 μm.  Results are representative of two Ripk1-/- Casp8-/- Trif-/- Zbp1-/- males. 548 

(c) Hematoxylin and eosin stained skin sections from female littermates aged 19 weeks.  549 

Scale bar, 100 μm.  Results are representative of three Ripk1-/- Casp8-/- Trif-/- Zbp1-/- mice.  550 

(d) Skin sections from male mice aged 7 weeks. 551 

 552 

Extended data figure 7.  The effect of DAI and/or TRIF deficiency on Ripk1RHIM/RHIM 553 

mice. 554 

(a) E18.5 skin sections.  Scale bar, 100 μm.  Results are representative of 3 embryos of 555 

each genotype. 556 

(b) Western blots of skin from mice aged 6-8 weeks. 557 

(c) Graph indicates the number of F4/80+ Mac-1+ macrophages obtained after 2.5 x 106 558 

E14.5 viable, nucleated fetal liver cells were cultured in M-CSF for 7 days.  Each symbol 559 

represents cells from one embryo.  Lines indicate the mean. 560 

(d) Western blot analysis of the macrophages in (d).  Cells from two embryos of each 561 

genotype were analyzed. 562 

(f) Western blot analysis of E18.5 skin.  Three embryos of each genotype were analyzed. 563 

(g) Graph indicates Ifnb gene expression in E18.5 skin.  Bars are the mean ± s.e.m.  n=? 564 
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Extended data figure 1
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Extended data figure 2
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Extended data figure 5
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Extended data figure 6
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