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Abstract 
Over the past decade, our understanding of the mechanisms by which pseudokinases, which 
comprise ~10% of the human and mouse kinomes, mediate signal transduction function has 
advanced rapidly with increasing structural, biochemical, cellular and genetic studies. 
Pseudokinases are the catalytically-defective counterparts of conventional, active protein kinases, 
and have been attributed functions as protein interaction domains acting variously as allosteric 
modulators of conventional protein kinases and other enzymes, regulators of protein trafficking or 
localisation, as hubs to nucleate assembly of signalling complexes, and as transmembrane effectors 
of such functions. Here, by categorizing mammalian pseudokinases based on their known functions 
we illustrate the mechanistic diversity among these proteins, which can be viewed as a window into 
understanding the non-catalytic functions that can be exerted by conventional protein kinases. 

Abbreviations 

BUB1B: BUB1 mitotic checkpoint serine/threonine kinase B (also known as BUBR1) 
CAB39: calcium binding protein 39 (also known as MO25) 
CaMKII: calcium/calmodulin dependent protein kinase II 
CAMKV: CaM kinase like vesicle associated (also known as VACAMKL) 
CASK: calcium/calmodulin dependent serine protein kinase 
CEP55: centrosomal protein 55 
CXorf36: chromosome X open reading frame 36 (also known as DIA1R) 
EIF2AK4: eukaryotic translation initiation factor 2 alpha kinase 4 (also known as GCN2) 
ERBB3: erb-b2 receptor tyrosine kinase 3 (also known as HER3) 
FAM20A: FAM20A, Golgi associated secretory pathway pseudokinase 
GSK3: glycogen synthase kinase 3 
GUCY2C: guanylate cyclase 2C (also known as HSER) 
GUCY2D: guanylate cyclase 2D (also known as CYGD) 
GUCY2F: guanylate cyclase 2D (also known as CYGF) 
IL-1: interleukin 1 
ILK: integrin linked kinase 
IRAK: interleukin 1 receptor associated kinase 
JAK: Janus kinase 
KSR: kinase suppressor of ras 
MLKL: mixed lineage kinase domain-like 
NDPK: nucleoside diphosphate kinase 
NF-kB: nuclear factor kappa B
NME: NME/NM23 family member 
NPR1: natriuretic peptide receptor 1 (also known as ANPa) 
NPR2: natriuretic peptide receptor 1 (also known as ANPb) 
NRBP: nuclear receptor binding protein 
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PAN3: PAN3 poly(A) specific ribonuclease subunit 
PEAK1: pseudopodium enriched atypical kinase 1 (also known as SgK269) 
PKB: protein kinase B (also known as AKT) 
PRAG1: PEAK1 related kinase activating pseudokinase 1 (also known as SgK223 or Pragmin) 
PSKH2: protein serine kinase H2 
PTK7: protein tyrosine kinase 7 (also known as CCK4) 
PXK: PX domain containing serine/threonine kinase like (also known as Slob) 
RGC: receptor guanylyl cyclase 
RNaseL: ribonuclease L 
ROR: receptor tyrosine kinase like orphan receptor 
RPS6KC1: ribosomal protein S6 kinase C1 (also known as RPK118 or RSKL1) 
RPS6KL1: ribosomal protein S6 kinase like 1 (also known as RSKL2) 
RP2: retinitis pigmentosa 2 
RYK: receptor-like tyrosine kinase 
SCYL: SCY1 like pseudokinase 
SELENOO: selenoprotein O (also known as SELO) 
SH2: Src homology 2 
STKLD1: serine/threonine kinase like domain containing 1 (also known as SgK071) 
STK11: serine/threonine kinase 11 (also known as LKB1) 
STK31: serine/threonine kinase 31 (also known as SgK396) 
STK40: serine/threonine kinase 40 
STRAD: STE20-related kinase adaptor 
STYK1: serine/threonine/tyrosine kinase 1 (also known as NOK or SuRTK106) 
TBCK: TBC1 domain containing kinase 
TEX14: testis expressed 14 (also known as SgK307) 
TGF-b: transforming growth factor b 
TLR: Toll-like receptor 
TRIB: Tribbles pseudokinase 
TRRAP: transformation/transcription domain associated protein 
TTN: titin 
TYK2: tyrosine kinase 2 
ULK4: unc-51 like kinase 4 
VRK3: vaccinia related kinase 3 
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Introduction 
 
Counterparts of active enzymes that lack key catalytic residues, and are therefore predicted to 
possess defective catalytic activities, termed pseudoenzymes, are thought to comprise ~10% of 
proteomes throughout the kingdoms of life [1,2]. Much of the recent interest in these proteins has 
originated from studies of the catalytically-defective cousins of kinases, called pseudokinases [3], 
however much remains unknown about pseudokinase function. Nonetheless, detailed studies of 
pseudokinases indicate they serve functions in cell signalling as protein interaction modules that can 
allosterically regulate the activities of conventional protein kinases or other enzymes; regulate 
trafficking or cellular localisation of other proteins; and nucleate assembly of signalling complexes. 
As a result, it has become clear that these proteins are not merely bystanders in cell signalling, but 
rather perform crucial regulatory functions. Furthermore, development of small molecules that 
modulate pseudokinase signalling functions may represent a novel avenue for therapeutic 
intervention in human diseases, including cancers [4].   
 
With the growing interest in pseudokinase function, different approaches have emerged to group 
these proteins into different classes. Initially, pseudokinases were identified on the basis of 
deviations from the conventional Hanks et al. [5] VAIK, HRD and DFG catalytic motifs [6], 
corresponding to the ATP-positioning Lys, YAMK72, catalytic loop Asp, YRD166, and Mg2+ binding 
Asp, D184FG, motifs in the archetypal kinase, PKA [7]. Subsequently Boudeau et al. [8] categorised 
pseudokinases into groups based on the catalytic motif(s) absent from their sequences. Subsequent 
classifications have focused on pseudokinase function, such as capacity to bind nucleotides, 
divalent cations, and nucleotides in the presence of divalent cations [9]. While the role of nucleotide 
binding in pseudokinase function remains an open question, an absence of detectable ATP binding 
would be incompatible with a pseudokinase exhibiting phosphoryl transfer catalytic activity. Such a 
functional analysis lends itself to consideration of kinase-like domains, like those of receptor 
tyrosine kinase like orphan receptor (ROR)1, ROR2, receptor-like tyrosine kinase (RYK) and 
BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B/BUBR1) that, based on the presence 
of conventional Hanks motifs, would be predicted to exhibit nucleotide binding, but experimentally 
fail to bind [9,10]. Surprisingly, the survey of nucleotide binding by 31 pseudokinases revealed that 
less than half were capable of nucleotide binding [9], supporting the notion that pseudokinases have 
evolved functions as protein interaction domains distinct from catalytic activities. From this 
perspective, we can use insights into protein interactions mediated by pseudokinases to explore the 
secret lives of conventional protein kinases as protein interaction modules [11]. Here, we have 
aimed to further classify mammalian pseudokinases based on their functions in cell signalling 
deduced by recent biophysical, biochemical, cellular and genetic studies. 
 
Pseudokinases as allosteric modulators of enzymatic activities 
 
As part of the process of switching between an inactive and active state, protein kinases undergo 
dynamic structural changes typified by the assembly of hydrophobic regulatory (R-) and catalytic 
(C-) spines [12]. This ability to sample different conformations equips kinase (and kinase-like) 
domains to function allosterically to modulate the activity of other enzymes, and in particular other 
protein kinases. Due to their catalytic deficiencies, pseudokinases have emerged as useful models to 
study the non-catalytic, allosteric properties of kinases in isolation. A number of pseudokinases 
allosterically influence activity of kinase domains within the same protein or within complexes with 
proteins (Figure 1). In addition, there are examples of pseudokinases modulating other classes of 
enzymes. In the latter class, this includes vaccinia related kinase 3 (VRK3), which binds to and 
allosterically regulates the Erk phosphatase DUSP3/VHR [13–15], and PAN3 poly(A) specific 
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ribonuclease subunit (PAN3), which associates with the deadenylase PAN2 and is responsible for 
both promoting PAN2 catalytic activity and the recruitment of mRNA to the complex [16–19]. 
 
The Janus kinase (JAK) family are a well-studied example of pseudokinase modulation of a kinase 
domain within the same protein. JAKs are non-receptor tyrosine kinases involved in signalling 
downstream of cytokine receptors, and contain pseudokinase and canonical tyrosine kinase domains 
in tandem (reviewed in [20]). Although the JAK2 pseudokinase domain has been reported to 
possess residual catalytic activity [21], the main function of this domain in all JAK family members 
is to associate with, and negatively regulate, the kinase domain. The tyrosine kinase domain of all 
JAKs displays constitutive activity when expressed independently, and this is suppressed on co-
expression with the pseudokinase domain, either independently or in tandem [22–25]. Deletion of 
the pseudokinase domain alone leads to constitutive activity of the adjacent tyrosine kinase domain 
in JAK2 [23], suppression of kinase activity in tyrosine kinase 2 (TYK2) [26], with contradictory 
reports in JAK3 [24,27], however in all these cases there is a loss of responsiveness to upstream 
cytokine signalling. Similarly, impacts of disease-associated mutations within the pseudokinase 
domain of JAK family members are varied, with mutations causing activation of the tyrosine kinase 
domain common in haematological malignancies (reviewed in [28]), and loss of function mutations 
presenting in immune deficiencies (reviewed in [29]). The only multi-domain structure for the JAK 
pseudokinase-kinase tandem domains is for TYK2, which shows multiple interfaces between the N 
lobes and linker region of the two domains, ‘locking’ the kinase domain and preventing its activity, 
supporting an inhibitory mechanism [22]. While possible this mechanism is conserved throughout 
the JAK family, an alternative idea has been proposed where the JAK1 and JAK2 pseudokinase 
domains might inhibit the activity of the tyrosine kinase domain from a receptor-associated JAK 
dimer in trans [30–32]. Despite being heavily studied, the exact mechanism by which the JAK 
pseudokinase domains suppress the activity of the tyrosine kinase domain remains an open 
question. Another protein that contains a tandem kinase and pseudokinase domain is eukaryotic 
translation initiation factor 2 alpha kinase 4 (EIF2AK4/GCN2), whose primary function is as a 
negative regulator of translation during amino acid starvation (reviewed in [33]). In contrast to the 
JAKs, the pseudokinase domain of GCN2 positively regulates activity of the kinase domain, and is 
required for its catalytic activity, with mutation of conserved residues in the pseudokinase domain 
abrogating kinase function [34]. 
 
The STE20-related kinase adaptor (STRAD) pseudokinases allosterically regulate the kinase 
domain of a different protein. Both STRADA and STRADB bind to serine/threonine kinase 11 
(LKB1/STK11), a key upstream regulator in AMPK signalling, with the assistance of the scaffold 
protein calcium binding protein 39 (MO25/CAB39) [35–37]. The structure for the heterotrimeric 
complex of STRADA-LKB1-MO25 has been determined and shows multiple interactions between 
all three proteins that promote an active conformation of LKB1, including direct associations of the 
substrate binding site and pseudoactivation loop of STRADA with the LKB1 kinase domain [38]. 
Calcium/calmodulin dependent serine protein kinase (CASK), which acts as a scaffold for synaptic 
membrane proteins and ion channels and is proposed to have limited catalytic activity under cation-
free conditions [39], associates with the regulatory region of calcium/calmodulin dependent protein 
kinase II (CaMKII) and promotes inhibitory autophosphorylation of CaMKII in Ca2+/CaM free 
conditions [40–42]. CASK also associates with CaMKII in the presence of Ca2+/CaM, allowing it 
phosphorylate substrates, but with lower efficiency than unbound CaMKII [40]. Last is the recently 
described FAM20A, Golgi associated secretory pathway pseudokinase (FAM20A), a secretory 
protein that forms heterotetrameric complexes with the active kinase FAM20C [43,44]. This 
interaction promotes stability and secretion of FAM20C, and increases FAM20C kinase activity in 
a manner consistent with allosteric regulation [43,45]. 
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Transmembrane pseudokinases 
 
Nearly a quarter of known pseudokinases contain a transmembrane domain, and act as receptors 
themselves or modulators of membrane receptor function (Figure 2). Of these, the largest sub-
group are the receptor guanylyl cyclases (RGCs), whose pseudokinase domain sits in the 
cytoplasmic portion between their transmembrane domain and a functional guanylyl cyclase 
domain (reviewed in [46]). The RGCs all form homodimers and, upon ligand stimulation, the 
association of the pseudokinase domains enables activation of the guanylyl cyclase domains 
through a proposed allosteric mechanism (reviewed in [47]). The pseudokinase domains of this 
receptor family also bind ATP, which has been found to be important for their function [48–51]. 
 
The RGCs all have a similar basic function, which is to restore cellular levels of cGMP, however 
the stimulus that initiates this varies. Natriuretic peptide receptor 1 and 2 (NPR1; NPR2) are both 
receptors for natriuretic peptide hormones, and are involved in cellular processes such as control of 
blood pressure and heart function [52–54]. Guanylate cyclase 2C (GUCY2C/HSER) is 
preferentially expressed in the gut, and the most well described ligand an Escherichia coli 
enterotoxin (reviewed in [55]). The two retinal specific RGCs, guanylate cyclase 2D and 2E 
(GUCY2D; GUCY2F), have no known extracellular ligand and instead are stimulated by the 
binding of activating proteins to the pseudokinase domain [56–58]. Interestingly, chimeric proteins 
in which the pseudokinase domains of GUCY2D and GUCY2F were swapped retained the 
characteristics of the originating pseudokinase domains, highlighting its importance for both protein 
activity and specificity [56]. 
 
The next sub-group of pseudokinases respond to the binding of Wnt ligands. This includes ROR1 
and the better-studied ROR2, which both bind the non-canonical Wnt ligand Wnt5a [59,60], with 
ROR2 also known to bind other canonical and non-canonical Wnt ligands [61]. While these 
proteins are unlikely to possess catalytic activity because they do not detectably bind nucleotides 
[9], they function in Wnt signalling act as scaffolds to recruit other interacting partners, including 
Src and glycogen synthase kinase 3 (GSK3) [62–64]. ROR2 is known to form homodimers or 
heterodimers with ROR1 as well as associating with Fzd receptors and inducing their internalisation 
[60,65]. ROR1 is predominantly expressed during development, and is proposed to function as a 
signalling hub by associating with various receptor tyrosine kinases (RTKs) [66,67] and as the 
switch between pro-apoptotic p38 signalling and pro-survival Src dependent PKB/AKT activation 
[68]. 
 
The pseudokinase RYK is another important Wnt5a binding protein, and RYK knockout mice have 
many phenotypic similarities to Wnt5a knockout mice [69–72]. In addition, RYK can bind other 
Wnt ligands and has a role in Wnt induced neural outgrowth [73,74]. Another Wnt receptor is 
protein tyrosine kinase 7 (PTK7/CCK4), a Wnt4 co-receptor that promotes non-canonical Wnt 
signalling by binding Dishevelled and receptor for activated C kinase 1 (RACK1) through an 
interaction with the pseudokinase domain [75–77]. In addition, the pseudokinase domain acts as a 
scaffold to bind and stabilise b-catenin in the absence of canonical Wnt signalling [78]. Although it 
does not contain an ectodomain, the membrane-bound pseudokinase, serine/threonine/tyrosine 
kinase 1 (STYK1/NOK/SuRTK106), acts as a scaffold to promote the phosphorylation of GSK3-b, 
an important Wnt kinase, as well as interacting with and promoting phosphorylation of PKB/AKT 
and modulating MAPK signalling pathways [79,80]. It is proposed that STYK1 influences both of 
these pathways by enabling the interaction of these kinases with upstream PI3Ks [79]. 
 
The remaining membrane pseudokinases are proposed to influence receptor signalling through their 
interaction with transmembrane kinases of the same family. Erb-b2 receptor tyrosine kinase 3 
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(ERBB3/HER3) is a well-studied pseudokinase long known to form homodimers, as well as 
heterodimers with other EGFR/ErbB family members [81–83]. In heterodimers, ERBB3/HER3 
allosterically activates the partner kinase to enable downstream signalling through stabilisation of 
the N-lobe of the active kinase by interaction with the ERBB3/HER3 C-lobe [84–86]. Although 
ERBB3/HER3 has been found to possess residual catalytic activity [87], mutations that ablate this 
do not affect signalling (reviewed in [88]), implying its kinase activity has limited biological 
relevance. Moreover, active kinases within the HER3/ErbB3 family have also been shown to 
allosterically regulate other family members and themselves [86]. The idea that a pseudokinase or 
conventional kinase can equally function as an allosteric modulator (“activator”) of a “receiver” 
kinase’s activity is highly illustrative of the lessons one can learn about allostery among 
conventional kinases from detailed studies of the pseudokinases. Finally, there are two 
pseudokinase members in the Eph family of receptors: EPH receptor B6 (EPHB6) and EPHA10. 
Although little is known about the function of EPHA10, EPHB6 can form heterodimers with, and is 
phosphorylated by, a number of other Eph receptors, and acts as a negative regulator of JNK 
signalling [89–92]. Additionally, EPHB6 strongly associates with the Src family kinase Fyn, as well 
as the oncogenic E3 ligase c-Cbl [89,90,92]. 
 
 
Pseudokinase signalling hubs 
 
In addition to the JAK kinase family, there are a number of other cytoplasmic pseudokinases that 
are integral for modulating signals through receptor complexes (Figure 3). The kinase suppressor 
of Ras 1 and 2 (KSR1/2) proteins are excellent examples of this, and are able to act as inducers or 
inhibitors of Ras/MAPK signalling, depending on cellular context and KSR expression levels 
[93,94]. They act downstream of multiple RTKs and, although there has been some debate over 
whether they possess catalytic activity [95–97], their most well studied role is as a scaffold to 
mediate interactions between MEK and Raf kinases [97–100]. Raf kinases, like the EGFR/ErbB 
family of kinases, also form homo- and hetero- dimeric units, where one partner acts as a non-
catalytic activator of the partner protein’s kinase activity. In this case, both the conventional protein 
kinase, Raf, and the catalytically-defective, KSR1, can heterodimerise with Raf proteins to promote 
their kinase activity [101,102], again asserting that non-catalytic functions (the “secret lives”) of 
conventional enzymes can be revealed by detailed studies of their dead counterparts. Both KSR1 
and KSR2 have multiple documented interacting partners and form large protein complexes 
stabilised by a number of chaperone proteins [103,104]. 
 
Signalling through nuclear factor kappa B (NF-kB) downstream of Toll-like receptor (TLR) 
ligands, interleukin 1 (IL-1) and transforming growth factor b (TGF-b) is controlled by the 
interleukin 1 receptor associated kinase (IRAK) family (reviewed in [105]). Although IRAK1 and 
IRAK4 are conventional (active) protein kinases, both IRAK2 and IRAK3 are classified as 
pseudokinases. IRAK2 is a positive regulator of NF-kB pro-inflammatory signalling by promoting 
TRAF6 polyubiquitylation [106–108], and mutations within the pseudokinase domain can either 
enhance or suppress the magnitude of this signalling response [109–111]. IRAK3 binds to and 
antagonises other IRAK family members, acting as a switch to initiate suppression of the 
inflammatory response through MEKK3 driven NF-kB signalling [112–114]. Also involved in 
TGF-b signalling is pseudopodium enriched atypical kinase 1 (PEAK1/SgK269), which enables a 
switch from canonical SMAD2/3 signalling to non-canonical Src-MAPK signalling pathways [115]. 
In addition, SgK269 acts as a scaffold between Src and ERBB2/HER2, enabling the Src-dependent 
phosphorylation of ERBB2/HER2 thereby promoting its activation [116]. 
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Integrin linked kinase (ILK), whose primary role is as a scaffold to recruit key proteins involved in 
integrin function and dynamics [117,118], is also important for enabling the activation of other key 
signalling kinases, including GSK3, protein kinase B (PKB/AKT), and ERK1/2 [119–121]. Some 
of these interactions were proposed to involve catalytic activity of ILK, however structural, 
biochemical, and genetic studies indicate ILK is unlikely to possess catalytic activity, with 
mutations originally used to validate ILK kinase activity likely to affect protein stability [121–123]. 
Another pseudokinase is nuclear receptor binding protein 1 (NRBP1), an adapter protein that 
contains a putative Src homology 2 (SH2), nuclear receptor binding, nuclear import and export 
sequences [124]. The most well documented role of NRBP1 as a negative regulator downstream of 
Wnt-Ras signalling, where it is believed to act as a scaffold for ubiquitin ligase complex assembly 
[125,126]. Although little is known about the related pseudokinase NRBP2, recent data suggests a 
role in PKB/AKT signalling through an interaction with annexin A2 [127]. 
 
In the nucleus, we find the Tribbles pseudokinase (TRIB) family (Figure 3). TRIB2 has been 
shown to exhibit some catalytic activity in the absence of cations [128], however, like NRBP1, 
these pseudokinases are primarily adapter proteins which mediate a range of different intracellular 
functions [129]. Firstly, they bind to other kinases through their pseudokinase domain, such as 
members of the MAPKK family and PKB/AKT, modulating their phosphorylation and activation 
[130–132], with these interactions occurring in both cytoplasmic and nuclear compartments [133]. 
Secondly, they act as scaffolds to bring together various transcription factors, co-activators, and cell 
cycle modulators with E3 ligases such as COP-1, thus acting as regulators of transcription and cell 
cycle control [134–139]. Serine/threonine kinase 40 (STK40/SgK495), which is distantly related to 
the Tribbles proteins, has also been shown to interact with COP-1 [140]. Furthermore, it has been 
implicated in the regulation of various transcription factors, has a predominantly nuclear 
localisation and, more recently, has been implicated in the regulation of HDACs [141–143]. 
 
In addition to the Tribbles proteins, there are a number of other pseudokinases that spend most of 
their time in the nuclear compartment, either involved in cell cycle control or transcriptional control 
(Figure 3). BUBR1/BUB1B is an important component of the mitotic checkpoint complex, and 
also modulates the activity of the APC/CCdc20 ubiquitylation complex [144–148]. In addition to 
acting as a scaffold between multiple proteins in these complexes, BUBR1 also acts as a 
mechanosensor between kinetochores and microtubules [149,150], a function that would be 
tempting to attribute to the dynamic properties of the kinase-like domain. Both testis expressed 14 
(TEX14/SgK307) and serine/threonine kinase 31 (STK31/SgK396) are also involved in cell cycle 
control [151,152], and although it is known that TEX14 binds to, and likely sequesters, centrosomal 
protein 55 (CEP55) [153,154], the mechanism behind the actions of STK31 are not well defined. 
Finally, rounding out the nuclear pseudokinases is transformation/transcription domain associated 
protein (TRRAP), which is a very large and important scaffold protein for histone acetyltransferase 
complexes [155–159]. 
 
At the cell surface, there are a group of pseudokinases involved in control of cilia and flagella 
function (Figure 4). The NME/NM23 family members (NMEs) do not contain conventional protein 
kinase domains, but contain one or more nucleoside diphosphate kinase (NDPK) domains 
(reviewed in [160]). The primary role of NDPKs is in replenishment of nucleoside triphosphates, 
however this domain also possesses histidine kinase activity (reviewed in [161]). The human 
NME/NM23 family includes three proteins with pseudo-NDPK domains: NME5, NME7, and 
NME8 (reviewed in [162]). NME7 contains two NDPK domains, and although domain A has been 
shown to be catalytically active, domain B does not have detectable phosphotransfer activity [163]. 
NME7 is associated with cilia, and has an important role in microtubule organisation and nucleation 
through mediating interactions in the gamma tubulin ring complex, where the pseudokinase domain 

ACCEPTED MANUSCRIPT



	 8 

is essential for binding of NME7 to this complex [163,164]. NME5 and NME8 are both highly 
expressed in the testes [165,166], and although the specific functions of NME5 are not well known, 
NME8, which contains three NDPK domains, is believed to form part of the outer dynein arm in 
flagellum and cilium [167,168], and defects in this gene are associated with primary ciliary 
dyskinesia [169]. Additionally, NME8 is implicated in protection against oxidative stress in 
spermatozoa [170], presumably through its thioredoxin domain, which exhibits increased activity 
when expressed without the pseudokinase domains [166],. Finally, there are two pseudokinases 
associated with specialist cilia: retinitis pigmentosa 2 (RP2), which also contains an NDPK domain 
and is important for regulating the length of photoreceptor sensory cilia [171–173], and unc-51 like 
kinase 4 (ULK4), which plays an important scaffolding role for the cilia involved in the circulation 
of cerebrospinal fluid (CSF) [174]. Both of these pseudokinases have additional roles in regulating 
the activity of GTPases that modulate assembly of larger protein complexes [175,176] (Figure 4). 
 
Another subgroup of pseudokinases comprise those associated with intracellular trafficking (Figure 
4), including the SCY1 like pseudokinase (SCYLs) [177]. Although the mechanisms involved in 
SCYL3 mediated transport are unclear [178], both SCYL1 and SCYL2 are known to play a 
scaffolding role in vesicle formation, with SCYL1 involved in formation of COPI coated vesicles 
important in Golgi to ER retrograde transport [179,180], and SCYL2 being associated with the 
clathrin coated vesicles involved receptor mediated endocytosis [181–183]. CaM kinase like vesicle 
associated (CAMKV/VACAMKL) is a vesicle associated pseudokinase, which until recently had 
no known function, however a recent study shows it to be a substrate of Cdk5 and is important for 
regulation of Rho GTPases at synapses through binding of the guanine nucleotide exchange factor 
Lcf [184]. Associated with early endosomes by virtue of a PX domain is the protein ribosomal 
protein S6 kinase C1 (RPS6KC1/RPK118/RSKL1), whose pseudokinase domain has been shown to 
bind a number of proteins and recruit them to the endosomal compartment [185,186]. PX domain 
containing serine/threonine kinase like (PXK/Slob) is another pseudokinase associated with 
receptor internalisation, and is believed to bind membranes at the C-terminal and actin at the N-
terminal [187,188]. The mechanism behind PXK’s function is not well defined, however it is 
tempting to speculate that the pseudokinase domain may act as a mechanical switch to facilitate 
movement of receptor complexes inside the cell. To round out the intracellular traffickers there are 
the less well known chromosome X open reading frame 36 (CXorf36/DIA1R), which has been 
proposed to localise to secretory compartments [189], and FJX1, a secretory protein belonging to 
the newly categorised FAM20 kinase family, which is implicated in dendrite elongation [190]. 
 
Finally, there are pseudokinases that participate in intracellular signalling hubs predominantly in the 
cytoplasm (Figure 3). This includes the giant polypeptide titin (TTN), whose best-known role is as 
a member of muscle fibre sarcomeres. The N-terminal kinase-like domain of TTN interacts with the 
ZFN protein Nrb1, and mutations within the pseudokinase domain that interrupt this interaction are 
linked to hereditary muscle disease [191]. The TTN pseudokinase domain also recruits the E3 
ligases Murf1 and Murf2 [191,192], and is also proposed to act as a mechanosensor, similar to 
BUBR1 [193]. Ribonuclease L (RNaseL) is a protein whose primary function is to cleave ssRNA 
through its C-terminal RNase domain, whose activity relies on dimerization and essential cofactor 
binding by the central pseudokinase domain and N-terminal Ankyrin repeat domain [194–197]. 
Also in this group is PEAK1 related kinase activating pseudokinase 1 (PRAG1/SgK223), which 
assembles into heteromeric complexes with PEAK1/SgK169 [198], and binds to and sequesters the 
Src family inhibitory kinase Csk in the cytoplasm to potentiate Src activation [199]. In addition, 
PRAG1/SgK223 promotes Rho GTPase activity, which is enhanced by the binding of the GTPase 
Rnd2 to the PRAG1/SgK223 pseudokinase domain [200]. Last, but not least, is the pseudokinase 
mixed lineage kinase domain-like (MLKL), which acts as the most downstream known effector in 
the necroptotic cell death pathway [201,202]. The killer domain of MLKL is its N-terminal four 
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helical bundle (4HB) domain, however in the absence of upstream stimuli, this domain is proposed 
to be held in check by interactions with the C-terminal pseudokinase domain [203,204]. The 
pseudokinase domain serves as a receiver of an upstream signal in the form of phosphorylation by 
RIPK3, whereupon MLKL leaves the cytoplasmic compartment and translocates to membranes to 
initiate cell death by an unclear mechanism.  
 
Conclusions 
 
Based on known functions in allosteric enzyme regulation, regulation of cellular 
localisation/trafficking and as hubs for the assembly of signalling complexes, we have sought to 
functionally categorize pseudokinases. Much remains to be learned about additional functions of 
pseudokinases in signalling and the prevalence of pseudokinases serving a combination of these 
functions. For example, one of the best characterised pseudokinases, MLKL, is illustrative of the 
functional pleiotropy that can be served by pseudokinase domains, because this domain acts as a 
molecular switch [203], a suppressor of the 4HB executioner domain [204], and a protein 
interaction domain to recruit downstream effectors [205], such as the co-chaperones Cdc37-HSP90 
[206]. It remains of enormous interest to determine whether regulation of the MLKL 4HB domain 
by its adjacent pseudokinase domain is illustrative of more widespread phenomena where 
pseudoenzyme domains have evolved functions as regulators of neighbouring domains in cis. This 
theme is evident among the tandem pseudokinase-kinase domains of the JAK family and GCN2, in 
addition to the tandem pseudokinase-guanylate kinase domains of the RGC family. While we have 
a detailed understanding of a subset of pseudokinase domain-containing proteins, there are five 
pseudokinases that are yet to be ascribed functions that we have been unable to categorise based on 
our present understanding. Ribosomal protein S6 kinase like 1 (RPS6KL1), which is related to 
RPS6KC1, but lacks the phosphoinositide domain and thus any likely membrane localisation, has 
been proposed as important for cell survival in two separate RNAi studies, but the underlying 
mechanism is unknown [207,208]. The pseudokinase serine/threonine kinase like domain 
containing 1 (SgK071/STKLD1) has been identified as a strong candidate in screening studies for 
involvement in tamoxifen resistance and influenza virus replication [209,210], but its function 
remains enigmatic. TBC1 domain containing kinase (TBCK) has been implicated in mTOR 
signalling and, besides possessing a putative GTPase activating domain, there is little known about 
its mechanism of action [211]. Selenoprotein O (SELENOO/SELO) is a mitochondrial 
selenoprotein with a possible role in chondrocyte differentiation and proliferation [212–214], 
although the role of SELO’s pseudokinase domain is currently unclear. Finally, protein serine 
kinase H2 (PSKH2) is a pseudokinase of unknown function that has been lost from the mouse and 
rat kinomes, and is the counterpart of the conventional kinase, PSKH1 [215]. Detailed mechanistic 
and biological studies will play an important role in deducing the precise functions of these poorly-
understood pseudokinases and will almost certainly reveal unexpected functions of others. We also 
expect that future studies will illuminate the extent to which the diverse signalling functions of 
pseudokinases provide a window into the non-catalytic mechanisms mediated by conventional 
protein kinases. 
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