
 
Institute Research Publication Repository 

 
 
 
 
 
 
 
 

 

This is the authors’ accepted version of their manuscript accepted for publication in 
Nature Medicine 

The published article is available from Nature Publishing Group: 
 

Afshar-Sterle, S; Zotos, D; Bernard, NJ; Scherger, AK; Rodling, L; Alsop, AE; 
Walker, J; Masson, F; Belz, GT; Corcoran, LM; O'Reilly, LA; Strasser, A; Smyth, 
MJ; Johnstone, R; Tarlinton, DM; Nutt, SL; Kallies, A. Fas ligand-mediated 
immune surveillance by T cells is essential for the control of spontaneous B cell 
lymphomas. Nature Medicine 20, 283–290 (2014) doi:10.1038/nm.3442 
Corrected online 30 May 2014. 
 
http://www.nature.com/nm/journal/v20/n3/full/nm.3442.html 

  
 



 1

Fas ligand mediated immune surveillance by T cells is essential for 

the control of spontaneous B cell lymphomas 

 

Shoukat Afshar-Sterle1,2*, Dimitra Zotos1,2*, Nicholas J Bernard1,2,3*, Anna K Scherger1,2, 

Lisa Rödling1,2, Amber E Alsop7, Jennifer Walker1,2, Frederick Masson1,2, Gabrielle T 

Belz1,2, Lynn M Corcoran1,2, Lorraine A O’Reilly1,2, Andreas Strasser1,2, Mark J. 

Smyth5,6, Ricky Johnstone7,8, David M Tarlinton1,2, Stephen L Nutt1,2 and Axel Kallies1,2 

 

1 The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, 

Australia. 

2 The Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia. 

3 current address: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity 

College Dublin, Dublin 2, Ireland. 

5 Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, 

4006, Queensland, Australia. 

6 School of Medicine, University of Queensland, Herston, 4006, Queensland, Australia. 

7 Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, 3002, Australia 

8 The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3010, 
Australia. 
 
* These authors contributed equally to this study. 

 

Correspondence should be addressed to A.K. (kallies@wehi.edu.au)  

 

 

Running title: T cell surveillance of B cell lymphoma 

Keywords: Blimp1, Bcl6, CD8, T cell, CD28, pre-plasmablast, germinal centre, immune 

surveillance, Fas 



 2

 

Loss of function of the tumour suppressor PRDM1/BLIMP or deregulated 

expression of the oncogene BCL6 occurs in a large proportion of diffuse large B cell 

lymphoma (DLBCL) cases. However, mutation of either gene leads to only slow and 

infrequent development of malignant lymphoma, and despite frequent mutation of 

BCL6 in activated B cells of healthy individuals lymphoma development is rare. 

Here we show that Blimp1-deficiency or overexpression of Bcl6 in the B cell lineage 

does not result in overt lymphoma in the presence of T cells. Impairment of T-cell 

control, however, results in rapid development of DLBCL-like disease, which can be 

eradicated by polyclonal CD8+ T cells in a T cell receptor, CD28 and Fas-ligand 

dependent manner. Thus, malignant transformation of mature B cells requires 

mutations that impair intrinsic differentiation processes and permit escape from T 

cell-mediated tumour surveillance.  

 

Non-Hodgkin lymphoma is a heterogeneous group of lymphoid malignancies, the most 

common type being DLBCL1,2. DLBCL represents 30-40% of cases of non-Hodgkin 

lymphoma and despite improved treatment almost half of the DLBCL patients still 

succumb to their disease3,4. A detailed understanding of DLBCL pathogenesis is therefore 

needed to develop new therapeutic approaches. DLBCL comprises a number of distinct 

disease entities that are distinguished by differences in oncogenic driver mutations, gene 

expression signatures and responses to therapy, and include germinal centre B cell (GCB) 

– DLBCL and activated B cell (ABC) – DLBCL5-7. Inactivating mutations of 

PRDM1/BLIMP1, a transcription factor required for plasma cell differentiation8,9, are 

prevalent in human ABC-DLBCL10 and loss of Blimp1 was shown to cause ABC-

DLBCL-like malignancy in mice10,11. The transcriptional regulator BCL6 was originally 

identified by its involvement in non-Hodgkin B cell lymphomas12, and mutations that 

deregulate its expression occur frequently in GCB- and ABC-DLBCL12,13. Later BCL6 

was shown to be required for the differentiation of T cell dependent GC B cells14. GC B 

cells express the enzyme activation induced cytidine deaminase (AID), which catalyses 

mutation in the immunoglobulin gene (Ig) loci required for affinity maturation and class 
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switching in B cells during the immune response15. AID activity is also known to mediate 

DNA damage and transformation of B cells through off-target mutation of other genes, 

including oncogenes such as BCL616-18. However, despite the presence of oncogenic 

mutations in activated B cells of healthy individuals, lymphoma development is rare16-18. 

While this reflects the requirement for multiple oncogenic changes for complete 

transformation, it is also consistent with the idea that the immune system has the capacity 

to recognise and eradicate transformed cells thereby inhibiting the cancer development. 

Consistent with this idea, B cell lymphomas show a strong association with immune 

suppression19, and it has been postulated that defects that result in a break-down of 

immune surveillance due to immune deficiency, treatment with immuno-suppressive 

drugs or acquisition of additional mutations can promote the development and 

progression of B cell lymphomas and other malignancies20. In support of this notion, 75% 

of all DLBCL show mutations that lead to the loss or mis-expression of MHC class I on 

lymphoma cells21, and low expression or lack of MHC class II strongly correlates with 

shorter overall survival22, suggesting strong selection for lymphoma cells that escape T 

cell recognition. Several studies have provided evidence that ageing mice lacking the 

lymphocyte cytotoxic protein perforin are susceptible to the development of spontaneous 

B cell lymphomas23,24. In these studies, a number of different effector lymphocytes were 

implicated, but the mechanism for the escape from immune surveillance was not 

established, nor was it shown that T cells prevented spontaneous B cell lymphoma. Thus, 

despite ample circumstantial evidence, there is currently no direct proof for a critical role 

of T cells in the suppression of DLBCL. 

Here we show that Blimp1-deficiency or overexpression of Bcl6 in the B cell lineage 

does not result in overt lymphoma in the presence of a functioning T cell compartment. 

Impairment of T-cell control, however, results in the rapid development of DLBCL-like 

pathology, which can be eradicated by polyclonal CD8+ T cells in a T cell receptor, 

CD28 and Fas-ligand dependent manner. Therefore, malignant transformation of mature 

B cells requires mutations that impair intrinsic differentiation processes and escape from 

T cell-mediated tumour surveillance.  
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RESULTS 

Accumulation of pre-plasmablasts in the absence of Blimp1  

To understand the pathogenesis of ABC-DLBCL and the role of immune surveillance in 

more detail we aimed to develop a model of accelerated lymphoma development. To this 

end, we infected mixed bone marrow chimaeric mice containing congenically marked 

wild-type and Blimp1-deficient B cells (Blimp1gfp/gfp : Ly5.1)9 and mice with a B cell-

specific ablation of Blimp1 (Blimp1fl/flCd79aCre) with the murine γ-herpes virus - 68 

(γHV). This establishes a persistent infection that, similar to infection of humans with the 

related Epstein Barr-Virus (EBV)25, leads to increased incidence of B cell lymphoma in 

mice26. γHV infection induced the development of plasma cells, characterised by high 

expression of CD138 and down-regulation of CD19, from wild-type B cells but as 

expected, not from Blimp1-deficient B cells (Fig. 1a). In contrast, Blimp1-deficient B 

cells showed a robust and progressive increase in the proportions of Fas+Cxcr4+ germinal 

centre (GC)-like cells (Fig. 1a, b, Supplementary Fig. 1a). While Blimp1 expression is 

usually restricted to CD138+ antibody secreting cells (Supplementary Fig. 1b), a large 

but variable fraction of Blimp1-deficient CD19+ B cells expressed GFP from the Blimp1 

locus (Fig. 1c, Supplementary Fig. 2a). Blimp1-deficient GFP+ B cells were large, 

blast-like cells that did not express CD138, had down-regulated B220 and CD23, and 

expressed the Pax5 target gene Embigin, consistent with their arrest at the pre-

plasmablast stage of plasma cell differentiation9 (Fig. 1c, Supplementary Fig. 2a, b). 

Similar results were obtained in mice immunised with the model antigen nitrophenol 

coupled to keyhole limpet haemocyanin (Supplementary Fig. 2c). However, despite 

pronounced accumulation of pre-plasmablasts, malignant B cell lymphoma development 

was not observed over the course of 6 months. Given the established role of Blimp1 as a 

tumour suppressor in B cells, this was a surprising result, which suggested that strong, 

possibly extrinsic mechanisms restrained the lymphomagenic potential of Blimp1-

deficient B cells.  
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Accelerated lymphoma development in Blimp1-mutant T cell deficient mice  

Consistent with the hypothesis that immune surveillance of incipient B cell lymphomas 

by T cells may play a role in preventing malignant disease that is driven by the loss of 

Blimp1, we found that aged (12-15 months) Blimp1gfp/gfp : Ly5.1 chimaeric mice had 

dramatically reduced populations of splenic B cells (25.5±22.4%) in comparison to 

control chimaeras (65.4±5.3%) (Fig. 1d, upper panel and data not shown). Transfer of 

Blimp1-deficient B cells from these chimaeras into mice lacking T cells (Rag1–/–), but not 

transfer into wild-type control mice, resulted in most cases in splenomegaly with 

dramatic expansion of mutant B cells (Fig. 1d, lower panel and data not shown). This 

suggested that T cells actively suppressed the expansion of Blimp1-deficient pre-

malignant B cells.  

To stringently test this hypothesis we generated Blimp1-mutant mice on a T cell deficient 

background (Blimp1gfpCd3e–/–). Strikingly, all T-cell deficient mice homozygous for the 

Blimp1gfp allele (i.e. Blimp1 deficient) developed severe splenomegaly and succumbed to 

malignant lymphoma within 230 days (median latency ~130 days, Fig. 2a, b). These 

mice also frequently showed enlarged livers and signs of hind limb paralysis with 

concurrent lymphocytic infiltration into the spinal cord (Fig. 2b and data not shown). 

Histological examination revealed loss of splenic architecture and infiltration of large 

lymphoid cells resembling human DLBCL (Fig. 2b). T cell sufficient mice that were 

heterozygous for the Blimp1gfp allele (Blimp1+/gfp) showed no immune deficiencies and 

did not develop B cell lymphomas27,28. Remarkably, loss of one copy of Blimp1 in the 

absence of T cells led to development of B cell lymphomas in ~80% of the mice within 

the observation period (300 days; Fig. 2a). In contrast, mice with a B cell specific 

deletion of Blimp1 on a T cell sufficient background did not develop B lymphomas 

within this time frame (Fig. 2a), consistent with other reports using a similar model10,11. 

Thus, our data demonstrate that ongoing T cell surveillance is critical for the prevention 

of spontaneous lymphoma development caused by loss or haplo-insufficiency of the 

tumour suppressor Blimp1. 

Lymphomas that developed in Blimp1-mutant mice showed considerable heterogeneity. 

In 52% of affected mice tested (n=26), splenocytes consisted almost exclusively of 
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CD19+B220+ cells (termed here type A lymphoma), while the remainder (48%, n=24) 

had only a small population of CD19+ cells (2.5-27%) with heterogeneous B220 

expression (type B lymphomas) (Fig. 2c). All lymphomas tested were IgM+ but lacked 

the mature B cell markers IgD, CD23 and CD21, and some type B lymphomas expressed 

low amounts of CD138 and were CD43+ (Supplementary Fig. 3a). Lymphomas that 

developed in Blimp1+/gfp mice were of a similar phenotype but showed more varied 

expression of Blimp1/GFP+ and surface markers (Fig. 2d). Thus, while all lymphomas 

had an activated B cell phenotype, a spectrum of different stages of plasmacytic 

differentiation was observed. Analysis of Ig gene rearrangements demonstrated that the 

lymphomas were largely of clonal origin (Supplementary Fig. 3b) and, in line with their 

characterization as DLBCL-like lymphomas, clonal Ig (paraprotein) was not detected in 

the sera of most sick mice examined (Supplementary Fig. 3c). Importantly, in all cases 

transfer of splenic CD19+ cells from sick mice of either genotype into Rag1-deficient 

recipients resulted in the development of secondary lymphomas of a phenotype similar to 

the primary lymphoma; however, transfer into wild-type recipients did not (Fig. 2c, and 

data not shown).  

 

AID+Bcl6+ B cell lymphomas can arise in the absence of germinal centres 

To further characterise the Blimp1-mutant lymphomas, we examined the expression of 

key transcription factors that are critical for plasma cell differentiation and are used to 

classify B cell lymphomas. Western blot analysis revealed that all lymphomas tested 

(n=23) expressed high amounts of IRF4 (Fig. 3a, b), consistent with their classification 

as ABC-DLBCL like lymphoma5,7. Similar to human ABC-DLBCL10, Blimp1 

heterozygote lymphomas showed loss or decreased expression of the wild-type allele 

(Fig. 3a). Interestingly, we detected high expression of Bcl6 in 54.5% of the lymphomas, 

almost all of which were classified as type A by surface marker expression (Fig. 3a). 

Some lymphomas also showed expression of Aicda (Fig. 3b, Supplementary Fig. 3d), 

encoding AID, which is involved in the pathogenesis of lymphoma29. This was surprising 

as all lymphomas had arisen in the absence of a functioning T cell compartment, and thus 

in the absence of any GC activity. In line with this observation, 4 out of 6 lymphomas 
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examined showed signs of somatic hypermutation of Ig genes (Supplementary Fig. 3e). 

Taken together these results provide evidence that a diverse array of ABC-DLBCL-like 

malignancies, including Bcl6+ and AID+ lymphomas, can develop in mice as a 

consequence of Blimp1 mutations, independent of GC formation.  

 

Bcl6 overexpression in the absence of T cells drives lymphoma development 

To examine whether T cell mediated suppression of B lymphoma development is also 

important in an oncogene driven model of DLBCL, we crossed the B cell-specific Bcl6 

transgene from IμHABcl6 mice30, onto the Blimp1gfpCd3e–/– background. Strikingly, all 

Bcl6-transgenic (Bcl6Tg) mice on a T cell deficient background developed lymphoma 

within 8-12 (10.3±1.6) weeks after birth independent from the Blimp1 allele (Fig. 4a). In 

contrast, and in agreement with earlier reports29,30 T cell sufficient Bcl6Tg mice developed 

disease at low frequency and with long latency, with none of the mice developing 

lymphoma within 200 days, and fewer than 40% within 500 days (Fig. 4a). All 

lymphomas examined from Bcl6Tg mice (n=43) consisted of CD19+B220+ cells 

representing type A lymphoma and most (12/14) showed an active Blimp1 locus, 

indicating progression towards the pre-plasmablastic stage (Fig. 4c). Analysis of Bcl6Tg 

mice before the development of B cell lymphoma revealed the presence of an expanded 

population of B cells with pre-GC characteristics, including upregulation of Bcl6 

specifically in mice deficient for T cells (Supplementary Fig. 4a). In line with the notion 

that T cells can directly recognize incipient B lymphoma cells, T cells of aged Bcl6Tg 

mice showed signs of acute activation as evidenced by expression of CD69 

(Supplementary Fig. 4b). Thus, T cells are crucial to prevent development of malignant 

B cell lymphomas that result from an intrinsic block in plasma cell differentiation.  

 

Polyclonal CD8+ T cells can eradicate B lymphoma cells 

To determine which T cell populations were responsible for preventing emergence of 

malignant B cell lymphoma, we co-cultured B lymphoma cells derived from Cd3-/- mice 

with polyclonal CD8+ or CD4+ T cells purified from wild-type mice and measured 
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expression of the activation markers CD69 and CD25 (Fig. 5a). As a positive control, 

both T cell populations were activated homogenously by CD3 antibody stimulation. 

Notably, a large fraction of both CD8+ (~10%) and CD4+ (~18%) T cells were activated 

in the presence of B lymphoma cells, but not in response to non-transformed activated 

splenic B cells (Fig. 5a, Supplementary Fig. 5a). Only CD8+ T cells, however, 

proliferated and differentiated into IFNγ+, granzyme B+ effector cells in co-culture with B 

lymphoma cells (Fig. 5a, Supplementary Fig. 4a and data not shown). The relatively 

large fraction of T cells activated in this assay suggested a polyclonal T cell response 

rather than activation of rare clones specific to select tumour antigens. This inference was 

supported by the analysis of the T cell receptors (TCR) of the responding CD8+ T cells, 

which revealed a broad spectrum of TCR variable β chain usage, similar to that seen in 

naïve or CD3 antibody treated T cells (Supplementary Fig. 5b).  

To directly test whether polyclonal populations of T cells could control lymphoma 

growth, we injected lymphoma cells derived from Blimp1-mutant or Bcl6Tg mice into 

Rag1-/- mice, either alone or together with purified CD4+ or CD8+ T cells. While all mice 

injected with B lymphoma cells alone and most mice co-injected with lymphoma cells 

and CD4+ T cells developed splenomegaly and succumbed to malignant disease within 3-

6 weeks, CD8+ T cells efficiently prevented lymphoma growth for at least 12 weeks (Fig. 

5b, Supplementary Fig. 5c). CD8+ T cells isolated from healthy Blimp1gfp/+ or Bcl6Tg 

mice were equally capable of controlling the growth of B lymphoma cells derived from T 

cell deficient Blimp1gfp/+ or Bcl6Tg mice, respectively, indicating that it was not GFP or 

the HA derived epitopes that were recognised by CD8+ T cells (Supplementary Fig. 5d). 

Furthermore, naïve and memory polyclonal CD8+ T cells that had developed in response 

to unknown non-tumour antigens and were isolated from healthy wild-type mice were 

similarly capable of controlling lymphoma growth (Supplementary Fig. 5e). Taken 

together these results indicated that CD8+ T cells with a range of different TCRs are 

activated in response to B lymphoma cells and control the growth of ABC-DLBCL like 

lymphomas.  

 

CD8+ T cells recognize B lymphoma cells in a TCR and CD28-dependent manner  
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Molecules that participate in T cell recognition are frequently altered in B cell lymphoma, 

including MHC-I, MHC-II, CD80 and CD86, suggesting that TCR signals and co-

stimulation are involved in tumour surveillance21,22,31. All lymphomas tested in this study 

expressed high amounts of MHC molecules as well as CD80 and CD86 (n=14), both of 

which are usually restricted to activated B cells and GC B cells32,33 (Fig. 5c). We 

therefore reasoned that their expression might contribute to activating T cell mediated 

immune surveillance. Indeed, T cells deficient in CD28, a receptor for CD86 and CD80 

that provides co-stimulatory signals required for full T cell activation, failed to control B 

lymphoma cells in vivo (Fig. 5d). Similarly, CD8+ T cells with a TCR specific for an 

ovalbumin-derived peptide (OT-I) or CD8+ T cells lacking the transcription factor IRF4, 

which is required for TCR-stimulation induced clonal expansion and development of 

effector function in CD8+ T cells34, were unable to control lymphoma growth, 

demonstrating that TCR-mediated recognition of self or tumour antigen and co-

stimulation are required for lymphoma suppression (Fig. 5e).  

 

CD8+ T cells target B lymphoma cells using the FasL-Fas death pathway  

To uncover the mechanisms of T cell mediated control of B cell lymphoma development, 

we tested the ability of CD8+ T cells deficient in one or several molecules linked to the 

cytotoxic activity of T cells to eradicate lymphoma cells. Unexpectedly, neither loss of 

perforin, TRAIL, IFNγ, the transcription factor T-bet, which controls many aspects of 

CD8+ T cell function35, nor the combined loss of granzymes A, B and M impaired the 

control of B cell lymphoma growth in recipient mice (Fig. 6a). In contrast, CD8+ T cells 

deficient in membrane Fas ligand (FasL), which is essential for Fas-induced apoptosis, 

were impaired in their ability to control the growth of B cell lymphomas (Fig. 6a). This 

correlated with high levels of Fas expression on B cell lymphomas that had arisen in T 

cell deficient mice (Fig. 6b). In contrast, B cell lymphomas that had formed in T cell 

sufficient mice expressed low levels or no Fas (Fig. 6b, c) and were resistant to killing by 

recombinant FasL (Fig. 6d, Supplementary Fig. 6). Strikingly, B lymphomas derived 

from immune-competent mice were largely resistant to control by FasL-deficient CD8+ T 

cells (Fig. 6e). This reveals that FasL-Fas dependent mechanisms constitute a major non-
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redundant component of T cell mediated immune surveillance of B lymphoma whose loss 

cannot be readily compensated for. 

 

DISCUSSION 

The concept of immune surveillance was proposed long ago36 but few studies have 

conclusively tested the cellular and molecular requirements for this process directly20,37. 

A recent report showed that the EBV derived antigen LMP1 expressed under the control 

of B cell specific regulatory elements can directly activate T cell mediated immune 

surveillance, leading to efficient deletion of LMP1 transgenic B cells, thereby preventing 

development of B lymphoma38. While that study demonstrated the critical role of T cells 

in the control of lymphomas driven by a viral antigen, it did not clarify the role of 

immune surveillance in the pathogenesis of spontaneous B cell lymphomas that do not 

express foreign or pathogen associated antigens. Our study unambiguously and for the 

first time demonstrates the ability of T cells to prevent spontaneous lymphoma 

development triggered by mutations that block an intrinsic cellular differentiation 

pathway.  

Our study also sheds light on the potential precursors of DLBCL. Surprisingly, a large 

proportion of Blimp1 mutant lymphomas, all of which corresponded to the ABC-DLBCL 

type lymphoma, expressed high amounts of Bcl6 and Aicda, both of which are typically 

associated with GC B cells. This was unexpected, as all lymphomas had arisen in the 

absence of a functioning T cell compartment, and hence in the absence of any GC 

activity. While AID expression was thought to be restricted to GC B cells39, more recent 

reports suggested that, similar to Bcl6, it might already be expressed in pre-GC B cells40-

42. This would be in line with the observation that Bcl6-deficient B cells can undergo Ig 

isotype switching despite being unable to give rise to GC B cells43. Thus, our data 

provide further evidence for a role of AID outside of germinal centres and indicate that at 

least in mice a diverse array of ABC-DLBCL-like lymphomas, including Bcl6+ and AID+ 

lymphomas, can develop from non-GC B cells. 

The mechanisms by which T cells can prevent tumour growth are diverse and the 

molecular basis for successful adoptive T cell mediated tumour eradication is not fully 
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understood44. Direct killing through cytolytic granules and cytokine-mediated 

cytotoxicity have been implicated in tumour surveillance45,46. However, our data do not 

support a unique role for either of these pathways in the control of DLBCL. In contrast 

our results indicate that the FasL-Fas-dependent death receptor pathway is critically 

important for immune-surveillance of incipient B cell lymphomas. This is in agreement 

with studies that implicated the same pathway in the prevention of plasmacytoid tumors47 

and in the Rituximab induced death of lymphoma cells48. Although recent whole exome 

sequencing of DLBCL samples did not provide evidence for FAS mutations49,50, 

alterations of the FAS gene locus or other mutations that impair the FasL-Fas apoptotic 

pathway have been reported to be prominent in DLBCL and other post-GC B cell 

malignancies and associated with poor prognosis51-55. These results suggest that 

mutations, which impact on Fas expression, are more likely to occur in FAS gene 

regulatory regions, or in the signalling pathways downstream of Fas. Therefore, more 

lymphoma genome sequencing data are required to accurately estimate the impact and 

frequency of such mutations in DLBCL. Importantly, down-modulation of FasL 

expression during drug-induced immune suppression is a likely mechanism of escape 

from immune surveillance.  

An intriguing question that remains is, how the polyclonal CD8+ T cell population can 

recognize transformed B cells. As B lymphoma cells themselves are antigen-presenting 

cells, our data thereby support a model in which T cells bearing low-avidity TCRs for 

self-antigens have the capacity to eliminate incipient B lymphoma cells that are identified 

based on their uncontrolled expression of MHC molecules presenting self-peptides in 

conjunction with high levels of co-stimulatory molecules and Fas. Importantly, the TCR 

signalling threshold for FasL-Fas mediated killing of target cells is substantially lower 

than for perforin-mediated cytotoxicity56-59 suggesting that even partial agonists or self-

antigen may be sufficient to trigger this process for lymphoma cell killing. As B cells 

responding to antigen, even in healthy individuals, harbour significant numbers of AID-

mediated mutations in a variety of genes, including oncogenes16-18, this process of T cell 

mediated immune surveillance may have evolved as a mechanism to deal with the 

dangerous ‘side-effects’ of immunoglobulin class switch recombination and affinity 

maturation during humoral immune responses. 
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Figure Legends 

Figure 1. Expansion of a pre-plasmablast population in the absence of Blimp1. (a-c) 

Mixed bone marrow chimaeras (Blimp1gfp/gfp : Ly5.1) containing Blimp1-deficient and 

wild-type B cells and control chimaeras (Blimp1gfp/+ : Ly5.1) were infected with murine γ 

herpes virus 68 and analysed at acute (d13-14) or persistent (d34-56) time points. (a) 
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Flow cytometric analysis of chimaeras, gated on wild-type (Ly5.1+) or Blimp1gfp/gfp 

(Ly5.2+) total splenic cells (upper panel) or CD138-CD19+ splenic B cells (lower panel). 

(b) Proportions of Cxcr4+Fas+ B cells in the wild-type or Blimp1gfp/gfp compartments. 

Values for individual mice are indicated by symbols, horizontal line indicates the mean 

±S.D. P values compare groups as indicated (*P<0.05, **P<0.016, ***P<0.004, NS, not 

significant). (c) Flow cytometric analysis of Ly5.2+CD19+ B cells from a control 

(Blimp1gfp/+ : Ly5.1) and two individual Blimp1gfp/gfp : Ly5.1 chimaeric mice (as in a) at 

persistent time points. Data are representative of two experiments, each containing 6 

mice. (d) Flow cytometric analysis of aged (12-16 months) Ly5.1 mice reconstituted with 

Blimp1gfp/gfp foetal liver cells. Plots are gated on Ly5.2+ splenic leukocytes. B cells were 

isolated from each of these mice (upper panel) and transferred into Rag1–/– recipients, in 

which they caused splenomegaly and pathology consistent with B lymphoma (lower 

panel). Data show 4 individual mice representative of a total of 12 mice with similar 

results. 

Figure 2. Accelerated lymphoma development in Blimp1-mutant T cell deficient mice. 

(a) Kaplan-Meier survival graph of Blimp1-mutant and control mice on a T cell deficient 

(Cd3e–/–) background. Numbers of mice in each cohort are indicated in brackets. (b) 

Pathology in Blimp1-mutant Cd3e–/– mice. Images show enlarged spleen and liver in a 

Blimp1gfp/gfpCd3e–/– mouse (upper left), splenomegaly of two individual Blimp1gfp/gfpCd3e–

/– mice in comparison to a wild-type spleen as indicated (lower left, scale bars 5 mm), and 

histology of spleens from a Blimp1gfp/gfpCd3e–/– mouse or a Cd3e–/– mouse wild-type for 

the Blimp1 allele as indicated (right, scale bars 200 μm). (c) Flow cytometric analysis of 

two primary (prim.) and the corresponding secondary (sec., after transfer into Rag1–/– 

mice) B cell lymphomas from Blimp1gfp/gfpCd3e–/– mice. (d) Flow cytometric analysis of a 

secondary lymphoma from a Blimp1gfp/+Cd3e–/– mouse.  

Figure 3. Molecular profiles of B cell lymphomas. (a) Western Blot analysis of 

transcription factors in individual lymphomas as indicated. t-Blimp1 indicates the 

truncated Blimp1 protein expressed from the Blimp1gfp allele. (b) Quantitative RT-PCR 

for Aicda in individual lymphomas. Data show the mean ±S.D. of gene expression 

relative to Hprt. FACS sorted follicular (FO) and germinal centre (GC) B cells were used 
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as controls. *denotes lymphomas from Blimp1gfp/+Cd3e–/– mice, all others were from 

Blimp1gfp/gfpCd3e–/– mice. 

Figure 4. Bcl6 overexpression in the absence of T cells drives rapid B cell lymphoma 

development. (a) Kaplan-Meier graph of Bcl6-transgenic mice on a T cell deficient 

(Cd3e–/–) or sufficient (Cd3e+/– or Cd3e+/+) background. Numbers of mice in each cohort 

are indicated in brackets. (b) Histology of spleens (upper panels) and livers (lower 

panels) showing destruction of the splenic architecture and infiltration of large blasting 

cells in the Bcl6TgCd3e–/– samples in comparison to sections from a Cd3e–/– mouse 

without the Bcl6-transgene as indicated (scale bars 400 μm). (c) Representative flow 

cytometric analysis of B cell lymphomas from two Bcl6-transgenic Blimp1gfp/+Cd3e–/– 

mice from the cohort described in (a). 

Figure 5. Polyclonal CD8+ T cells can eradicate B lymphoma cells in a TCR and CD28-

dependent manner. (a) CD8+ T cells, labelled with cell division tracker (CTV) and 

cultured in the presence of B lymphoma cells or wild-type activated splenic B cells with 

and without CD3 antibody. Flow cytometric analysis of TCRβ+CD8+ T cells for 

expression of activation markers and granzyme B (GzmB) on day 1 and 3 after start of 

the culture. Numbers in plots are mean % ±S.D., from five experiments using three 

different B lymphomas. (b) Frequency of lymphoma development in Rag1–/– recipients 

after transfer of B lymphoma cells with or without purified CD4+ or CD8+ T cells. (c) 

Flow cytometric analysis of the indicated molecules on normal B and plasma cells (d7 

after immunization with NP-KLH) and on B lymphoma cells. Naïve B cells were 

B220+CD138–Blimp/GFP–, plasma cells and plasmablasts B220lowCD138+Blimp/GFP+. 

Data are representative of one of 3 mice and 6-8 individual lymphomas. (d) Flow 

cytometric analysis of Rag1–/– mice co-injected with B lymphoma cells and CD8+ T cells 

from either wild-type or Cd28–/– mice as indicated, 4 weeks post injection. Data are 

representative of 10 mice in three experiments using four individual Blimp1 mutant 

lymphomas. (e) Frequencies of lymphoma development in Rag1–/– recipients after 

transfer of Blimp1 mutant B lymphoma cells with or without purified CD8+ T cells of the 

indicated genotypes. Data in (b) and (e) are the combined results from 3-6 experiments 
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each performed using 2-3 mice with different individual lymphomas. Statistical analysis 

was performed with Bonferroni Corrected two-tail Fisher's Exact Test. 

Figure 6. CD8+ T cells eradicate B lymphoma cells by activating the FasL-Fas apoptotic 

pathway. (a) Frequencies of lymphoma development in Rag1–/– recipients after transfer 

of Blimp1 mutant B lymphoma cells with or without purified CD8+ T cells of the 

indicated genotypes, measured as in Figure 5b. Data present the combined results from 3 

experiments each performed using 2-3 mice with different individual lymphomas. (b) 

Representative flow cytometric analysis of individual Bcl6 transgenic B lymphomas that 

had developed in T cell sufficient (Cd3e+/+, #266, #PM23) or T cell deficient (Cd3e–/–, 

#66, #186) as indicated. (c-d) Bcl6 transgenic B cell lymphomas from T cell sufficient 

(Cd3e+/+) or T cell deficient (Cd3e–/–) mice as indicated were analysed by flow-cytometry 

for Fas expression (c, MFI, mean fluorescence index) and survival (d) in the presence of 

recombinant Fc-FasL. Values for individual samples are indicated by symbols, horizontal 

line indicates the mean ±S.D. (e) Lymphoma incidence measured as in a after transfer of 

Bcl6-transgenic B cell lymphomas that had developed in T cell sufficient mice, with or 

without T cells of the genotypes as indicated. Graph represents 6-8 individual lymphomas 

transferred in replicates. Statistical analysis in (a) and (e) was performed with Bonferroni 

Corrected two-tail Fisher's Exact Test. 
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Online Methods 

Mice. Blimp1gfp/+ and Blimp1fl/fl mice were generated and maintained on a pure C57BL/6 

(Ly5.2) background as described previously27,60. Bcl6 transgenic mice (IμHABcl6)30, 

Blimp1gfpEμ-v-abl transgenic mice28,61, Cd79aCre mice62, Cd3e-/- mice63, and mice 

deficient in CD2864, granzymes A, B and M65, perforin66, Trail67, IFNγ68, mFasL69, T-

bet70 or Irf471 were described earlier. Rag1-/- mice were obtained from The Jackson 

Laboratory. OT-I mice72 on a Rag1-deficient background were provided by Taconic. 

Blimp1gfp/gfp mice were generated as described9. Blimp1gfp/gfp : Ly5.1 mixed bone marrow 

chimaeras were generated by reconstituting lethally irradiated Ly5.1 recipients with a 

mixture of bone marrow cells isolated from Blimp1gfp/gfp and wild-type Ly5.1 mice. 

Chimaeric mice were analysed after a minimum of 6 weeks. Mouse cohorts were 

monitored twice weekly and euthanized when signs of tumour development 

(splenomegaly, hind limb paralysis or wasting) occurred. All mice were bred and 

maintained on a C57BL/6 background at The Walter and Eliza Hall Institute of Medical 

Research or the Peter MacCallum Cancer Centre, Melbourne. Animal experiments were 

undertaken according to Animal Experimental Ethics Committee guidelines and 

approval.  

Antibodies and flow cytometry. The following monoclonal antibodies to mouse 

proteins were from eBioscience or BD Biosciences Pharmingen and were used in multi-

parameter flow cytometric analysis: CD4 (L3T4), CD8 (53-6.7), CD25 (PC61), Ly5.2 
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(104), Ly5.1 (A20), CD69 (H1.2F3), B220 (RA3-6B2), CD19 (eBio1D3), CD23 (B3B4), 

CD43 (S7), CD80 (16-10A1), CD86 (GL1), CD138/Syndecan-1 (281-2), IgM (II/41), 

IgD (II-26c), MHC-I (M1/42), MHCII (M5/114.15.2), Fas (Jo2), Cxcr4 (2B11), Cxcr5 

(2G8), TCRβ (H57-597), Granzyme B (GB12). Peanut agglutinin (PNA) was from 

Vector Laboratories; anti-Bcl6 (in-house clone 7D1-10) was conjugated to A647 

(Molecular Probes). FcgRII/III (24G2; supernatant) and normal rat serum was used for 

blocking. The TCRVβ Screening Panel was from BD Biosciences Pharmingen. 

Biotinylated mAbs were revealed with streptavidin Cy5 or streptavidin PerCPCy5.5. 

Streptavidin Cy5 was from Southern Biotech and the remaining reagents were from BD 

Biosciences Pharmingen or eBioscience. The anti-mouse embigin monoclonal antibody 

was described earlier73. Viable cells were identified by propidium iodide or SytoxBlue 

(Invitrogen) exclusion. For intracellular staining, cells were fixed, permeabilized, and 

stained using the protocol in the Foxp3 Staining Buffer Set (eBioscience). Cells were 

analyzed on FACS Canto II cytometers (Becton Dickinson) and cell sorting was 

performed on MoFlo (Beckman Coulter) or Aria cytometers (Becton Dickinson). Data 

was processed using Flowjo software. 

Histology. Organs were harvested and fixed overnight in 10% neutral buffered formalin 

at 4°C. After fixation, organs were progressively dehydrated in 70%, 95% and 100% 

ethanol, embedded in paraffin, sectioned and stained with haematoxylin and eosin. 

Images were acquired with a Zeiss Axioplan-2 microscope. 

Western blotting. Total protein extracts were produced from equivalent numbers of cells 

with DISC buffer (20 mM Tris-Cl, pH 7.5, 150 mM NaCl, 2 mM EDTA, 1% Triton X-

100, 10% glycerol and Complete Protease Inhibitor (Roche)). Rat monoclonal anti-Pax5 

(1H9)9, anti-Blimp1 (5E7)27, anti-Bcl6 (7D1) and anti-IRF4 (3E4) were generated in-

house. Equal loading of lanes with proteins was confirmed by probing with horseradish 

peroxidase–conjugated anti-β-actin (I-19; Santa Cruz Biotechnology).  

Cell isolation and culture. CD4+ and CD8+ cells were enriched from pooled spleens and 

lymph nodes by magnetic-activated cell sorting (MACS) using MACS beads (Miltenyi) 

according to the manufacturer’s protocol. In mixed cultures, T cells were cultured in the 

presence of B lymphoma cells or LPS and IL-4 activated control B cells at a ratio of 1:5 
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in the presence of recombinant mouse IL-2 (100 U/ml, R&D Systems). Anti-CD3 (145-

2C11) (5 μg/mL) was added to cultures as indicated. The CellTrace™ Violet Cell 

Proliferation Kit (Invitrogen) was used according to the manufacturer’s protocol. 

Cell transfer. Recipient mice were injected with 1-2x106 lymphoma cells. In some 

experiments, lymphoma cells were mixed prior to injection with the same number of 

isolated T cells. Recipient mice were monitored for signs of disease and palpated for the 

development of splenomegaly twice weekly. Mice were analysed when disease had 

developed or 6-8 weeks after the recipients of B lymphoma cells without T cells had 

developed malignant disease.  

Real-time PCR analysis. Total RNA was prepared using the RNeasy kit (Qiagen). 

cDNA was synthesized from total RNA with random hexamers and SuperScript III 

reverse transcriptase (Invitrogen). Real-time PCR was performed using the QuantiTect 

SYBR Green PCR kit (Qiagen). Analyses were performed in triplicate and the mean 

normalized expression calculated using the Q-Gene application with Hprt serving as a 

reference gene. Primer sequences were as follows, Aicda: 

CCGGCACGTGGCTGAGTTT, GATGCGCCGAAGTTGTCTGGTTAG; Hprt: 

TCCAACACTTCGAGAGGTCC, GGGGGCTATAAGTTCTTTGC. 

Viral infections and immunization experiments. Mice were anaesthetised with 

methoxyflurane and then infected intra-nasally with 3 × 104 PFU recombinant murine γ-

herpes virus 68 (γHV)74. Immunizations were done with a single i.p. injection of 100 μg 

nitrophenol (NP) coupled to keyhole limpet haemocyanin (KLH) in the ratio of 13:1. The 

antigen was precipitated onto alum and washed extensively before injection.  

Clonality analysis and Ig gene mutation analysis. DNA was extracted from individual 

B cell lymphomas by standard methods and VDJ recombination of the IgH gene locus 

was tested by PCR as described75. For paraprotein and serum Ig analysis 0.5 - 1.0 μL 

serum isolated from lymphoma bearing mice was used as described61. Somatic mutation 

at the Ig heavy chain locus was determined by sequencing 260 bp 3' of the JH segment 

used in the heavy chain VDJ rearrangement, previously determined by differential PCR. 

The revealed sequence was compared to its germline equivalent from C57BL/6 mice and 

differences recorded as mutations per 100 bp. 
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In vitro Fas ligand killing assay. MACS purified B lymphoma cells were incubated for 

16 h with 10,000 units recombinant Fc-FasL (ACRP-FasL)76 as described. Proportions of 

live cells were determined by propidium iodide exclusion using flow cytometry. 

Statistics. If not stated otherwise a paired or unpaired student t test as appropriate was 

performed to test for statistical significance. 
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Supplementary Figures 

Supplementary Figure 1. a, Flow cytometric analysis of mice with a B cell specific 

inactivation of the Blimp1 gene (Blimp1fl/flMb1CreT/+) or control mice 

(Blimp1+/+Mb1CreT/+) 34 days post infection with γHV. Gated CD19+ splenic B 

lymphoid cells are shown. Data are representative for three individual mice of a group 

of 16 mice. b, Flow cytometric analysis of Blimp1/GFP expression in different B cell 

compartments of a Blimp1gfp/+ mouse 7 days after immunisation with the model 

antigen nitrophenol coupled to keyhole limpet haemocyanin in alum (NP-KLH). 

Naïve (shaded), germinal centre B cells (bold line) and plasma cells and plasmablasts 

(fine line) were gated as indicated. Data are representative of at least 9 mice from 

three independent experiments. 

Supplementary Figure 2. a, Flow cytometric analysis of Ly5.2+CD19+ splenic B 

cells from two individual Blimp1gfp/gfp/Ly5.1 mixed chimaeras infected with γHV and 

analysed 34 days post infection. Data are representative for two experiments each 

containing 6 mice. b, Flow cytometric analysis of mice with a B cell specific 

inactivation of the Blimp1 gene (Blimp1fl/flMb1CreT/+) or control mice 

(Blimp1+/+Mb1CreT/+). Data are representative of three individual mice out of a group 

of 16 γHV-infected mice. c, Flow cytometric analysis of mixed bone marrow 

chimaeras as in (a) 14 days after immunisation with NP-KLH in alum. Plots are gated 

on wild-type (Ly5.1+) or Blimp1gfp/gfp (Ly5.2+) CD19+ splenic B cells as indicated. 

Graph shows proportions of CXCR4+Fas+ B cells in the wild-type or Blimp1gfp/gfp 

compartments. Values for individual mice are indicated by dots, the horizontal line 

indicates the mean ±S.D. Data are representative of two experiments each containing 

4-5 mice.  

Supplementary Figure 3. a, Representative flow cytometric analysis of two 

individual B cell lymphomas as indicated from Blimp1gfp/gfpCd3e-/- mice. b, Clonal Igh 

gene rearrangements of individual B cell lymphomas from Blimp1gfp/gfp and 

Blimp1gfp/+Cd3e-/- mice. Splenic B cells were used as a positive control. c, Analysis of 

serum Ig from Rag1-/- recipients that developed lymphoma after injection with 

lymphoma cells from Blimp1gfp/gfp or Blimp1gfp/+Cd3e-/- mice. Serum from an Eµ-v-abl 

transgenic mouse bearing a plasmacytoma and from a healthy control mouse, were 

used as controls. Clonal Ig (paraprotein) is marked by an arrow.  



Supplementary Figure 4. a, Flow cytometric analysis of spleen cells from healthy 

Bcl6-transgenic mice and control mice as indicated. Bcl6TgCd3e-/- and Bcl6+/+Cd3e-/- 

mice were analysed at 6 weeks of age; the remaining mice were 6 months old. b, 

Flow cytometric analysis of spleen cells from lymphoma bearing T cell sufficient 

Bcl6-transgenic mice. Numbers indicate the proportion of CD8+ and CD4+ T cells 

(left) and the proportion of activated T cells (middle and right). 

Supplementary Figure 5. a, CD4+ T cells are activated but do not proliferate in 

response to B lymphoma cells in vitro. Flow cytometric analysis of TCRβ+CD4+ T 

cells labelled with cell division tracker (CTV) and cultured in the presence of B 

lymphoma cells or, as a control, with wild-type splenic B cells with and without CD3 

antibody as indicated. Plots show activation markers (CD25 and CD69) and cell 

division as measured by loss of CTV on day 1 and 3 as indicated. b, Polyclonal CD8+ 

T cell response in the presence of B lymphoma cells from Blimp1-mutant Cd3e-/- 

mice. Flow cytometric analysis of TCRvβ chain expression on CD8+ T cells freshly 

isolated (shaded) or CD8+ T cells that had divided (CTVlow) in co-culture with B 

lymphoma cells 3 days after the start of the culture. Data are representative of two 

experiments performed with two individual lymphomas. c, Flow cytometric analysis 

of Rag1-/- recipients injected with B lymphoma cells with or without purified CD4+ or 

CD8+ T cells as indicated. Data are representative of 9-17 mice in 3-6 experiments. d-
e, Lymphoma incidences in Rag1-/- mice after transfer of B lymphoma cells with or 

without CD8+ T cells as indicated. d, Total CD8+ T cells from healthy mice 

transferred along with B lymphoma cells of the indicated genotypes. Data represent 4-

5 mice and at least two individual lymphomas. e, Naïve T cells were FACS sorted as 

CD8+CD62Lhigh and CD44low, memory T cells were CD8+CD44high. Data represent at 

least 6 mice and three individual lymphomas.  

Supplementary Figure 6. Flow cytometric analysis of B lymphoma cells after over-

night culture in the presence or absence of 10,000 U recombinant Fc-FasL as 

indicated. Gates indicate frequencies of CD19+PI- live cells. 
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