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ABSTRACT 

 

Type 1 diabetes (T1D) results from T cell-mediated destruction of pancreatic beta 

cells. The mechanisms of beta cell killing in vivo, however, remain unclear. Here we 

altered expression levels of critical cell death proteins in mouse islets and tested their 

ability to survive T cell-mediated attack using an in vivo graft model. Loss of the 

BH3-only proteins BIM, PUMA or BID did not protect beta cells from this death. 

Overexpression of the anti-apoptotic protein BCL-2 or combined deficiency of the 

pro-apoptotic multi-BH domain proteins BAX and BAK also failed to prevent beta 

cell destruction. Furthermore, loss of function of the death receptor FAS or its 

essential downstream signaling molecule FADD in islets was also not protective. 

Using electron microscopy we observed that dying beta cells showed features of 

necrosis. However, islets deficient in RIPK3, a critical initiator of necroptosis, were 

still normally susceptible to T cell-mediated destruction. Remarkably, simultaneous 

inhibition of apoptosis and necroptosis by combining loss of RIPK3 and 

overexpression of BCL-2 in islets did not protect them against immune attack either. 

Collectively, our data indicate that beta cells die by necrosis in T1D, and that 

apoptosis and necroptosis are both dispensable for this process. 

 

 

 

 

 

 

 



 

INTRODUCTION 

Type 1 diabetes (T1D) is an autoimmune disease characterized by beta cell 

destruction in pancreatic islets of Langerhans, resulting in insulin deficiency and 

hyperglycemia. Studies in human patients as well as rodent models have revealed that 

beta cells in T1D are mainly destroyed by diabetogenic T cells that have been 

activated by beta cell-specific antigens  (1; 2). While much progress has been made in 

understanding the development and activation of such auto-aggressive T cells, the 

mechanisms of beta cell killing in T1D remain poorly understood. 

 

The main pathways of cell death include apoptosis, necrosis and necroptosis, which 

result in distinct morphological features that can be discriminated by transmission 

electron microscopy. Apoptosis can be activated through two distinct but ultimately 

converging pathways: the death receptor (extrinsic) pathway and the BCL-2 protein 

family regulated (intrinsic) pathway. Caspases are the executioners in both pathways 

that lead to distinct apoptotic morphology, including nuclear fragmentation and 

chromatin condensation (3). The death receptor pathway is initiated by ligation of 

death receptors, such as FAS or TNFR1 that have an intra-cellular death domain. 

Caspase-8 is then activated by the adaptor FAS-associated death domain (FADD) 

upon recruitment of both of these proteins to the death receptor associated DISC 

(death inducing signaling complex). This results in the activation of the executioner 

caspases (particularly caspase-3 and caspase-7), which unleash the demolition of the 

doomed cell.  

 



The BCL-2-regulated apoptotic pathway is activated by developmental cues or 

cellular stresses, such as cytokine deprivation or ER stress. It is regulated by the 

balance between pro- and anti-apoptotic members of the BCL-2 protein family. The 

pro-apoptotic BH3-only proteins (e.g. BIM, PUMA, BID) inhibit the pro-survival 

BCL-2-like proteins, and some of them can also directly activate the pro-apoptotic 

multi-BH-domain proteins BAX and BAK. They cause mitochondrial outer 

membrane permeabilisation (MOMP), which initiates release of cytochrome c, 

apoptosome activation and caspase activation. Previous studies have shown that FAS-

induced killing of beta cells requires amplification of the caspase cascade by 

engagement of the BCL-2-regulated apoptotic pathway through BID, which is directly 

activated by caspase-8 mediated proteolysis (4). Other BH3-only proteins, including 

BIM and PUMA, have also been shown to play a role in the death of beta cells in 

culture in response to pro-inflammatory cytokines or high glucose concentrations (5-

7). 

 

Necroptosis has recently emerged as an important genetically programmed 

mechanism of cell death (8). In particular, ligation of death receptors can trigger 

necroptosis through the receptor interacting serine/threonine protein kinases RIPK1 

and RIPK3 to activate the pseudokinase Mixed Lineage Kinase domain-like 

(MLKL1) (9; 10). Hypoxia, deregulated calcium flux and free radicals, have been 

shown to induce cell death with features reminiscent of necroptosis, but killing in 

response to these insults does not require RIPK1, RIPK3 or MLKL (10). A role for 

necroptosis or other forms of necrotic cell death in the killing of beta cells in T1D has 

not yet been demonstrated. 

 



The non-obese diabetic (NOD) mouse is a model of T1D with similar pathological 

features to T1D in humans. While beta cell destruction clearly occurs as a result of 

autoreactive T cell-mediated attack, it has been challenging to determine the 

mechanisms that kill beta cell death in T1D. This is due to the protracted time that it 

takes for the disappearance of beta cells during disease development, the quick 

clearance of dying cells, as well as lack of islet specific gene knock-out strains on the 

NOD background. Histological examination of sections from pancreata of diabetic 

patients and pre-diabetic NOD mice have revealed TUNEL+ beta cells, implicating 

apoptosis as the mechanism for their killing (11-15). However, TUNEL staining 

detects DNA breaks that can occur in both apoptosis and necrosis; so it is not specific 

enough to define the apoptotic death pathway (16). In fact, both apoptosis and 

necrosis have been reported in islets treated in vitro with inflammatory stimuli, such 

as cytokines and death receptor ligands (e.g. FasL, TNF) (5; 17-19). While in vitro 

studies shed light on mechanisms of beta cell killing in T1D, they may not fully 

reflect the in vivo environment. It is therefore necessary to use more defined 

approaches in vivo to resolve the question of how beta cells are killed in T1D. 

 

Here we used an adoptive transfer model initially developed by Katz and co-workers 

to examine which death pathways are essential for T cell-mediated beta cell 

destruction (20). We have tested the role of regulators of both apoptosis and 

necroptosis proteins in diabetogenic T cell-mediated beta cell destruction. To our 

surprise, loss of proteins that are critical for BCL-2-regulated and death receptor 

apoptotic pathways did not protect beta cells against T cell-mediated destruction. 

Using transmission electron microscopy, we observed widespread necrotic but not 

apoptotic beta cells in islets under T cell attack. However, loss of RIPK3, a kinase 



essential for death receptor-mediated necroptosis, did not prevent T cell-mediated 

beta cell destruction. Our data suggest that in T1D, beta cells die by necrosis that is 

either uncontrolled or follows some presently non-defined controlled program. 

 

RESEARCH DESIGN AND METHODS 

Mice 

Mice were bred and maintained at the St. Vincent’s Institute, and all experiments 

were approved by the Institutional Animal Ethics Committee. NODBDC2.5, NODlpr, 

NODFADDdn, NOD.Bid-/- as well as RipBcl-2, Bim-/-, Puma-/- and Bak-/-Baxfx/fx (all on 

a C57BL/6 background) mice have been described before (21-28). Mip-luc-VU mice 

(FVB/N background) were kindly provided by Dr Alvin Powers (Vanderbilt 

University, USA) (29). Caspase8fx/fx (C57BL/6 background) mice were kindly 

provided by Dr Stephen Hedrick (UCSD, USA) (30). Rosa26.Cre-ER (C57BL/6 

background) mice were obtained from the Jackson Laboratory (31). RIPK3-/- 

(C57BL/6 background) mice were obtained from Genentech (32). 

 

Tamoxifen treatment 

Tamoxifen (Sigma-Aldrich) was dissolved in corn oil at a concentration of 40 mg/mL 

and injected intra-peritoneally (i.p.) into mice (200 mg/kg body weight) twice a week 

for 3 weeks. 

 

Islet isolation and culture 

Islets of Langerhans were isolated using collagenase P (Roche, Basel, Switzerland) 

and histopaque-1077 density gradients (Sigma-Aldrich) as previously described (33). 

For grafting, islets were handpicked and cultured as previously described (33). 



 

Streptozotocin injection and islet grafting  

Streptozotocin (Sigma-Aldrich) was dissolved in ice-cold PBS prior to i.p. injection 

into 8-week old NODscid mice (0.25 mg/g body weight). Blood glucose levels were 

measured at 72 h after injection. Mice with a blood glucose reading of 15 mM or 

higher were considered diabetic and used as recipients. Recipient mice were grafted 

under the kidney capsule with 400 islets isolated from donor mice (33) and their 

blood glucose was monitored on every second day. Mice were kept for 10 days after 

normo-glycemia was restored before adoptive transfer of BDC2.5 T cells.  

 

Adoptive T cell transfer 

Spleens and pancreatic lymph nodes from NODBDC2.5 mice were dispersed through 

a 70-µm strainer and red blood cells (RBCs) were lysed with RBC lysis buffer (155 

mM NH4Cl, 10 mM Tris.HCl, pH 7.5). Dissociated cells were stained with antibodies 

to CD4, CD25 and the clonotypic BDC2.5 TCR (34). Diabetogenic BDC2.5 T cells 

were collected by sorting CD4+BDC2.5highCD25- cells on a FACS Aria (BD 

Bioscience) and injected intra-venously (i.v.) into recipient mice (1x106 T 

cells/mouse). 

 

Immunohistochemistry 

Islet grafts were snap frozen in OCT (Sakura Finetek, Torrance, CA). Five-

micrometer sections were cut and stained with antibodies to insulin followed by 

secondary antibodies against guinea-pig IgG coupled to horseradish peroxidase (Dako 

Corp., Carpinteria, CA, USA). Staining was developed with diamino-benzidine 



(Sigma-Aldrich) and sections were counter stained with haematoxylin (Sigma-

Aldrich). 

 

Electron Microscopy 

For transmission electron microscopy, islet grafts were fixed in 2.5% glutaraldehyde 

and 2% paraformaldehyde in 0.08M Sorenson's phosphate buffer at room temperature 

for 4 h. Sections were then prepared by the electron microscopy facility at the Peter 

MacCallum Cancer Center. Images were taken on the JEOL JEM-1011 transmission 

electron microscope. 

 

IVIS 

In vivo imaging of bioluminescent signal was performed using Xenogen IVIS-200 

(PerkinElmer, Waltham, MA). Mice were kept under isoflurane (1.5%) anesthesia and 

given an i.p. injection of D-luciferin (Thermo Fisher Scientific Australia Pty Ltd, 150 

mg/kg body weight). Images were then taken continuously with 1-min exposure and 

2-min interval for 20 min.    

 

RESULTS 

 

Islet destruction by diabetogenic T cells 

 

To examine the mechanisms of islet destruction by T cells, NODscid mice were 

depleted of endogenous beta cells and made diabetic by a single high dose injection of 

streptozotocin. These mice were then grafted under the kidney capsule with 400 wild-

type NOD islets, after which the blood glucose of the recipients dropped to the 



normo-gylcaemic range (5 to 10 mM; Figure 1A). Mice were then adoptively 

transferred with 1x106 diabetogenic BDC2.5 CD4+ T cells to induce T cell-mediated 

destruction of the grafted islets. Because NODscid mice lack T and B cells, they do 

not develop allo-rejection of islets from other strains, such as those on a C57BL/6 

background. In addition, BDC2.5 T cells only recognize antigen presented by I-Ag7 on 

NODscid antigen presenting cells, so they are able to kill islets from any mouse strain 

(20). After transfer of BDC2.5 T cells, the recipient’s blood glucose rose above 15 

mM on day 8, suggesting the grafted islets were destroyed by the transferred T cells 

(Figure 1A). Histological analysis of graft sections confirmed infiltration and 

accumulation of leukocytes and disappearance of beta cells (Figure 1B).  

 

We also monitored the loss of grafted islets after T cell transfer by monitoring the 

loss of beta cell-specific transgenic luciferase expression using the In Vivo Imaging 

System (IVIS). Islets expressing luciferase from MIP-Luc-VU mice were grafted into 

diabetic NODscid mice, which then received PBS or 1x106 BDC2.5 T cells. The 

bioluminescence signal from islets, measured by IVIS after i.p. injection of luciferin, 

weakened substantially over time after adoptive transfer of T cells (Figure 1C&D). By 

the time when the blood glucose had risen to diabetic levels, the luciferase signal was 

hardly detectable, indicating dramatic loss of beta cells (Figure 1D). For the islet 

recipient mice that had not received BDC2.5 T cells, the bioluminescence signal from 

the transplanted islets was stable, indicating they remained intact (Figure 1C). 

Overall, these data validate that this experimental setup reflects conditions in T1D, in 

which beta cells are destroyed in a T cell-dependent manner. 

 



Role of the death receptor apoptosis pathway in T cell mediated beta cell death 

destruction. 

 

Activated T cells have been shown to express FASL, which triggers FAS mediated 

apoptosis in target cells. To test whether FAS mediated apoptosis plays a role in T 

cell-mediated beta cell destruction, islets from NODlpr mice that carry a loss of 

function mutation in the Fas gene were grafted into diabetic NODscid mice, and 

BDC2.5 T cells were transferred into such recipients after normoglycaemia had been 

restored. Upon T cell transfer, recipients of wild-type (NOD) or NODlpr islets 

became diabetic at the same rate, suggesting that FASL and FAS do not play major 

roles in T cell mediated killing of islet beta cells (Figure 2A). 

 

While FASL and FAS are dispensable for T cell-mediated beta cell killing, other 

death ligands (e.g. TNF, TRAIL) may initiate the death receptor apoptotic pathway to 

kill beta cells. Therefore we investigated the impact of T cells on beta cells lacking 

functional FADD (an adaptor that is essential for all death receptor mediated 

apoptosis) (35) or BID (a BH3-only protein that is critical for death receptor induced 

apoptosis in some but not all cell types) (4). Notably, islets from BID-/- mice, or those 

expressing a dominant negative form of FADD (dnFADD) were not protected from T 

cell-mediated beta cell destruction (Figure 2B). We also bred Caspase-8 floxed mice 

with Rosa26-Cre-ERT2 mice (expressing in all cells a latent tamoxifen inducible Cre 

recombinase). Administration of tamoxifen significantly reduced the Caspase-8 

expression in islets from Caspase 8fx/fxcreERTm mice (Figure 2C). However, this loss 

of Caspase-8 did not prevent islet cell death after adoptive transfer of BDC2.5 T cells 



(Figure 2D). Collectively, these results show that the death receptor apoptosis 

pathway is not essential for diabetogenic T cell mediated killing of beta cells in T1D. 

 

Role of the BCL-2-regulated apoptosis pathway in T cell-mediated beta cell 

destruction. 

 

In vitro studies have shown that the BCL-2-regulated apoptotic pathway plays a major 

role in the killing of beta cells in response to diverse cytotoxic insults. In particular, 

BIM and PUMA are critical for glucotoxicity and ER stress induced killing of beta 

cells (5-7). To determine whether these BH3-only proteins play a role in T cell-

mediated beta cell killing, we grafted islets from mice lacking key pro-apoptotic 

BCL-2 family members into diabetic NODscid mice and examined occurrence of 

diabetes after adoptive transfer of BDC2.5 T cells. Loss of the BH3-only proteins 

BIM and PUMA did not protect islets from T cell-mediated killing (Figure 3A).  

 

While this result suggests that on their own BIM and PUMA are dispensable for T 

cell mediated beta cell killing, multiple BH3-only proteins might cooperate in this 

process in a highly redundant manner. To inhibit the BCL-2 regulated apoptotic 

pathway completely, we used islets from transgenic mice expressing the anti-

apoptotic protein BCL-2 under the control of rat insulin promoter (Rip-Bcl-2 mice). 

Islets from these mice are protected against apoptosis induced by inflammatory 

cytokine treatment, ER stress and staurosporine in vitro (6; 7; 22). However, Rip-Bcl-

2 islets were not protected from BDC2.5 T cell mediated destruction (Figure 3B). 

 



Since combined loss of the pro-apoptotic multi BH domain proteins BAX and BAK 

completely block the BCL-2-regulated apoptotic pathway in diverse cell types (36), 

we sought to generate islets deficient in both BAX and BAK to confirm the lack of a 

role for this pathway in T cell-mediated beta cell killing. Mice with whole body 

knockout of Bak and a conditionally targeted allele of Bax (Bak-/-Baxfx/fx) were crossed 

with Rosa26-Cre-ERT2 mice (see above). When Bak-/-Baxfx/fxCre-ERTM mice were 

treated with tamoxifen, islet expression of BAX protein was substantially reduced 

(Figure 3C). However, these islets were not resistant to T cell-mediated destruction in 

vivo, as their recipients became diabetic in the same time frame as the recipients of 

wild-type islets (Figure 3D). Collectively, these results show that the BCL-2 regulated 

apoptotic pathway is not essential for T cell-mediated destruction of islet beta cells, 

and is consistent with lack of protection from autoimmune diabetes in Rip-Bcl-2 mice 

on a NOD background (22). 

 

Role of the necroptotic pathway in T cell mediated beta cell destruction. 

 

Necroptosis is a genetically programmed process for cell killing induced by ligation 

of death receptors (37). We sought to determine whether necropotosis plays a role in 

T cell mediated destruction of beta cells. To do this, we obtained islets from mice 

deficient in RIPK3, a kinase that is essential for death ligand induced necroptosis (38-

40). When islets from wild-type or RIPK3-/- mice were transplanted into diabetic 

NODscid mice followed by adoptive transfer of BDC2.5 T cells, no difference in 

diabetes onset was observed (Figure 4A). This indicates that death ligand induced 

necroptosis does not play a major role in T cell-mediated beta cell destruction. 

 



Impact of combined inhibition of both apoptosis and necroptosis on T cell mediated 

destruction of islet beta cells. 

 

It is possible that apoptosis and necroptosis act in a highly redundant manner in T cell 

mediated destruction of beta cells. To examine this hypothesis we generated Rip-Bcl-

2;RIPK3-/- mice in which apoptosis is inhibited due to over-expression of BCL-2 and 

necroptosis is blocked due to loss of RIPK3. However, when these islets were 

challenged in vivo by diabetogenic T cells, no protection against destruction was 

observed (Figure 4B). This indicates that apoptosis and necroptosis are both 

dispensable for T cell mediated destruction of beta cells in T1D. 

 

Necrotic morphology of dying beta cells under attack of diabetogenic T cells 

identified by electron microscopy. 

 

The fact that blocking both apoptosis and necroptosis could not protect beta cells from 

T cell mediated killing suggested other death mechanisms may be responsible. 

Transmission electron microscopy (TEM) is the definitive method to identify the form 

of cell death because necrosis, apoptosis and autophagy all have distinct 

morphologies. The adoptive T cell transfer model we used has the advantage that the 

grafted islets are concentrated in a defined area under the kidney capsule, and the islet 

cell death occurs over a short period of time. The grafts were harvested for TEM on 

day 8 after BDC2.5 T cell transfer, when a large number of beta cells are in the 

process of dying and the recipients are about to become diabetic (Figure 1A). Beta 

cells were readily identified by their electron-dense insulin granules. Intact beta cells 

showed electron-dense mitochondria with clear cristae structure, electron-light nuclei, 



and few empty vesicles without insulin (Figure 5A). Dying beta cells, on the contrary, 

displayed swollen mitochondria, accumulation of empty vesicles, rupture of the 

plasma membrane, and leaking of intracellular contents, all features of necrosis 

(Figure 5B-E). We did not find any chromatin condensation and nuclear 

fragmentation in dying beta cells that would have been consistent with apoptotic beta 

cell death. Moreover, no accumulation of double membrane vesicles were observed, 

indicating autophagy does not play an important role in beta cell death. We also 

observed the same necrotic features in dying RIPK3-/- beta cells that are protected 

from death ligand induced necroptosis (Figure 5F). These data suggest that 

diabetogenic T cells kill beta cells through induction of necrosis. 

  

DISCUSSION 

 

Type 1 diabetes results from the killing of pancreatic beta cells by autoreactive T 

cells. Understanding the mechanism of beta cell death, therefore, is critical for the 

development of targeted therapies to preserve beta cell mass. Apoptosis has long been 

thought to be the major mechanism of T cell-mediated beta cell death. Evidence 

supporting this conclusion includes the detection of TUNEL positive beta cells in 

prediabetic mice and in vitro studies using beta cells cultured with a variety of 

cytotoxic stimuli (5-7; 11-15). However, few in vivo studies have been conducted so 

far to confirm that apoptotic signaling pathways mediate beta cell death. In the 15 

years since the description of beta cell apoptosis in mouse models of T1D there have 

been enormous advances in understanding the pathways of cell death in great detail at 

a molecular level. We took advantage of this knowledge and re-tested the hypothesis 

that T cell-mediated beta cell killing in T1D occurs by apoptosis using an established 



transfer model. Our results show that blocking the death receptor and BCL-2-

regulated apoptosis pathways was unable to prevent beta cell death induced by 

diabetogenic BDC2.5 T cells. Using electron microscopy we observed beta cells with 

necrotic, but not apoptotic, morphology, suggesting that T cells induce necrotic cell 

death of beta cells.  

 

While originally considered as an unregulated type of cell death, in recent years at 

least one pathway to necrosis that is induced by death ligands, now called necroptosis, 

has been recognized as a programmed process for killing cells. Necroptosis has been 

postulated to play a role in a variety of disease conditions, such as ischemic stroke 

and cardiac infarction(8). We examined the role of the death receptor-activated 

necroptosis pathway in T1D by using islets from RIPK3-/- mice but did not observe 

protection from T cell-mediated beta cell killing. This suggests that T cells may kill 

beta cells through induction of necrosis that may not be programmed. Although less is 

known about this type of cell death, it can be activated by oxidative stress or calcium 

overload, and occur independent of the RIPK1, RIPK3 and MLKL (9). It is currently 

impossible to test the role of this pathway genetically because no essential 

components of this pathway are known; indeed, this process may not even be 

programmed. 

 

In our study, beta cell destruction was induced by BDC2.5 T cells, which are beta cell 

specific CD4+ T cells, potent in mediating islet inflammation and beta cell death (25). 

Diabetogenic CD4+ T cells are not only required for the development of CD8+ T cell 

mediated autoimmunity, but also able to induce beta cell death without cytotoxic 

CD8+ T cells (41; 42). During the development of diabetes, both CD4+ and CD8+ T 



cells are present in inflamed islets (43). While CD8+ T cells play a dominant role in 

beta cell killing (using perforin and granzymes for target cell destruction), CD4+ T 

cells are equally capable of inducing beta cell death because when the effector 

function of CD8+ T cells is inhibited, CD4+ T cells continue to kill beta cells and 

diabetes can still develop (44; 45). Our findings about the pathways by which BDC2.5 

T cells kill beta cells are therefore pathologically relevant and reflect what occurs in 

vivo in beta cells under attack by autoreactive T cells. A similar experimental setup 

may be used to study CD8+ T cell-mediated beta cell killing. However, the 

availability of donor islets is more limited because the islets have to come from 

strains expressing H-2Kd to allow direct interaction between NOD CD8+ T cells and 

beta cells to take place (46). 

 

It is not clear what effector mechanism induces the necrosis of beta cells. BDC2.5 T 

cells do not interact directly with beta cells but most likely activate myeloid cells to 

kill beta cells (47). Macrophages are known to release cytokines and ROS to kill 

target cells. While cytokines, such as IFNg and TNFa, can induce beta cell killing by 

either apoptosis or necrosis in vitro, our previous results have shown that inhibition of 

cytokine signaling in beta cells did not prevent their destruction in vivo (48). Beta 

cells are highly susceptible to ROS as they express lower level of antioxidants (49; 

50). Oxidative stress has been shown to induce necrosis (9); targeting ROS may 

therefore provide insight into the mechanisms of beta cell death in T1D. Collectively, 

our data suggest that beta cells die by necrosis in T1D. Since necrosis is known to 

induce inflammation, it is possible that necrosis of beta cells helps to further stimulate 

the activity of immune cells in islets, thus contributing to the overall pathology in the 

islets. 
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Figure Legends 

Figure 1. BDC2.5 T cells destroy islet grafts in the adoptive transfer model. A) 400 

NOD islets were grafted under the kidney capsule of a NODscid mouse previously 

made diabetic by injection of streptozotocin, and blood glucose levels were monitored 

thereafter. BDC2.5 T cells were transferred on day 11 after islet grafting. B) Frozen 

sections of islet grafts from NODscid recipients with or without BDC2.5 T cell-

induced diabetes were stained with an antibody to insulin. Magnification 200X. C, D) 

Islets expressing luciferase were grafted under the kidney capsule of diabetic 

NODscid recipients that later received PBS (C) or BDC2.5 T cells (D).  Blood 

glucose levels and bioluminescence signals from the grafted islets were measured. 

Representative data from three experiments are shown.  

 

Figure 2. The death receptor apoptosis pathway is not required for BDC2.5 T cell-

induced beta cell killing. A, B, D) 400 islets of the indicated genotypes were grafted 

under the kidney capsule of diabetic NODscid mice. After blood glucose levels had 

returned to normal, BDC2.5 T cells were transferred into the grafted recipients. Blood 



glucose levels were monitored and the incidence of diabetes is shown. C) Western 

blot analysis of Caspase-8 levels using islet lysates from Caspase 8fx/fxCre-ERTM mice 

that had been treated with tamoxifen or vehicle.  

 

Figure 3. The BCL-2-regulated apoptosis pathway is not required for BDC2.5 T cell-

induced beta cell killing. A, B, D) 400 islets of the indicated genotypes were grafted 

under the kidney caspsule of diabetic NODscid mice. After blood glucose levels had 

returned to normal, BDC2.5 T cells were transferred into the grafted recipients. Blood 

glucose levels were monitored and the incidence of diabetes is shown. C) Western 

blot analysis of BAX levels in islet lysates from Bak-/-Baxfx/fxCre-ERTM mice that had 

been treated with tamoxifen or vehicle.  

 

Figure 4. Combined inhibition of necroptosis and apoptosis does not protect beta 

cells from BDC2.5 T cell-mediated killing. A and B) 400 islets of the indicated 

genotypes were grafted under the kidney capsule of diabetic NODscid mice. After 

blood glucose levels had returned to normal, BDC2.5 T cells were transferred into the 

grafted recipients. Blood glucose levels were monitored and the incidence of diabetes 

is shown. 

 

Figure 5. Dying beta cells under attack by BDC2.5 T cells show features of necrosis. 

Representative TEM of A) Intact beta cells in the graft; B, C, D) Dying beta cells in 

the graft; E) higher magnification of the square in D; and F) dying RIPK3-/- beta cells 

in the graft. White arrow head: intact mitochondria; Black arrow head: swollen 

mitochondria; White arrow: empty vesicles; Black arrow: ruptured membrane and 



leaking of intracellular contents. White scale bar: 5 µm; Black scale bar: 10 µm. 

Results are representative of three experiments. 
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