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Summary 

Pseudoenzymes are catalytically-dead counterparts of enzymes. Despite their first description 
some 50 years ago, the importance and functional diversity of these ‘fit-for-purpose’ 
polypeptides is only now being appreciated. Pseudoenzymes have been identified throughout 
all the kingdoms of life and, owing to predicted deficits in enzyme activity due to the absence 
of catalytic residues, have been variously referred to as pseudoenzymes, non-enzymes, dead 
enzymes, prozymes or ‘zombie’ proteins. An important goal of the recent Biochemical 
Society Pseudoenzymes focused meeting was to explore the functional and evolutionary 
diversity of pseudoenzymes and to begin to evaluate their functions in biology, including in 
cell signalling and metabolism. Here, we summarize the impressive breadth of enzyme classes 
that are known to have pseudoenzyme counterparts and present examples of known cellular 
functions. We predict that the next decades will represent golden years for the analysis of 
pseudoenzymes. 
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Main text 
 
The existence of pseudoenzymes was first inferred through a direct comparison of the 
sequences of lysozyme and α-lactalbumin [1], some time before the dawn of molecular 
cloning, genomics, proteomics or our appreciation of cell signalling mechanisms or 
metabolomics. Indeed, this important class of proteins has generally failed to garner the same 
attention as their active counterparts, appearing to suffer from the stigma that they are merely 
remnants of evolution, rather than efficient signalling and regulatory entities in their own 
right. Moreover, their presence in proteomes throughout the kingdoms of life, and their 
prevalence – with estimates of the order of 10-15% in a typical genome [2] – are illustrative 
of their fundamental importance in biology. Importantly, an enhanced understanding of 
pseudoenzyme function and mechanistic adaptations are likely to provide important insights 
into the rapidly emerging research area that has ascribed non-catalytic functions to 
‘conventional’ signalling enzymes like protein kinases [3], and which might also include 
‘classical’ enzymes such as catalase [4]. This type of discrimination between catalytic and 
non-catalytic outputs is increasingly important as we seek to untangle the complexity of 
signalling mechanisms and use this knowledge to focus drug design for therapeutic benefit.  
 
The key goal of the recent Biochemical Society Pseudoenzymes focused meeting held in 
Liverpool (September 11-14, 2016) was to bring together active researchers focussing on the 
rapidly emerging pseudoenzyme field. Much of the recent history in this area has been written 
in the ever-expanding pseudokinases field, where structural, cellular, biochemical and genetic 
studies have provided a picture of the broad diversity of signalling functions that might be 
mediated more generally by pseudoenzymes (reviewed in [5-7]). 
 
Owing to defects in catalytic activities arising from the loss of key (conserved) catalytic 
residues, pseudoenzymes appear to have evolved into important regulatory protein interaction 
domains [8]. It is important to note that pseudoenzymes are fundamentally distinct from 
pseudogenes, and should therefore be accorded rather different treatment. In particular, whilst 
pseudogenes are the non-coding counterparts of conventional genes, pseudoenzymes are 
transcribed and translated from distinct (often duplicated) genes, and have been shown to 
perform diverse functions despite catalytic deficiencies. For example, pseudoenzymes have 
been attributed roles in allosteric regulation of catalytically active cognate (related) enzymes 
(either in an activating or inhibitory mode) or distinct families of enzymes, in controlling 
localization of proteins within the cell including by regulating trafficking, and in nucleating 
the assembly of intracellular signalling hubs. Despite our best efforts, the difficulty in 
identifying predicted dead enzymes from huge proteomes and the diversity of pseudoenzymes 
(summarized in Table 1) makes this overview far from comprehensive; instead it should be 
considered as a work in progress. Indeed, the functions of pseudoenzymes in biological 
networks are still emerging in most research fields, and identifying examples of ‘naturally-
occurring’ defective enzymes based upon the vast enzyme and signalling literature poses a 
substantial challenge. In part this owes much to the historic lack of interest in proteins that 
have lost catalytic activity, but is also complicated by the diversity of ways that have been 
used to identify such proteins, which include terms such as non-enzymes, prozymes, dead 
enzymes, and catalytically-defective enzymes. However, we predict that the uptake of the 
term “pseudoenzyme”, backed up with an up-to-date open access website 
(https://en.wikipedia.org/wiki/Pseudoenzyme), should aid their identification and a rapid 
expansion to include many more examples in the future. Nonetheless, the wealth of published 
examples that we have identified underscores their importance in biology and their 
exceptionally broad mechanistic diversity.  
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In terms of their evolutionary trajectory, seminal bioinformatic studies argue for the evolution 
of most (but perhaps not all) pseudoenzymes from ancestral active enzyme counterparts [9, 
10]. This conclusion was reached through the common loss of evolutionarily-traceable 
mechanisms in pseudoenzymes, including mutations that cause active site occlusion, but 
especially via mutation of one or more of the key catalytic residues and motifs recognised in 
related enzyme counterparts [10]. Intriguingly, whether a pseudoenzyme can be reverted to an 
ancestral function varies widely between protein families and superfamilies [8]. For example, 
biologically-relevant levels of catalytic activity can often be restored to pseudophosphatases 
through simple mutations (such as facile reintroduction of an absent catalytic Cys residue), 
perhaps indicative of selective pressures to retain the phosphopeptide binding site for their 
biological function in both an enzyme and pseudoenzyme mode. On the other hand, it appears 
to be more tricky to ‘resurrect’ pseudokinases into catalytically-active kinases, even when 
multiple conventional catalytic motifs are reintroduced, as illustrated for RYK [11]. One 
possibility is that resurrection of activities among enzymes with complex catalytic 
mechanisms, such as kinases, relies on extensive conformational changes that are not 
necessary to restore phosphatase activities to other pseudoenzymes, such as 
pseudophosphatases. This finding is consistent with the idea that the protein kinase fold has 
been widely co-opted for divergent protein interaction functions. 
 
Pseudoenzymes have been proposed to arise most commonly following gene duplications, 
allowing the enzyme to be retained for a catalytic role, so that additional ‘copies’ are liberated 
to evolve new functions without the requirement to maintain active site geometry for catalysis. 
In some cases, the duplication has led to introduction of a tandem domain architecture, where 
a pseudoenzyme domain has arisen adjacent to the catalytic counterpart, and the 
pseudoenzyme domain has acquired a function as an allosteric regulator of the conventional 
enzyme domain (Janus Kinases [12], GCN2 [13], EccC ATPase [14]). In terms of 
pseudokinases and pseudophosphatases, multiple examples of binary signalling polypeptides 
containing both enzyme and pseudoenzyme sequences arranged in series are known, many in 
the context of tyrosine (de)phosphorylation [7, 15]. Interestingly, recent structural evaluation 
of the specialised RBR (RING-BetweenRING-RING) family of 13 human Ubiquitin E3 
ligases [16] has revealed an analogous tandem domain arrangement. This family, which 
includes the linear ubiquitylation E3 ligase HOIP and the Parkinson’s disease-associated 
ligase Parkin, feature two domains of similar fold in a tandem array: the required-for-catalysis, 
Rcat (also known as RING2), domain that is preceded by the pseudoenzyme ‘Benign’ Rcat, 
BRcat (also known as InBetweenRING, IBR) domain [17-21]. 
 
The evolution of new functions following gene duplication has led to a number of cases 
where a pseudoenzyme functions within the same ‘pathway’ as the ancestral enzyme, most 
commonly to become an allosteric activator or suppressor and thus contributing an important 
layer of regulation. As noted by others [22], such a shared pathway might be predicted, since 
the duplicated gene product could be co-expressed both temporally and spatially alongside the 
conventional enzyme following duplication of the enzyme gene locus.  
 
An important outcome of the ‘Pseudoenzymes’ meeting was the appreciation (or perhaps re-
discovery) that a very wide range of pseudoenzymes has appeared across the kingdoms of life. 
Most importantly, pseudoenzymes have been described in various microbes, model 
prokaryotes, unicellular protists and across the eukaryotes, including in yeasts, plants, 
invertebrates and vertebrates. In some cases, evolution has produced ubiquitous 
pseudoenzyme subfamilies, in others either a specific niche has been defined by a 
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pseudoenzyme, or we remain in the dark as to how sequence variation dictates the required 
transition between enzyme and pseudoenzyme: only future experimentation will reveal these 
mechanisms. In Table 1, we summarize the enormous diversity among pseudoenzyme classes, 
which now includes pseudokinases, pseudo-Histidine kinases of the ‘two-component’ family, 
pseudophosphatases, pseudoproteases, pseudoDUBs, pseudo-Ubiquitin ligases, 
pseudonucleases, pseudoATPases, pseudoGTPases, pseudochitinases, pseudosialidases, 
pseudolyases, pseudotransferases, pseudoHATs, pseudophospholipases, 
pseudooxidoreductases and pseudodismutases. Whilst these types of pseudoenzyme are 
distinct with respect to their evolutionary origins, and their cellular mechanisms of action are 
often poorly understood, it is clear that they perform biological functions, including allosteric 
regulation of bona fide enzymes, regulation of protein localisation/trafficking, or nucleation 
of signalling complexes. Intriguingly, despite extensive searches, some classes of enzyme do 
not have readily identifiable pseudoenzyme counterparts. A notable example is the HECT E3 
Ubiquitin ligase family, a critical group of E3 ligases distinct from the more common 
‘scaffold-like’ RING-type E3 ligases whose catalytic residues are notoriously difficult to 
predict from sequence [23]. HECT E3 ligases possess an invariant Cys residue in the catalytic 
centre that forms a direct covalent ubiquitin intermediate after transfer from an E2 ligase [24]. 
We speculate here that this critical mechanistic Cys is fundamental to the function of this 
enzyme class, and not appropriate for a ‘pseudoenzyme’ niche in cell signalling. 
  
Finally, we anticipate that as we learn more about pseudoenzymes from detailed cellular and 
molecular studies, the molecular basis for pseudoenzyme evolution will be slowly revealed, 
enabling the diverse mechanisms by which pseudoenzymes operate in cells to become clearer.  
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Table 1: Diversity amongst pseudoenzymes 

Class Function Examples References 

Pseudokinase 
 

Allosteric regulation of conventional 
protein kinase 
 

STRADα regulates activity of the conventional protein 
kinase, LKB1  
JAK1-3 and TYK2 C-terminal tyrosine kinase domains are 
regulated by their adjacent pseudokinase domain 
KSR1/2 regulates activation of the conventional protein 
kinase, Raf  
 

[5, 25] 
 
[26] 
[27] 

 Allosteric regulation of other 
enzymes 
 

VRK3 regulates activity of the phosphatase, VHR 
 

[28] 

 Protein interaction domain 
 
 

MLKL pseudokinase regulates exposure of the executioner 
four-helix bundle domain, and engagement of HSP90:Cdc37 
 

[29-31] 

 Scaffold for assembly of signalling 
complexes 
 

Tribbles proteins nucleate assembly of a complex between a 
substrate (C/EBPα) and the E3 Ubiquitin ligase, COP1 

[32, 33] 

Pseudo-Histidine 
kinase 

Protein interaction domain 
 

Caulobacter DivL binds the phosphorylated response 
regulator, DivK, allowing DivL to negatively regulate the 
asymmetric cell division regulatory kinase, CckA 
 

[34] 

Pseudophosphatase Occlusion of conventional 
phosphatase access to substrate 
 

EGG-4/EGG-5 binds to the phosphorylated activation loop 
of the kinase, MBK-2 
 
STYX competes with DUSP4 for binding to ERK1/2 

[35, 36] 
 
 
[37] 
 

 Allosteric regulation of conventional 
phosphatases 
 

MTMR13 binds and promotes lipid phosphatase activity of 
MTMR2  

[38] 

 Regulation of protein localisation in STYX acts as a nuclear anchor for ERK1/2 [37, 39] 
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a cell 
 

 Regulation of signalling complex 
assembly 
 

STYX binds the F-box protein, FBXW7, to inhibit its 
recruitment to the SCF Ubiquitin ligase complex 

[39, 40] 

Pseudoprotease 
 

Allosteric regulator of conventional 
protease 
 

cFLIP binds and inhibits the cysteine protease, Caspase-8, to 
block extrinsic apoptosis 
 

[41] 

 Regulation of protein localisation in 
a cell 
 

Mammalian iRhom proteins bind and regulate trafficking 
single pass transmembrane proteins to plasma membrane or 
ER-associated degradation pathway 
 

[22, 42-44] 

Pseudodeubiquitinase 
(pseudoDUB) 

Allosteric regulator of conventional 
DUB 

KIAA0157 is crucial to assembly of a higher order 
heterotetramer with DUB, BRCC36, and DUB activity 
 

[45] 

Pseudoligase (pseudo-
Ubiquitin E2) 
 

Allosteric regulator of conventional 
E2 ligase 
 

Mms2 is a ubiquitin E2 variant (UEV) that binds active E2, 
Ubc13, to direct K63 ubiquitin linkages 
 

[46] 

 Regulation of protein localisation in 
a cell 
 

Tsg101 is a component of the ESCRT-I trafficking complex, 
and plays a key role in HIV-1 Gag binding and HIV budding 
 

[47] 

Pseudoligase (pseudo-
Ubiquitin E3) 
 

Possible allosteric regulator of 
conventional RBR family E3 ligase 
 

BRcat  regulates interdomain architechure in RBR family E3 
Ubiquitin ligases, such as Parkin and Ariadne-1/2  
 

[17, 48]  

Pseudonuclease 
 

Allosteric regulator of conventional 
nuclease 
 

CPSF-100 is a component of the pre-mRNA 3´ end 
processing complex containing the active counterpart, 
CPSF-73 
 

[49] 

PseudoATPase 
 

Allosteric regulator of conventional 
ATPase 

EccC comprises two pseudoATPase domains that regulate 
the N-terminal conventional ATPase domain  
 

[14] 

PseudoGTPase Allosteric regulator of conventional GTP-bound Rnd1 or Rnd3/RhoE bind p190RhoGAP to [50-52] 
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 GTPase 
 

regulate the catalytic activity of the conventional GTPase, 
RhoA 
 

 Scaffold for assembly of signalling 
complexes 
 

MiD51, which is catalytically dead but binds GDP or ADP, 
is part of a complex that recruits Drp1 to mediate 
mitochondrial fission 
 
CENP-M cannot bind GTP or switch conformations, but is 
essential for nucleating the CENP-I, CENP-H, CENP-K 
small GTPase complex to regulate kinetochore assembly 
 

[53] 
 
 
 
[54] 

 Regulation of protein localisation in 
a cell 
 

Yeast light intermediate domain (LIC) is a pseudoGTPase, 
devoid of nucleotide binding, which binds the dynein motor 
to cargo. Human LIC binds GDP in preference to GTP, 
suggesting nucleotide binding could confer stability rather 
than underlying a switch mechanism. 
 

[55] 

Pseudochitinase 
 

Substrate recruitment or 
sequestration 
 

YKL-39 binds, but does not process, chitooligosaccharides 
via 5 binding subsites 
 

[56, 57] 

Pseudosialidase  
 

Scaffold for assembly of signalling 
complexes 
 

CyRPA nucleates assembly of the P. falciparum 
PfRh5/PfRipr  complex that binds the erythrocyte receptor, 
basigin, and mediates host cell invasion 
 

[58-60] 

Pseudolyase 
 

Allosteric activation of conventional 
enzyme counterpart 
 

Prozyme heterodimerisation with S-adenosylmethionine 
decarboxylase (AdoMetDC) activates catalytic activity 
1000-fold 
 

[61-63] 

Pseudotransferase  
 

Allosteric activation of cellular 
enzyme counterpart 
 

Viral GAT recruits cellular PFAS to deaminate RIG-I and 
counter host antiviral defence  
 
T. brucei deoxyhypusine synthase (TbDHS) dead paralog, 

[64] 
 
 
[65] 
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DHSp, binds to and activates DHSc >1000-fold. 
 

Pseudo-histone acetyl 
transferase 
(pseudoHAT)  
 

Possible scaffold for assembly of 
signalling complexes  

Human O-GlcNAcase (OGA) lacks catalytic residues and 
acetyl CoA binding, unlike bacterial counterpart  
 

[66] 

Pseudo-phospholipase 
 

Possible scaffold for assembly of 
signalling complexes 

FAM83 family proteins presumed to have acquired new 
functions in preference to ancestral phospholipase D 
catalytic activity  
 

[67] 

 Allosteric inactivation of 
conventional enzyme counterpart 
 

Viper phospholipase A2 inhibitor structurally resembles the 
human cellular protein it targets, phospholipase A2  
 

[68] 

Pseudo-oxidoreductase  
 

Allosteric inactivation of 
conventional enzyme counterpart 
 

ALDH2*2 thwarts assembly of its “wild-type” counterpart, 
ALDH2*1, into a fully-active homo-tetramer  
 

[69] 

Pseudo-dismutase 
 

Allosteric activation of conventional 
enzyme counterpart 
 

Copper chaperone for superoxide dismutase (CCS) binds 
and activates catalysis by its enzyme counterpart, SOD1  
 

[70, 71] 

Pseudo-dihydroorotase  
 

Regulating folding or complex 
assembly of conventional enzyme 
 

Pseudomonas pDHO is required for either folding of the 
aspartate transcarbamoylase catalytic subunit, or its 
assembly into an active oligomer  
 

[72] 

    
Pseudoenzymes are shown in blue, while conventional enzymes are shown in black text. 
 
 
 




