
Accepted Article Preview: Published ahead of advance online publication

Relevance of necroptosis in cancer

Najoua Lalaoui, Gabriela Brumatti

Cite this article as: Najoua Lalaoui, Gabriela Brumatti, Relevance of necroptosis

in cancer, Immunology and Cell Biology accepted article preview 6 December 2016;

doi: 10.1038/icb.2016.120.

This is a PDF file of an unedited peer-reviewed manuscript that has been accepted

for publication. NPG are providing this early version of the manuscript as a service

to our customers. The manuscript will undergo copyediting, typesetting and a proof

review before it is published in its final form. Please note that during the production

process errors may be discovered which could affect the content, and all legal

disclaimers apply.

Received 31 October 2016; revised 1 December 2016; accepted 1 December 2016;
Accepted article preview online 6 December 2016

©    2016 Macmillan Publishers Limited. All rights reserved.



 1 

Relevance of Necroptosis in cancer  

 

Najoua Lalaoui
1,2 

and Gabriela Brumatti
1,2

 

1
The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia 

2
Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia 

 

  

  

©    2016 Macmillan Publishers Limited. All rights reserved.



 2 

ABSTRACT 

Resistance to caspase-dependent apoptosis is often responsible for treatment failures in cancer. 

Finding novel therapeutic strategies that can activate alternative cell death programs appears to be 

appealing. Necroptosis is a form of programmed necrosis that occurs under caspase deficient 

conditions. This alternative form of cell death has recently emerged as a potential anti-cancer 

therapy that could overcome apoptosis resistance. A growing understanding of the molecular events 

triggering necroptosis helped to examine its implication in cancer development and to define new 

therapeutic strategies. Genetic and proteomic analysis suggest that necroptosis is deregulated in 

many cancers. Various preclinical and clinical compounds induced necroptosis and demonstrated 

significant therapeutic efficacy. Moreover, accumulating evidence has shown that necroptosis 

promotes anti-cancer immune response. A better knowledge of the cascade of events regulating 

necroptosis is expected to assess the feasibility of its therapeutic exploitation for cancer therapy.  

 

INTRODUCTION  

 

Evading cell death is indisputably a hallmark of cancer to ensure cancer cells survive under stress 

conditions
1
. The programmed cell death apoptosis is often deregulated in cancer. In the last three 

decades, enormous research efforts have made great strides in decrypting the molecular 

mechanisms that govern apoptosis. Those discoveries led to the development of anti-cancer agents 

that reactivate apoptosis to kill cancer cells. However, therapeutic interventions aiming to induce 

apoptosis often face resistance arising from activation of survival pathways. Thus, the finding of 

more thoughtful combinations therapies that simultaneously target alternative cell death and 

survival pathways is one of the main focuses in cancer research. 

 

While the role of apoptosis in cancer has been largely characterised, the relevance of alternative cell 

death pathways such as necroptosis has been far less studied. Necroptosis is a relatively newly 

discovered programmed form of necrosis
2, 3

. The term ‘necroptosis’ arise from its ability to share 

apoptotic and necrotic features. Necrosis is considered as an accidental death resulting from an 

over-whelming cytotoxic insult, and does not require specific molecular events in order for it to 

occur. In contrast, necroptosis is highly regulated and shares molecular events with apoptosis. Like 

in necrosis, the ultimate stage of a necroptotic process is the swelling and rupture of the cell 

membrane, releasing Damage-Associated Molecular Patterns (DAMPs), which can elicit immune 

responses
4
.  
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The potential immunogenicity of necroptosis and its ability to kill cancer cells are two attractive 

characteristics for this type of cell death to be seen as a new therapeutic approach. In addition, 

triggering necroptosis could be used when drugs failed to induce apoptosis. Recently, a number of 

studies have provided new insights in the molecular regulation of necroptosis. This has helped 

defining and designing necroptotic stimuli that can be potentially use for cancer therapy. However, 

there is still a debate on whether this type of therapy is tolerable, feasible or just conceptual. Given 

the rising significance of necroptosis in cancer, a better understanding of its implication in cancer 

development and maintenance is a prerequisite for the design of appropriate drugs. It is therefore a 

timely and important question to review necroptosis and its relevance in cancer. In this review, we 

will discuss the role of necroptosis in tumour development and progression. We will also describe 

and comment on the importance of this pathway in cancer immune surveillance and therapy. 

 

NECROPTOSIS PATHWAY IN BRIEF 

A detailed view of the molecular cascade triggering necroptosis in different scenarios can be found 

in other reviews in this issue. We will therefore succinctly cover the main molecular events leading 

to necroptosis.  

Necroptosis can be activated by the engagement of Tumor Necrosis Factor (TNF) Receptor 

superfamily, T-Cell Receptors, Pattern Recognition Receptors, Interferons Receptors, genotoxic or 

oxidative stresses and various anti-cancer drugs
5
. In contrast to apoptosis, necroptosis requires 

inactivation of caspase-8, which leads to the activation of serine/threonine Receptor Interacting 

Proteins kinases RIPK1 and RIPK3.  

 

One of the best-characterised signalling cascades leading to necroptosis is the one engaging the 

TNF/TNFR1 signalling pathway. In a physiological situation TNF activates the transcription of 

survival and inflammatory genes. However, in some circumstances deregulation of TNF signaling 

or high dose of TNF causing systemic inflammatory response syndrome lead to TNF-mediated cell 

death
6
. The binding of TNF to TNFR1 induces the formation of a membrane bound complex 

(complex I) where cellular Inhibitor of APoptosis proteins (cIAP1&2) ubiquitylate RIPK1 (Figure 

1). Ubiquitylation of RIPK1 facilitates the recruitment kinases that activate the NF-κB and MAPK 

signaling pathways. This leads to the transcription of downstream genes such as the caspase-8 

inhibitor cFLIP
7, 8

. In parallel, in complex I deubiquitinase enzymes such as CYLD remove 

ubiquitins from RIPK1 to limit a sustain activation of NF-κB
9
.  

 

Ubiquitylated RIPK1 also prevents formation and activation of RIPK1-dependent apoptotic and 

necroptotic complexes. Indeed, perturbations of RIPK1 ubiquitylation, by the absence of cIAP1&2 
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for instance, promote the formation of the cytosolic complex II so-called "Ripoptosome", 

containing RIPK1, FADD and caspase-8, and reduce cFLIP expression leading to caspase-8 

activation and apoptosis
10, 11

 (Figure 1). In complex II activated caspase-8 cleaves and inactivates 

RIPK1 and RIPK3 to block necroptosis. In some cell types or conditions, activation of caspase-8 is 

compromised and RIP kinases are no longer cleaved. Subsequently, a series of auto- and cross-

phosphorylations between RIPK1 and RIPK3 result in the formation of the necrosome, where 

MLKL is phosphorylated by RIPK3, which stimulates its oligomerization and translocation to the 

plasma membrane to trigger necroptosis
12-14

 (Figure 1). 

 

 

NECROPTOSIS AND TUMORIGENESIS AND CANCER PROGRESSION 

During the course of tumorigenesis accumulations of genetic and epigenetic alterations allow 

cancer cells to evade cell death, acquire proliferative advantage, induce angiogenesis and invade the 

body
1
. Although the study of the role of necroptosis in cancer is still in its prelude, there is 

accumulating evidence demonstrating that necroptosis is deregulated in cancer.  

Mutations  

According to the COSMIC database, somatic mutations in RIPK1, RIPK3, and MLKL genes have 

been observed in human cancers. One of these mutations V458M, resides within the tetra-peptide 

core of the RHIM domain of RIPK3 and may provoke the disruption of RHIM-mediated protein 

interaction and signaling
15

. Moreover, several missense mutations in the kinase domain of RIPK1 

were found in different types of cancers and might alter its signaling function. The reported MLKL 

mutations F398I did not affect MLKL necroptotic function, while L291P mutation may represent 

loss of function mutants
13

 (Table 1). 

In addition, Single-Nucleotide Polymorphisms (SNP) in the RIPK1 and RIPK3 genes were detected 

in CML and non-Hodgkin lymphoma patients respectively
16, 17

 (Table 1). RIPK1, RIPK3 and 

MLKL functions are regulated by sequential phosphorylations and ubiquitylations events as well as 

homotypic interactions via their Death Domains and RHIM domains
18

. A better knowledge of the 

phosphosites and the ubiquitin sites would therefore help on identifying whether the COSMIC 

mutations or SNP found in RIPK1 and RIPK3 affect their functions.  

 

Expression in cancer patients 

A pleiotropic range of cancer cell lines lack RIPK3 expression
19, 20-22

. Consistently, RIPK3 down-

regulation has been found in human samples of several types of cancer (Table 1). RIPK3 transcripts 

were found to be reduced in AML patient samples, whereas RIPK1 expression did not differ 
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significantly when compared to healthy donors
23

. Interestingly, AML patients with low expression 

of RIPK3 presented high level of methylations near the transcription start site of RIPK3
19

. In both 

studies, the sample sizes were too small to draw meaningful conclusions on whether RIPK3 

expression was correlated with any AML subtypes. However, recently a group has interrogated 2 

large datasets of de novo primary AML patient samples and found a significant reduction in both 

RIPK3 and MLKL expression in several AML subtypes including AMLs with FLT3 mutations and 

AML1/ETO9a translocations
24

 (Table 1). Consistent with this, loss of Ripk3 or Mlkl accelerated the 

leukemogenesis in mouse model of FLT3-ITD and AML1/ETO9a. In contrast RIPK3 and MLKL 

expressions in AML patients carrying MLL translocations were comparable to healthy donors and 

genetic deletions of Ripk3 or Mlkl did not affect the leukemia progression of mouse model of MLL-

ENL
24,

 
25

. The examination of the expression profile of human CLL samples revealed that RIPK3 

and CYLD were frequently down-regulated, while no difference in RIPK1 expression were found 

compared with healthy controls
26

 (Table 1). CYLD removes ubiquitins from RIPK1 and increases 

its ability to form apoptotic and necroptotic cell death complexes
9, 27

. Consistent with this, CLL 

samples were refractory to necroptotic stimuli
26

. 

Suppression of RIPK3 expression was also documented in several solid cancers. Like in AML 

patients, in primary breast cancer samples RIPK3 loss correlated with methylation of the genomic 

region near RIPK3 gene’s transcription start site suggesting that a methylation-mediated mechanism 

regulates RIPK3 expression during breast cancer development
19

 (Table 1). Several reports found 

that RIPK3 is down-regulated in human colon and colorectal cancers compare to adjacent normal 

tissues
22, 28, 29

. Accordingly, loss of Ripk3 increased colon tumorigenesis induced by carcinogenes in 

mice. The acceleration of tumorigenesis in Ripk3-deficient mice was more likely due to an 

excessive inflammation
28

. Therefore, the role of RIPK3 in dampening inflammation during 

colorectal tumorigenesis contrasted with its role in others inflammatory scenarios, where loss of 

Ripk3 has been described to limit inflammation
30

. It has been suggested that hypoxia could account 

for RIPK3 silencing in colon cancers
22

. 

Collectively, these studies suggest that necroptosis may have a tumor suppressor role in cancer. 

However, shutting down the necroptosis pathway does not seem to be a general mechanism for all 

types of cancer cells to survive and progress. In some cancers, the expression of necroptotic players 

was found to be elevated. For instance, RIPK1 was found upregulated in gliobastoma and lung 

cancer
31, 32

 (Table 1). Furthermore, analysis of TCGA database showed that there is an enrichment 

for RIPK3 expression in serous ovarian cancer
33

. Interestingly, RIPK1, RIPK3 and MLKL were 

highly expressed in pancreatic cancer samples
34, 35

 (Table 1). High RIPK3 levels correlated with 

high CXCL1 expression in human pancreatic cancer samples, a potent chemo-attractant of myeloid 
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cells. Accordingly, genetic deletion of Ripk3 or inhibition of RIPK1 protected against pancreatic 

oncogenesis in mice, reduced CXCL1 expression and decreased the infiltration of tumour-

associated macrophages in vivo
34

. In contrast to its role in colon cancer, necroptosis seemed to drive 

a tumour immuno-suppressive environment facilitating the progression of pancreatic cancer. 

 

Prognosis 

It is clear now that deregulation of necroptotic regulators occurs in cancer and accumulating 

evidence has in fact associated level of expression and patient survival. For instance, low RIPK3 

levels correlated with poor outcome for colorectal and breast patients
19, 22, 28, 29

 (Table 1). This 

indicates that RIPK3 expression may be negatively selected during development or progression of 

breast and colorectal cancers. Likewise, reduced expression of MLKL was significantly associated 

with decreased overall survival of gastric, ovarian, cervix, colon and pancreatic cancers
35-39

 (Table 

1). Thus, MLKL expression could potentially serve as a prognostic biomarker for those cancers. 

However, it is noteworthy that although low MLKL expression correlated with poor prognosis for 

colon cancer patients, high level of phospho-MLKL was reported to be associated with worse 

prognosis for colon and esophageal cancer patients
28, 40

. The questions to be asked are why and how 

cancer cells would keep a high level of phopho-MLKL to progress. One would predict that those 

cells would die through necroptosis. Two hypotheses can be formulated amongst many others. One 

is that a subset of cancer cells would activate necroptosis to manipulate the immune system. The 

other reason could be that phospho-MLKL has another function beside its role in executing 

necroptosis. 

 

 

Metastasis 

The role of necroptosis in metastasis is poorly characterised. To disseminate tumour cells need to 

evade the anti-tumour attacks. A recent study uncovered the involvement of RIPK3 in regulating 

NKT cell responses
41

. As NKT cells participate on immune response against metastasis, expression 

of RIPK3 in the hematopeitic system may limit cancer invasion. Consistently, genetic deletion of 

Ripk3 compromised NKT cell activation and resulted in a defect of anti-metastatic response in vivo. 

The authors also found that mitochondrial phosphatase PGAM5 played a role in NKT cell activity 

and this required DPR1
41

. PGAM5 has been proposed to function downstream of MLKL to promote 

DRP1 dimerization responsible for the mitochondria fission during necroptosis
42

. However, the 

implication of the mitochondria in necroptosis has been recently questioned by several reports, 

which exposed the dispensability of both proteins in executing necroptosis
13, 43-46

. The role of 

PGMA5-DRP1 in anti-metastatic response is therefore potentially independent of the necroptosis 
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pathway.  

During the metastastic process, extravasation of tumour cells refers to their exit from the blood 

vessels to the secondary site. Recently Strilic and colleagues demonstrated that co-cultures of 

cancer cells and endothelial cells resulted in necroptotic endothelial cell death
47

. Similarly, injection 

of metastatic tumour cells induced necroptosis of lung epithelial cells in mice. Consistently, 

inhibition of the necroptotic pathway reduced tumour cell migration and metastatic burden in vivo. 

A siRNA screen revealed that DR6 (or TNF receptor superfamily member 21) promoted endothelial 

cell death and tumour cells transmigration through its cognate ligand Amyloid Precursor Protein 

(APP)
47

. The authors found that APP/DR6 induced epithelial cell death with necrotic features. The 

mechanism by which APP/DR6 induce necrotic/necroptotic epithelial cells death has not been fully 

explored in this study. Nevertheless, it is interesting to note that DR6 has a death domain that might 

be able to recruit other death domain containing proteins such as RIPK1 to activate necroptosis. 

 

Although the work of Strilic and colleagues suggest that necroptosis can, in some situations, 

promote cancer cell metastasis, a body of evidence has endorsed evasion of necroptosis as hallmark 

of cancer. Caspase-8 expression is suppressed in many cancers
48

. This is probably a natural 

evolution for cancer cells to suppress necroptosis. It would be informative to determine the 

correlations between the expression of caspase-8 and the necroptotic players. Intriguingly, amongst 

the necroptotic regulators RIPK3 seems the most deregulated in cancers. The absence of Ripk1 in 

mice is detrimental while loss of Ripk3 does not have any overt effect
44, 49-53

. One could think that 

suppression of RIPK1 could potentially be fatal for cancer cells while suppression of RIPK3 could 

protect cancer cells against any necroptotic stimuli. In addition, in contrast to MLKL, RIPK3 

regulates cytokine production
54-56

. Therefore, tumour cells might silence RIPK3 to block 

necroptosis and manipulate the anti-tumoral immune attacks. Although, mouse models of cancer 

have corroborated the low level of RIPK3 observed in human cancer, the studies cited above did not 

explore the role of RIPK3 in the different cellular compartments (e.g. cancer vs immune vs stromal 

cells). Given the role of necroptosis in the immune system, tissue specific deletion of RIPK3 would 

clarify the role of necroptosis in tumour surveillance. 

 

NECROPTOSIS AND CANCER IMMUNE SURVEILLANCE  

The immune system can specifically eliminates pre-cancerous and cancerous cells based on their 

tumour-specific antigens expression. Tumour surveillance is mainly mediated by Dendritic Cells 

(DC), cytotoxic CD8
+
 T cells, tumoricidal macrophages and Natural Killers (NK). Tumour antigens 

are presented by DC to CD8
+
 T cells, leading to their activation and expansion in response to 
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antigen recognition, a process known as cross-presentation or cross-priming. Unlike T cells, 

recognition of tumour cells by NK cells is not governed by tumour-antigens specificity. NK cells 

express several receptors that recognise and attack cancer cells presenting aberrant expression of 

MHC class 1 molecules and stress markers
57

. NKT cells are subsets of NK that also participate in 

anti-tumoral responses
58

. While RIPK3 was found dispensable for B and T cell receptors signalling, 

it appeared to regulate the functions of NKT
59, 60

. RIPK3 dependent activation of NKT cells induced 

anti-tumor and anti-metastatsic responses, which was independent of RIPK1
60

. These findings 

mirrored the role of RIPK3 in DC activation during inflammation and tissue repair 
61

. 

 

In order to grow and invade the body cancer cells subvert anti-tumoral immune responses. 

Induction of immunogenic cell death is an attractive approach to re-activate or enhance anti-tumour 

immune responses. Given that necroptosis induces the release of DAMPs, which initiate adaptive 

immunity, it became obvious to investigate its role anti-cancer immune responses. A number of 

studies have shown that inhibition of caspases, in particular inhibition of caspase-8, switched cell 

death induced by some cytotoxic agents to necroptosis. For instance, Poly I:C and zVAD can 

induce necroptosis in some cancer cells causing the release of DAMPs, which activate immune 

effectors to eliminate cancer
62, 63

 (Figure 2). Similarly, combining caspase inhibitors with 

radiotherapy or chemotherapy reduced the tumor growth due to recruitment of CD8
+
 T cells and DC 

and less T-reg cells
64

 (Figure 2).  

 

Recently more targeted strategies have been used to evaluate side-by-side apoptotic and necroptosis 

immunogenicities. Two independent groups have designed inducible and ‘dimerizable’ caspase-8 

and RIPK3 constructs to obtain ‘pure’ apoptotic and necroptotic cells. Immunisation with pure 

necroptotic cells induced CD8
+
 T cell cross-priming and provided a significant anti-tumour immune 

response
65, 66

 (Figure 2). Necroptotic cells stimulated production of multiple immune effectors 

leading to a greater recruitment of immune cells as compared to apoptotic cells. Although necrosis 

releases DAMPs and is believed to be highly immunogenic, in both studies accidental or secondary 

necrotic cells were poor inducers of CD8
+
 T response in vivo, suggesting that programmed necrosis 

is more immunogenic than an unprogrammed necrosis
65, 66

. Consistently, Yatim and colleagues 

found that RIPK1 was required for necroptosis immunogenicity as necroptotic cells lacking RIPK3 

RHIM domain had a reduced immunogenicity (Figure 2). This suggested that late stages of 

necroptosis (e.g. MLKL activation, death and DAMPs release) are not solely responsible for the 

necroptosis immunogenicity. Indeed, both studies showed that necroptotic dying cells activated NF-

κB to drive the expression of cytokines
65, 66

. Importantly, RIPK1 was not only required for 

immunogenicity induced by necroptosis but also induced by Poly I:C-induced apoptosis
66

. These 
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findings support several reports highlighting the cell-death-independent function of RIPK1 and 

RIPK3 as inducers of cytokines
54-56

. The direct role of necroptotic DAMPs has not been fully 

explored in those studies, therefore DAMPs may not be, as predicted, the main drivers of 

necroptosis immunogenicity but rather amplifiers. In contrast to RIPK1 and RIPK3, MLKL seems 

to be dispensable for cytokines production
54, 56

. Thus, studying the role of MLKL in necroptosis 

immunogenicity may offer a clarification on the involvement of the necroptosis-associated 

cytokines expression vs the necroptosis-mediated cell death during an anti-tumour response. 

According to the current concept of immunogenic cell death, necrosis is believed to be more 

immunogenic than apoptosis
67

. However those recent findings have demonstrated that a 

programmed necrosis that couple gene expression and death might be the best arsenal to turn on the 

immune system to fight cancer. The immunisation of patients with necroptotic cells might take 

sometime before becoming a clinical practice to treat cancer. However, inducing necroptosis in 

cancer cells may have the same outcome on anti-cancer immune response. 

 

NECROPTOSIS FOR CANCER THERAPY? 

Targeting necroptosis is an emerging and attractive therapeutic strategy allowing to bypass acquired 

apoptotic resistance and potentially switch on anti-tumour responses. A plethora of cancer cell lines 

can undergo necroptosis. The strategies to induce necroptosis in cancer are various and include 

classic necroptosis inducers, chemotherapeutic agents or natural compounds.  

 

Necroptosis induced by Autophagy  

There is still debate about whether autophagic cell death is caused by autophagy itself or induced or 

associated with another type of cell death
5
. Several studies have linked autophagy activation and 

necroptosis execution using preclinical and clinical compounds. BMI-1 has an essential role in 

regulating the proliferative activity of leukaemic stem cells and inhibiting its activity could be a 

potential therapeutic intervention in the clinic
68

. The BMI-1 inhibitor PTC-209 induced autophagy 

and RIPK3 upregulation leading to necroptosis of ovarian cancer cells
69

. Moreover, autophagy 

induced by chalcone resulted in c-IAP1/2 degradation and formation of the Ripoptosome that 

contributed to activate necroptosis to kill cancer cells
70

. On the other hand, the autophagic cell death 

triggered by the tyrosine kinase inhibitor sorafenib led to the accumulation of autophasomes where 

p62 and RIPK1 co-localised. Inhibition of RIK1 kinase blocked sorafenib cell death suggesting that 

the autophagic cell death in this context was triggered by necroptosis
71

. 

Similarly, the clinical Bcl-2 inhibitor obatoclax induced accumulation of autophagosomes and 

promoted the interaction of ATG5, a component of autophagosomal membranes, with RIPK1 and 

RIPK3
72

. Futhermore, when combined to dexamethasone obatoclax activated autophagy and killed 
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ALL cells in a RIPK1 and CYLD dependent manner
73

. Collectively, those studies provide evidence 

of an existing cross-talk between the autophagic and the necroptotic machineries. The ubiquitin-

binding protein p62, present in the autophagosomes may act as the adaptor to recruit necroptotic 

players as it has been shown to interact with RIPK1 and induce caspase-8 aggregation in response 

to TNFR super family members
74, 75

.  

 

Necroptosis induced by natural compounds 

Many natural compounds derived from plants or microbes have demonstrated potential anti-cancer 

properties. Several reports from the same group have suggested that a component of a Chinese 

herbal medicine named shikonin killed cancer cells through the necroptosis pathway
76-78

. Similarly, 

another group has reported that a small compound isolated from the fungus, Albatrellus confluens, 

neoalbaconol can trigger necroptosis in cancer cell lines
79, 80

. The precise molecular targets in the 

necroptotic signalling engaged by both compounds remain unknown. Mitochondrial production of 

ROS has been suggested to act as second messenger in the signaling pathway leading to 

necroptosis
80, 81

. However, the blockade of RIPK1 decreased the killing induced by neoalbaconol 

but failed to block ROS productions, suggesting that it was an independent molecular event to 

necroptosis
80

. The direct contribution of necroptosis by shikonin and neoalbaconol should be 

interrogated as it was observed only at high doses. It is therefore tempting to speculate that 

activation of necroptosis was due to an overwhelming cytotoxic insult provoked by high dose of 

both compounds.  

 

Necroptosis induced by chemotherapy  

Anti-cancer chemotherapeutic agents trigger not only apoptosis but also other modes of cell death. 

The recent analysis of the contribution of necroptosis in the chemo-sensibility led to divergent 

conclusions. For instance, expression or re-expression of RIPK3 was required to sensitise a range of 

cancer cell lines to DNA-damaging agents
19

. However, this was only true in a limited number of 

cancer cell lines as RIPK3 was dispensable for chemo-sensitisation of colon and breast cancers
22

. 

The molecular mechanism by which chemotherapy activates necroptosis is still unclear. It is 

worthily to note that certain chemotherapeutic agents induced degradation of cIAP1/2 leading to the 

formation of the Ripoptosome
11

. Therefore, one could consider that in some cancer cell lines where 

caspase-8 function is impaired due to mutations or gene hypermethylation, cIAP1/2 degradation 

induced by chemotherapy would lead to necroptosis. Consistently, inhibition of caspases 

(presumably caspase-8) primed cancer cells to necroptosis induced by 5-FU
82

. Another way to drive 

cancer cells to undergo chemotherapy-mediated necroptosis is by antagonising IAPs with smac-

mimetics. Once more, this was only possible when caspases were inhibited
25, 83

. On the other hand, 
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since RIPK3 is often silenced through methylation of its promoter, demethylation agents such as 5-

Aza-2′-deoxycytidine (5-Aza) has been used to restore RIPK3 expression and to sensitise cancer 

cells to necroptosis induced by smac-mimetics or to cell death induced by DNA damaging agents
19, 

84
. Furthermore, the combination IAP and caspase inhibitors sensitized AML cells to other 

epigenetic modifiers such as HDAC inhibitors
85

.  

Those studies suggest that the toxicity of chemotherapeutic agents may be partially dependent on 

necroptosis. However, in several reports this conclusion was mainly drawn from the use of RIPK1 

inhibitor. As RIPK1 has other functions besides executing necroptosis, the legitimacy of these 

studies requires further examination. In fact, the idea of a chemotherapy-induced necroptosis should 

be viewed cautiously as in most scenarios chemical inhibition of IAP and caspase-8 was required. 

As such those classical necroptotic inducers (e.g. smac-mimetic, caspase inhibitor) might be the 

appropriate alternative to fully exploit the power of necroptosis in anti-cancer therapy. 

 

Clinical classical necroptotic inducers 

Specific induction of necroptosis requires the coordination of RIP Kinases activation and caspase-8 

inhibition. The conjugation of ubiquitin chains to RIPK1 by cIAPs represses its death function. 

Depletion of cIAP1/2 by smac-mimetics unleashes RIPK1 from its scaffolding survival function 

and induces its recruitment to the Ripoptosome. Within this complex the necroptotic activities of 

RIP kinases are repressed by cleavage mediated by caspase-8. Genetic deletion or inhibition of 

caspase-8 leads to the formation of the necrosome in which uncleaved RIPK1 and RIPK3 are 

phosphorylated, which in turn phosphorylates MLKL (reviewed in this issue). Therefore, targeting 

simultaneously IAPs and caspase-8 unequivocally leads to necroptosis. However, the formation of 

RIPK1 containing complexes (e.g. Ripoptosome and necrosome) often requires the binding of TNF 

super family to their receptors. Interestingly treatment with smac-mimetic induces production of 

TNF and leads to the formation of the Ripoptosome and smac-mimetic sensitive cells die through 

apoptosis
10, 11, 86-88

. In contrast, smac-mimetic resistant cancer cells lack the ability to produce TNF. 

Consistent with this, addition of TNF, TRAIL or Fas or specific induction of TNF sensitise resistant 

cancer cell to smac-mimetic
89-91

.  

Along those lines, combination of smac-mimetic and TNF induced necroptosis in leukemic cells 

that lacked FADD and caspase-8
92

. This suggest that smac-mimetic drugs can provide an alternative 

outcome in cancer cells that have silenced FADD or caspase-8 or overexpressed cFLIPL, only if the 

necroptotic regulators function appropriately. It also provided the rational to combine smac-mimetic 

with caspase inhibitors to specifically induce necroptosis in cancer cells that have intact caspase-8 

function. Accordingly, combination of smac-mimetic and caspase inhibitors sensitised pancreatic 

cancer cell lines and ovarian and AML patients samples
25, 93, 94

. Notably, chemical caspase 
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inhibition increased smac-mimetic-induced TNF and induced necroptosis in a TNFR1 dependent 

manner
25, 93, 94

. The secretion of TNF (and presumably other cytokines) induced by smac-

mimetic/caspase inhibitor treatment could therefore potentially induce a anti-tumour response as it 

has been shown in mice immunised with necrototic cells
65, 66

. Importantly, this combined treatment 

overcame smac-mimetic-induced apoptosis resistance and was effective in chemo-resistant AML 

and ovarian patients samples
25, 93

. This suggests that acquired resistance to chemotherapy might not 

affect the necroptosis pathway raising the possibility that targeting necroptosis could be used as a 

second line treatment. Interestingly, in some ALL patient samples smac-mimetic induced 

necroptosis without the requirement of chemical caspase inhibition, implying that those patients 

have low caspase-8 activation
95

. 

Genetic deletions of IAP genes have helped to predict smac-mimetics’ tolerability in vivo
56, 96, 97

. 

For instance, smac-mimetics that target cIAP1/2 preferentially to XIAP such as birinapant are well 

tolerated in human. The safety of caspase-8 inhibition in vivo could possibly be a concern as genetic 

deletion of caspase-8 is also embryonic lethally because of overwhelming activation of 

necroptosis
98, 99

. However, the clinical caspase inhibitor emricasan has been tested in the clinic for 

the treatment of liver diseases and when combined to the smac-mimetic birinapant, it was tolerable 

and provided a significant therapeutic efficacy in AML
25

. It has been proposed that the caspase-

8/cFLIPL heterodimer is important for inhibiting necroptosis
98, 100

. Accordingly, emricasan has 

offered a greater activation of necroptosis compared to other caspase inhibitors such as zVAD or 

QVD. This was due to its higher ability to inhibit caspase-8/cFLIPL heterodimer
25

. Altogether those 

studies suggest that specifically targeting necroptosis might be a safe approach to treat cancer 

patients especially the ones who relapsed after chemotherapy intervention. The half-life of 

emricasan is less than 50 minutes in the plasma, thus the development of more specific and stable 

caspase-8/cFLIPL heterodimer inhibitor should be the focus to give greater outcomes. 

 

 

CONCLUDING REMARKS 

The deregulation of the necroptosis pathway observed in several cancers suggests its implication in 

cancer progression. Given the effect of necroptosis on the immune system, some cancer cells might 

have repressed necroptosis to escape immune attacks. The intriguing question is when does 

necroptosis occur during cancer development to drive tumour cells to silence it. Targeting 

necroptosis seems to be a plausible therapeutic intervention to boost the immune system. However, 

cancers that have suppressed necroptosis might be less likely responsive to such therapeutic strategy.  

The use of clinical compounds that specifically induce necroptosis and their tolerability in animal 

models exhibit great promise for translation. Yet, the clinical feasibility still needs to be wisely 
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assessed. In fact, necroptotic immunogenicity could act as a double-edged sword, since repetitive 

induction of necroptosis can possibly lead to the development of chronic inflammatory diseases. 

Moreover, the release of pro-inflammatory molecules can recruit tumor-promoting immune cells 

capable of fostering angiogenesis, cancer cell proliferation, and invasiveness. A clarification of the 

role of the inflammatory molecules released during necroptosis might be critical to understand the 

opposite functions of the immune system in cancer immune surveillance and tumour promotion.  

The requirement of caspase inhibition for an effective necroptosis activation represents a paradigm 

shift in cancer therapy as most current therapeutic strategies have aimed to activate caspases for 

decades. Hence, inhibiting caspases could be detrimental for cancer patients that lack necroptosis 

regulators. Specific biomarkers of response should be rigorously identified. Moreover, a deeper 

understanding of the genetic and epigenetic context of necroptotic regulators will help the 

development and administration of appropriate therapeutics. 

The remarkable clinical success of cancer immunotherapies utilising checkpoint blockade has 

generated considerable excitement. However, immunologically inert tumours fail to respond to 

those therapies. The ability of necroptosis to recruit and activate immune cells at the tumour site 

may therefore increase checkpoint blockade efficacy. Alternatively, combining checkpoint blockade 

with vaccination with necroptotic cells may provide better outcomes.  

In conclusion, accumulating evidence suggests that necroptosis plays a role in cancer development. 

Recent studies have defined various therapeutic strategies to explore its efficacy. Targeting 

necroptosis for treatment of cancer presents several advantages over current strategies. However, a 

greater understanding of this pathway is essential to assess the clinical achievability.  
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Table 1:  Deregulation of necroptosis signalling in cancers and the impact on disease 

prognosis 

 

Gene Deregulation Tumor Prognosis 

 Nature Outcome  
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 SNP nd 

 

CML
16
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17
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interactions 
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35

, cervix
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Pancreatic cancer
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Low overall survival in 
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35

, cervix
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, 
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, 
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38
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High overall survival
35

 

Phosphorylation High Colon
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, Esophageal
40
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Colon
28

, Esophageal
40 

cancers  
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Low protein level 
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26
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Ub

TRADD

Complex 1
TNF

RIPK1

Plasma
membrane

FADD
cIAP1/2

Ub

Ub

Ub
Ub Ub

Ub

transcriptional
response

apoptosis

NecrosomeRipoptosome

RIPK3 

caspase-8 

P 

1

2

3

P P 

P 

P P 

MLKL 

smac-mimetic

FLIP

4

5

necroptosis

caspase inhibitor

TNFR1

TRAF2
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RIPK1

2. CROSS 
PRIMING

LYMPH NODE

NAIVE CD8+

CYTOTOXIC 
T CELL

DAMPs

CYTOKINES

NAIVE DC
ACTIVATED DC

ACTIVATION  

1. NECROPTOTIC  
DYING CELL

TUMOUR 
ANTIGENS

EXPANSION

TUMOUR 
INFILTRATION

RE-CIRCULATION

3. TUMOUR  
KILLING

Vaccines
Autophagy
Chemo + SM + casp inh
Poly I:C + casp inh
SM + casp inh 

RIPK3 NKT

CYTOKINES

TUMOUR CELLS
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