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Background
RNA sequencing (RNA-Seq) is routinely used to quantify transcripts, detect fusion 
genes and differential splicing. It can also be used to call mutations, a key component 
in the study of cancer genomes. This makes RNA-Seq a cost effective choice in cancer 

Abstract 

Background: RNA sequencing allows the study of both gene expression changes 
and transcribed mutations, providing a highly effective way to gain insight into cancer 
biology. When planning the sequencing of a large cohort of samples, library size is a 
fundamental factor affecting both the overall cost and the quality of the results. Here 
we specifically address how overall library size influences the detection of somatic 
mutations in RNA-seq data in two acute myeloid leukaemia datasets.

Results : We simulated shallower sequencing depths by downsampling 45 acute 
myeloid leukaemia samples (100 bp PE) that are part of the Leucegene project, which 
were originally sequenced at high depth. We compared the sensitivity of six methods 
of recovering validated mutations on the same samples. The methods compared are 
a combination of three popular callers (MuTect, VarScan, and VarDict) and two filtering 
strategies. We observed an incremental loss in sensitivity when simulating libraries of 
80M, 50M, 40M, 30M and 20M fragments, with the largest loss detected with less than 
30M fragments (below 90%, average loss of 7%). The sensitivity in recovering insertions 
and deletions varied markedly between callers, with VarDict showing the highest sen-
sitivity (60%). Single nucleotide variant sensitivity is relatively consistent across meth-
ods, apart from MuTect, whose default filters need adjustment when using RNA-Seq. 
We also analysed 136 RNA-Seq samples from the TCGA-LAML cohort (50 bp PE) and 
assessed the change in sensitivity between the initial libraries (average 59M fragments) 
and after downsampling to 40M fragments. When considering single nucleotide vari-
ants in recurrently mutated myeloid genes we found a comparable performance, with 
a 6% average loss in sensitivity using 40M fragments.

Conclusions: Between 30M and 40M 100 bp PE reads are needed to recover 90–95% 
of the initial variants on recurrently mutated myeloid genes. To extend this result to 
another cancer type, an exploration of the characteristics of its mutations and gene 
expression patterns is suggested.
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research. However, calling variants in RNA-Seq cancer samples is often overlooked due 
to the large number of possible sources of bias. We are only able to call variants if they 
are transcribed, and gene expression variation causes the transcriptome-wide depth to 
be highly heterogeneous. The variant allele frequency (VAF) in cancer samples can also 
be affected by other sources of variation, such as normal tissue contamination, differing 
clonality and copy number changes. When working with human material we are often 
limited by the number of samples available, and this makes decisions about the sequenc-
ing depth (or library size) especially critical. Previous research has highlighted the 
importance of sequencing depth in many fields of genome research, including transcrip-
tome sequencing, but typically this has considered differential expression (DE) analy-
sis, transcript discovery and differential splicing [1]. In that study a staged sequencing 
approach was presented as a useful tool for determining the parameters of the sequenc-
ing experiment (e.g. the number of replicates or the number of mapped reads). Numer-
ous papers have been published around the power to detect DE genes in RNA-Seq, but 
the discussion has mainly concerned the number of replicates needed and the statistical 
tools applied [2–4]. The number of transcripts that can be identified and the number 
of potentially false positive DE genes increases steadily as sequencing depth increases 
[5]. Earlier work on the power to detect DE genes based on the number of replicates, 
sequencing depth and analytical tools used suggests that the number of replicates is 
more important than the read depth, and that going beyond 20M fragments does not 
increase the power [6]. Sensitivity analysis for variant calling from RNA-Seq data has 
received less attention.

Previously, staged sequencing approaches have been used to determine the depth of 
sequencing required for reliable detection of germline single nucleotide polymorphisms 
(SNPs) in whole exome sequencing (WES) and whole genome sequencing (WGS) [7]. 
For these studies, a mean on target coverage of 40X was enough to reach 95% sensitivity 
for the detection of germline variants. More recent work has explored SNPs detection in 
RNA-Seq from lymphoblastoid cell lines [8]. After applying a range of different aligners 
and callers, they found that sensitivity remained reliably > 90% with a total read depth 
of > 10X at the variant site. Providing general advice regarding the depth of sequenc-
ing required to obtain optimal coverage for variant calling in RNA-Seq is challenging, 
because it depends on the expression level of the target genes. The motivation for the 
present study was the need to inform the in-house sequencing of a cohort of Core Bind-
ing Factor Acute Myeloid Leukaemia (CBF-AML) RNA-Seq samples in order to allow 
accurate DE analysis and variant calling. To investigate this question, we used a staged 
sequencing approach using 45 deeply sequenced CBF-AML RNA-Seq samples from the 
Leucegene study [9], where mutations had been validated on matched DNA samples. 
We used the validated variants in order to get estimates of the sensitivity at shallower 
depths and validated our findings on a larger independent AML cohort.

Results
Sensitivity in the Leucegene cohort

We used 45 CBF-AML RNA-Seq samples that were deeply sequenced with 100 base 
pair (bp) paired end (PE) reads to compute the sensitivity in recovering 88 validated 
mutations at lower levels of sequencing depth [9] (Table  1, Additional file  1: Figure 
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S1). This was done by simulating smaller library sizes by random downsampling of the 
reads in the initial samples. We will refer to these validated mutations as the truth set. 
After alignment, the initial samples have a mean of 113 million (M) mapped PE reads 
(min 77.8M–max 187.4M, 93.4% mean mapping rate).

We downsampled the initial unaligned files at five fixed library sizes of 80M, 50M, 
40M, 30M, and 20M PE reads (or fragments) to simulate shallower depths. Two sam-
ples have library size marginally below 80M and we used all the reads as the initial 
run. At each library size, the random downsampling was replicated more than once to 
account for downsampling variability (see “Downsampling strategy” section in Meth-
ods). At every stage we called variants using three different callers, previously used 
to call variants in RNA-Seq: MuTect2 [10], VarScan2 [11], and VarDict [12]. We will 
refer to MuTect2 as MuTect and to VarScan2 as VarScan. Figure 1 shows the sensitiv-
ity in recovering all the variants in the truth set. The sensitivity is computed using two 
different filtering strategies: (1) default-filters which are based on each caller’s default 
settings and a set of variants detected in a panel of normals (PON) comprising RNA-
Seq samples from CD34+ cells; (2) annotation-filters which uses external databases, 
the PON variants and other quality filters (see details in “Variant filtering” section in 
Methods).

The sensitivity for detecting single nucleotide variants (SNVs, Fig.  1a left plot) is 
comparable across filtering strategies and callers apart from the unusual behaviour of 
MuTect with default-filters, where sensitivity increased as the library size decreased. 
MuTect behaviour is due to the clustered events filter which removes vari-
ants found on haplotypes where other variants are already detected (Additional file 1: 
Figure S2). This behaviour was also observed in a previous study comparing variants 
called from matched RNA-Seq and WES samples where the same flag was responsible 
for filtering the largest number of RNA variants [13].

Using knowledge from external databases allows retention of two NRAS SNVs pre-
sent in COSMIC [14], which are discarded by default-filters as they are also present in 
the PON samples at very low frequency. The SNV sensitivity remains above 95% for 
all callers with the initial and 80M libraries and it incrementally decreases between 
the 50M and the 30M libraries, remaining around 90%. 100% of the initial variants are 
recovered with the initial and the 80M libraries using the annotation-filters. The larg-
est drop in sensitivity is observed when moving from 30M to 20M fragments, where 

Table 1 Types of variants in the Leucegene truth sets

Variants used as the truth set were previously validated in a set of 45 CBF‑AML RNA‑Seq samples [9]. Variant types are 
inferred from the information in the published study and by the variant calls performed on the initial samples. A short 
indel (insertion/deletion) is an indel < 10 bp long; composite indels are mutations including both inserted and deleted 
nucleotides; SNVs are single nucleotide variants

Mutation type Min VAF Mean VAF Max VAF N

Composite indel 0.06 0.25 0.56 9

Long insertion 0.41 0.5 0.64 3

Short deletion 0.09 0.24 0.38 2

Short insertion 0.07 0.33 0.84 15

SNVs 0.05 0.37 0.97 58

Indel-not reported 0.84 0.84 0.84 1
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in some cases only 80% of the initial SNVs were recovered. With the default-filters, 
the median sensitivity for SNVs decreases by a maximum of 5% between the initial 
and the 30M libraries when using VarScan or VarDict, reaching a 10% loss with 20M 
fragments (Additional file  1: Figure S3). The drop in sensitivity using subsequently 
smaller library sizes is larger when using the annotation-filters, even though the sen-
sitivity with larger libraries is higher using this strategy.

The sensitivity in recovering insertions and deletions (indels) (Fig. 1a right plot) varied 
markedly between callers, with VarDict calling consistently more indels than the other 
callers, but still only achieving a maximum of 60% recall. The large difference in indel 
sensitivity between callers is partly due to a bias in reporting indels. VarDict uses the 
same approach as the km [15] caller, used to create the truth set, and it is the only caller 
adopted here which was developed for both DNA and RNA. Indel sensitivity slightly 
increases with MuTect and VarScan if only a partial match with the allele in the truth 
set is required (Additional file 1: Figure S4). For these reasons, the choice of a suitable 
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Fig. 1 Sensitivity in recovering the variants in the truth set using the Leucegene RNA-Seq samples. a Median 
with maximum and minimum sensitivity (vertical bars) for recovering the SNVs (left plot) and indels (right 
plot) in Table 1, across random downsampling runs using different library sizes. Each estimated median 
sensitivity represents the median across 5 random downsamplings (only 3 for 80M libraries) of the initial 
RNA-Seq libraries at a specific library size. The solid lines are the sensitivities obtained using the default-filters 
and the dotted lines are obtained with the annotation-filters. b Average VAF (top plot) and alternative 
depth (bottom plot) on the log scale at a variant site for the variants in the truth set using different library 
sizes. A line in each plot represents one mutation in the truth set. Each dot is coloured according to the 
average number of times a variant was called by one caller using the annotation-filters across replicated 
downsampling runs at one specific library size. c Heatmap showing the sensitivity in detecting the 
Leucegene mutations using default-filters across intervals of the VAF at a variant site and intervals of the total 
log2 gene counts of a gene across different library sizes. Every coloured square in the heatmap represents the 
average time the Leucegene variants within an interval were detected. The average is over mutations found 
within an interval and over callers
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library size will be based on SNV sensitivity, and indel sensitivity should be assessed 
using more appropriate and comparable callers. The unusual behavior of MuTect with 
default-filters is not observed for indels. This could be because a large number of indels 
are not detected by MuTect even with the initial samples. Therefore, the sensitivity 
curves do not appropriately reflect the change in the behaviour of the caller at different 
depths. The majority of the SNVs missed at shallower sequencing depths are either not 
reported by a caller or subsequently filtered by quality thresholds, especially when using 
annotation-filters (see flags of variant missed in Additional file 1: Figure S5). The quality 
filters are mainly affected by the hard threshold on the total and alternative depth at a 
variant site (see details in “Annotation filters” section in Methods).

The variants VAF remains stable across library sizes (Fig. 1b top plot), while the alter-
native and total depths at a variant site decrease steadily (Fig. 1b bottom plot, Additional 
file 1: Figure S6, distribution of the initial total depth and VAF in Additional file 1: Fig-
ure S7A), with low alternative depth characterizing a large part of the variants lost. The 
median alternative depth of the variants missed by a caller has a sharp drop when con-
sidering less than 50M fragments. The alternative depth varies between 30X and 50X 
when using libraries larger than 50M fragments and between 5 and 9X for smaller librar-
ies (Additional file 1: Table S2). This is because the variants missed with larger librar-
ies are not called due to presence in the PON, or mismatches with the alternative allele 
detected in the truth set. On the other hand, as the library size decreases, a larger num-
ber of variants present in smaller clones or lowly expressed loci, are lost. This is also 
observed in the bottom plot in Fig. 1b, where more red lines (variants lost) are notice-
able with less than 50M fragments.

The genes mutated in the Leucegene cohort tended to be highly expressed, with the 
majority of the genes having total read counts above 4  log2RPKM (Additional file 1: Fig-
ure S7B). The mutations were also detected across a wide range of VAFs, and it is clear 
that reliably detecting mutations with VAFs below 0.2 remains challenging, even when 
using more than 30 million reads (Fig. 1c).

Sensitivity in the TCGA‑LAML cohort using validated WGS and WES variants

The analysis with the Leucegene samples showed that there is limited sensitivity below 
30M fragments, with an average decrease in recall of 7% when sequencing 20M com-
pared to 30M fragments (Fig. 1). Increasing the library size to > 30M fragments induces 
incremental small gains in sensitivity (between 0.5 and 2%) and at 40M all callers recover 
>  90% of the initial variants. Therefore, we decided to analyse the loss in sensitivity 
within the critical range 30M–20M fragments in an independent AML cohort, namely 
136 50 bp PE RNA-Seq samples from the TCGA-LAML cohort [16]. Given the differ-
ence in read length between the two cohorts, a comparable coverage between them is 
obtained when considering double the number of fragments in the TCGA-LAML cohort 
compared to the Leucegene cohort (100 bp PE). The initial TCGA-LAML samples have 
an average of 58.7M mapped reads (min 36.7M–max 69.6M, 75.6% mean mapping rate) 
which corresponds to roughly 30M fragments in the Leucegene samples. To replicate 
20M PE reads in the Leucegene cohort we choose 40M fragments as the target library 
size and analysed the loss in sensitivity between the initial TCGA-LAML and the down-
sampled libraries.
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The available BAM files were downsampled at different proportions depending on 
their mapping rate, in order to obtain a number of mapped reads similar to that obtained 
with the 40M downsampled Leucegene libraries (see “Downsampling strategy” section 
in Methods). We called variants with VarDict, MuTect and VarScan on the initial and 
downsampled BAM files, and evaluated the sensitivity in recovering SNVs from two 
truth sets created from the list of validated WES and WGS variants [16]. The truth sets 
are: Set1, including 1,643 SNVs from the published variants after removing intergenic 
and intronic SNVs (Fig. 2a left plot); Set2, which is a subset of Set1 including 169 SNVs 
from recurrently mutated myeloid genes (Fig. 2a right plot, Additional file 1: Table S3, 
details in “TCGA truth sets” section in Methods). Both the default-filters and the anno-
tation-filters were used for variant filtering with some minor exceptions from the Leuce-
gene analysis (see “TCGA truth sets” section in Methods). Due to the challenges induced 
by different indel representation across callers described in the previous section, we only 
assessed SNVs sensitivity.
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Genes whose variants belong to Set2 tend to be more expressed than genes in Set1 
in both the Leucegene and the TCGA-LAML cohorts (Fig. 2b). This is also reflected at 
the variant level, where a large number of variants from Set1 has very low total depth 
at the variant site in the RNA samples (Fig. 2a left plot), while when only restricting to 
myeloid genes, there is only a low number of variants with very low total depth (Fig. 2a 
right plot). This implies that the genes commonly mutated in AML also tend to be more 
expressed. Figure  2c summarizes the sensitivity with the initial and the downsampled 
TCGA-LAML data. The default-filters always outperform the annotation-filters. As 
expected, the sensitivity in recalling the variants in Set1 (blue shaded dots) is quite low, 
ranging between 22 and 38% across callers, with marginal differences between library 
sizes, (average 4% decrease in sensitivity). The recall rate improves if only variants on 
recurrently mutated myeloid genes are considered (green shaded dots). VarDict with 
default-filters has the highest sensitivities, recovering 89% and 88% of the SNVs with 
the initial and the downsampled libraries respectively. Within this truth set, the filtering 
strategy used has a larger impact on the sensitivity. The decrease in sensitivity between 
the initial and the 40M libraries is on average 6%, with the annotation-filters showing a 
consistent poorer performance across callers (average decrease of 9%) and default-filters 
returning more stable recall values (average decrease of 3%). Many of the variants are fil-
tered by the hard thresholds on the total and alternative depth at a variant site as well as 
because of their proximity to exon boundaries (see flags and alternative depth of missed 
variants in Additional file 1: Figures S8).

Figure  3a offers a breakdown of the per gene sensitivities using default-filters and 
considering only genes whose variants are in Set2. MuTect’s poor performance on the 
top recurrently mutated genes, FLT3, IDH1, and IDH2 is again caused by the clustered 
events filter, discussed in the “Sensitivity in the Leucegene cohort” section and sensitiv-
ity improves when applying annotation-filters (Additional file 1: Figure S9). Both VarDict 
and VarScan recover almost all events on these genes which are highly expressed across 
the TCGA-LAML samples  (log2RPKM > 3.5 across the three genes,  log2RPKM > 4.5 for 
FLT3 and IDH2). VarDict is the caller with the highest sensitivity, reaching > 90% recov-
ery rate with the top six mutated genes (DNMT3A, IDH2, RUNX1, IDH1, FLT3 and 
TP53) using both the initial and the 40M PE reads libraries. The genes with the low-
est sensitivities are U2AF1, KDM6A, RAD21 and STAG2. Apart from U2AF1, not many 
variants are present on the other genes and several SNVs are filtered out due to low 
quality of the alternative alleles and low total depth. UA2AF1 has the lowest sensitivi-
ties across all genes in Set2, apart when using VarScan. Not surprisingly, this gene also 
has the lowest expression levels among all myeloid genes considered  (log2RPKM < 2.5, 
Fig.  3b). As the gene expression decreases there is an increased discordance between 
callers (red and darker shaded dots in Fig. 3b) and only around 50% of the variants are 
detected on average with  log2RPKM < 3.

Sensitivity by total depth at a variant site

We estimated the sensitivity as a function of the total depth at a variant site for both 
the TCGA-LAML samples using variants from Set1 (Fig. 4a) and the Leucegene samples 
using the published truth set (Fig. 4b). For both cohorts, the same SNVs detected across 
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downsampled runs are used to compute the sensitivity curves (see “Computation of sen-
sitivity” section in Methods).

Across all strategies and in both datasets, the changes in sensitivities stabilise and 
remain above 75% when the total depth is larger than 20X, and they stay on average 
above 80% when larger than 30X. The low sensitivities obtained with the TCGA-LAML 
samples using the variants in Set1 are due to 67% of the variants having total depth in 
RNA below 20X (60% between 0 and 10X, 7.4% between 10 and 20X, Fig. 4a, Additional 
file 1: Figure S10) as the truth set was obtained from DNA variants. The difference in 
sensitivity between the initial and the downsampled TCGA-LAML libraries is small at 
any total depth interval, with the exceptions of MuTect, delivering lower and more dis-
cordant sensitivities at higher depths. When stratifying the Leucegene sensitivities by 
library size, the majority of the variants lost derives from the 20M and 30M libraries, 
using either filtering strategies (Additional file 1: Figure S11). This is because the Leuce-
gene variants were detected from RNA and are therefore well expressed. Indeed, all 
variants in the truth set have total depth > 90X in the initial libraries (Additional file 1: 
Figure S12).

Figure  4c shows the cumulative sensitivity of each caller using the annotation-
filters, and applying increasingly higher thresholds, d, on the total read depth at a 
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the 40M libraries. A patient can harbour more than one mutation per gene. Horizontal violin plots are drawn 
below the dots
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variant site. Only variants with total depth ≥ d are classified as called. The annota-
tion-filters were used to allow a fair comparison with MuTect due to the bias with its 
default filters. However, the two strategies have a comparable performance (Addi-
tional file 1: Figure S13). The results confirm the poor performance when using only 
20M fragments. Indeed, using this library size the sensitivity remains below 90% at 
any total depth threshold. Not until the 40M library sizes, and borderline with 30M, 
can MuTect and VarScan recover at least 95% of the variants when requiring d ≥ 20 . 
VarDict recall is slightly lower than the other callers, recovering 90% of the variants 
when setting d ≥ 20 . When increasing the threshold d above 20, the calls are pro-
gressively more discordant between different library sizes.
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Fig. 4 Sensitivity by total depth at a variant site. a Sensitivity as a function of the total depth at a variant site 
for the TCGA-LAML SNVs in Set1 (all SNVs after removing intronic and intergenic variants), combining the 
initial and 40M libraries and adopting callers with default-filters. b Sensitivity as a function of the total depth 
at a variant site using the Leucegene samples. The sensitivity is computed using the variants in the truth set, 
combining the calls from all downsampling runs, and using both types of filters. c Median with maximum 
and minimum sensitivity in recovering the SNVs in the truth set using the Leucegene samples. Only SNVs 
with total depth ≥ d are considered as called. The sensitivity by depth is computed for each starting library 
size (colours) and using annotation-filters. Each estimated median sensitivity (and minimum and maximum) 
is the median across random downsampling runs at the same library size. The red dotted lines represent the 
80%, 90% and 95% sensitivity thresholds
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Discussion
Our study complements previous research which has assessed the mean on-target 
depth necessary to recover SNPs in RNA-Seq, WES and WGS. In those studies, dif-
ferent depths at a variant site were specified, ranging between 10X and 40X, depend-
ing on the technology being applied [7, 8]. Previous work has suggested 20M PE reads 
is enough for accurate detection of DE genes [6], but our results suggest higher lev-
els of coverage are required for robust variant detection. Here we have focused on 
the influence of the total library size, to provide some guidance when planning the 
design of a sequencing study. Our study used acute myeloid leukaemia as an exam-
ple, and it provides a direct connection between the total library size and the on-site 
variant features (VAF and total depth). We applied a range of different variant calling 
methods and focused on the ability to recall a set of validated variants in key AML 
genes. We did not assess the specificity of variant calls. The advice provided here is 
general, and it is important to consider that the optimal library size may need to be 
adapted depending on the type of cancer under study, the expression level of key tar-
get genes, or individual sample characteristics, like tumour purity or the degree of 
intratumoural heterogeneity.

We suggest that between 30M and 40M fragments are required to guarantee 90–95% 
sensitivity in recovering variants in myeloid genes, which is approximately 50–100% 
greater than the suggested library size for DE analysis. While the largest loss in sensitivity 
is often observed when sequencing less than 30M fragments, it is not clear how to define 
a fixed library size suitable for all types of samples. This is because of the incremental 
decrease in sensitivity as the library size gets smaller. Nonetheless, using the Leucegene 
samples, we saw a negligible reduction in the sensitivity to recover validated variants 
when sequencing 80M compared to more than 100M PE reads (Fig. 1). Following this, 
there are similar modest losses of sensitivity when going from 80M to 50M, from 50M to 
40M, and from 40M to 30M reads. The loss only becomes more noticeable with library 
sizes below 30M fragments. A similar conclusion was reached with the TCGA-LAML 
cohort, where the average drop in sensitivity (6%) in recovering SNVs between 60M and 
40M 50bp PE reads on recurrently mutated myeloid genes is comparable to that one of 
the Leucegene cohort between the critical range of 30M to 20M 100 bp PE reads (7%) 
(Fig. 2c). We also found a total depth at a variant site larger than 20X to be a critical 
threshold to stabilize the sensitivity above 75%, for both AML cohorts (Fig. 4a). How-
ever, the highest recall rates are obtained for variants with total depth larger than 50X.

Taking all the above results together, we can consider a general formula to inform the 
target library size, based on the expression level (RPKM) of key genes and the total depth 
at a variant site:

For example, if we want the average total depth at a variant site to be 30X, in order to 
ensure good sensitivity in a gene with RPKM of 4 (slightly above the lowest expression 
levels of genes in Set2, Fig. 2b), and we consider 100 bp PE reads, the required library 
size is 37.5M fragments. If we set the total depth to 20X, then the library size drops to 
25M fragments. By using the above equation and knowledge about the transcriptome 

(1)Library size =
(Mean read depth at a variant site × 1K × 1M)

(Average Gene RPKM × Read length× 2)
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features of the tissue under investigation one can explore whether detecting mutations 
from RNA-Seq is worthwhile.

Our validation set included somatic mutations across a wide range of VAFs and 
expression levels. The genes identified in the Leucegene study tended to have higher 
expression than those in the TCGA-LAML cohort [5/15 genes with reported mutations 
had total read counts above 4  log2RPKM for Leucegene, compared with 13/28 genes in 
TCGA-LAML (Fig. 3b, Additional file 1: Figure S7B)]. This likely reflects the fact that 
mutation detection for TCGA-LAML included assessment of DNA, where discovery 
would be independent of expression. While the Leucegene genes were highly expressed, 
the truth set includes somatic mutations with low VAF, and our downsampling approach 
showed that robust detection of these variants remains challenging.

We showed that the sensitivity in recovering validated SNVs in the Leucegene RNA-
Seq samples is independent of the caller used, with the exception of MuTect with default 
settings, whose behavior should be adjusted when applied to RNA-Seq. However, the 
choice of a caller has a greater impact when calling indels, and targeted approaches are 
required to guarantee a good sensitivity. The number of bioinformatics tools developed 
recently to improve indel detection in RNA-seq is a demonstration of the increasing 
interest in exploiting RNA for variant calling, and the need for better algorithms and 
benchmarking [17, 18]. In particular, AML genomes often harbour hot spot indels 
whose detection is of clinical importance. These are internal tandem duplications (ITDs) 
found in FLT3 and KIT [19, 20] as well as a 4bp insertion in NPM1. The km algorithm 
was recently published [15] which performs targeted variant detection. The sensitivity 
and precision of the caller were studied using FLT3-ITDs and NPM1 insertions detected 
from the Leucegene and the TCGA-LAML cohorts, reaching more than 90% sensitivity 
for both lesions and making it an appealing caller for complex indels.

In this study, no single method to call and filter SNVs always outperformed the others. 
Prioritizing cancer variants based on external databases, like COSMIC, rescued NRAS 
somatic mutations which were found at very low VAF in one sample in the reference 
PON. NRAS is commonly mutated in CBF-AML and it is not surprising if the same 
mutation is present with low VAF in normal haematopoietic stem cells. The hard thresh-
olds used in combination with the annotation-filters appeared too stringent and induced 
sharper decreases in sensitivities compared to using default-settings in the Leucegene 
samples. Also, while MuTect and VarDict are better choices to detect complex indels 
(Fig.  1a right plot), VarScan is quicker than MuTect; it allows genome-wide calls; and 
has comparable sensitivity to the other callers in recovering SNVs. A suggested workflow 
when calling variants in cancer RNA-seq would be to choose a SNV caller and adapt its 
filters to the specific characteristics of the cohort and samples available. For example, it 
is advisable to carefully check for highly recurrent filters to avoid losing interesting vari-
ants as was found with the clustered events filter in MuTect. In general, MuTect should 
not be used in tumor-only mode but this does raise the problem of the availability of 
suitable matched normal samples for tumour RNA-Seq. Differences in gene expression 
between tissues may complicated variant detection, and with blood cancers it can be 
challenging to obtain a normal sample, free from contaminating cancer cells. If normal 
DNA is available, it can be used to filter artefacts and germline variants [21, 22]. It is also 
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useful to adopt different callers to detect different types of variants, e.g. using a targeted 
caller for indels to increase sensitivity and a fast genome-wide caller for SNVs.

Conclusions
In conclusion, this study offers a starting point to help design an informative and cost-
effective analysis of cancer transcriptomes. It is important to consider that cancers are 
extremely heterogeneous, and that a rigorous assessment of the cohort characteristics is 
necessary to determine the optimal library size for variant detection.

Methods
Leucegene CBF‑AML RNA‑Seq: alignment and pre‑processing

The R package GEOquery [23] and the SRA Toolkit [24] were used to download the 
SRA files from GEO and to convert them to FASTQ files. FastQC [25] 0.11.5 was used 
to check the quality of the initial FASTQ files and no samples was removed due to low 
quality. Sample SRX381851 was excluded from the analysis due to a small initial library 
size of only 44.5M PE reads. The GNU Parallel command-line utility [26] was used to 
parallelize the FastQC runs. The FASTQ files were aligned against the UCSC hg19 refer-
ence genome to resemble the analysis performed in the original publication [9]. Align-
ment was performed with STAR [27] 2.5 in two-pass mode. The splice junctions from 
the 45 CBF-AML samples collected from the first pass were used to inform the align-
ment in the second pass. STAR was chosen for several reasons: its speed; its good per-
formance in the correct alignment of indels [28]; and since it is the suggested choice 
in the GATK [29] Best Practices for RNA-Seq variant calling. Read groups were added 
to the aligned BAM files using AddOrReplaceReadGroups from Picard tools [30] 2.9.4 
and PCR duplicates were marked with sambamba [31] 0.6.6 markdup. Duplicate reads 
were not removed from the BAM files but reads marked as duplicates are ignored at the 
variant calling step. The quality of the BAM files were validated with ValidateSamFile 
from Picard Tools and no errors were found in any processed library. Gene counts were 
obtained with featureCounts using the hg19 inbuilt RefSeq annotation available in Rsub-
read [32]. The same pipeline was used for both the initial and every downsampled run as 
well the PON samples.

TCGA‑LAML data: bamfile pre‑processing

The TCGA-LAML cohort comprises 151 50bp PE RNA-Seq bamfiles of which 17 are 
CBF-AML. The bamfiles were already aligned to the hg38 genome reference genome 
using STAR in two-pass mode. Read groups had already been added using STAR. We 
flagged PCR duplicates with sambamba markdup and obtained gene counts with fea-
tureCounts and the hg38 inbuilt RefSeq annotation. Both sambamba markdup and 
MarkDuplicates from Picard Tools failed in processing sample TCGA-AB-2931 which 
was removed from the rest of the analysis. Eight bamfiles failed the downsampling 
step due to some internal features of the bamfiles. These samples are: TCGA-AB-2821, 
TCGA-AB-2870, TCGA-AB-2884, TCGA-AB-2925, TCGA-AB-2950, TCGA-AB-2991, 
TCGA-AB-2994, and TCGA-AB-2995 and they were excluded from the rest of the anal-
ysis. Out of the 142 bamfiles left, 139 had mutations validated through targeted capture 
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and manual review in the original publication [16]. After excluding indels from the truth 
set, 136 RNA-Seq samples with available variants were used for sensitivity analysis.

Downsampling strategy

The FASTQ files from the Leucegene CBF-AML data were downsampled using the seqtk 
toolkit for FASTA/Q files [26]. Every fixed downsampled library size was obtained five 
times (only 3 times for the 80M library size). Five seeds were used to allow reproduc-
ibility of the results: 100, 26880, 56745, 7234, 9999. Only BAM files were available for 
the TCGA-LAML cohort and they were downsampled only once using the Downsam-
pleSam function from Picard Tools. This function extracts a proportion of the reads out 
of the initial library size. We adjusted the sampling proportions for the TCGA-LAML 
samples in order to simulate a setting with approximately 40M sequenced fragments and 
a > 90% mapping rate. Adjustment was needed since the mean proportion of mapped 
reads in the TCGA-LAML samples was lower then for the Leucegene samples, defin-
ing a ratio of 1.24 (93.4% in the Leucegene and 75.6% in TCGA samples respectively). 
Therefore, we first obtained the total number of reads in each TCGA-LAML BAM file 
using samtools flagstat [33], where this number includes both mapped and unmapped 
reads, and increased the sampling proportion of each sample by 1.24. This adjustment 
should make the results comparable and it is based on the assumption that, in the future, 
the mapping quality for bulk RNA-Seq samples will more likely resemble the Leucegene 
quality. This led to a mean of 37.3M mapped fragments in the downsampled TCGA-
LAML cohort (37.4M mapped with the Leucegene data). Additional file 2: Table S4 con-
tains the downsampling proportions used for the TCGA-LAML RNA-Seq samples.

TCGA truth sets

The sensitivity analysis with the TCGA-LAML samples was performed using previously 
published validated variants as the truth set [16]. From the initial table of variants we 
removed 6,460 mutations falling outside of gene bodies; 8,319 variants in untranslated 
and intronic regions; and only kept variants belonging to samples whose RNA-Seq BAM 
files were available. Eventually, 1,643 SNVs were kept for sensitivity analysis (Additional 
file  3: Table  S5). From these SNVs, two truth sets were defined: 1) Set1: including all 
1,643 SNVs; 2) Set2: a subset of Set1 including the published significantly mutated mye-
loid genes [16], out of which FAM5C and HNRNPK were removed by previous filters, 
and on top of which 7 genes were added as they were mutated in the Leucegene CBF-
AML samples (KMT2C, JAK2, GATA2, CSF3R, ASXL1, NF1, KDM6A) [9] (list of genes 
in Additional file 1: Table S3). We created 1k symmetric windows around the starting 
positions of the variants in the final truth set and we used those regions to perform vari-
ant calling. The genomic position obtained from the original table were lifted up from 
the hg18 to the hg38 reference genome using the UCSC Genome Browser [34]. When 
matching the TCGA-LAML variants called by a caller with the variants in the truth sets, 
we did not use transcript information. This was because the transcripts reported in the 
original table derive from old annotations as well as they come from a mix of ensembl 
and RefSeq annotations. We decided to not consider transcript information to avoid 
wrong assignments or removal of variants due to missing transcript information.
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Choice of callers and BAM file preparation for variant calling

Several variant callers are compatible with RNA-Seq [35]: RADIA [21], Seurat [22], 
SNPiR [36], eSNV-detect [37], VarScan [11] and VarDict [12]. The first two callers, 
RADIA and Seurat, integrate tumor-normal RNA and DNA and were not considered 
since only RNA is available. SNPir is a caller specifically developed for RNA-Seq but 
for normal tissue. It is based on GATK [29] pre-processing and the Haplotypecaller 
[38] and implements a series of RNA-Seq specific filters. eSNV-detect implements 
an ensemble approach by combining the calls performed with SAMtools using two 
different aligners. Here we compared the performance of three popular callers: Var-
Scan 2.4.0 (which requires samtools mpileup [33] output), VarDict 1.5.1 and MuTect2 
from GATK 3.7.0, which is the GATK choice for tumor samples. Only VarDict was 
developed to call variants from both RNA and DNA. VarDict can call variants in both 
tumor-only and matched tumor-normal settings, whereas VarScan and MuTect were 
designed for somatic variant calling. All three callers were run in tumor-only mode 
and a reference of PON samples was created for filtering (see details “Variant filter-
ing” section). Prior to calling variants with MuTect and VarScan the BAM files were 
pre-processed following the GATK best practices, which include splitting reads that 
contain N’s in the CIGAR string and base quality recalibration. VarDict can handle 
spliced reads without pre-processing. VarDict can only call variants on subsets of the 
genome whereas both VarScan and MuTect call variants genome-wide. This last dif-
ference will not introduce any bias into our comparison since variants are called only 
in target regions of interest throughout the whole analysis (see regions in Additional 
file  1: Table  S1). The three callers call both SNVs and indels but only VarDict and 
MuTect adopt local realignment, which should give better accuracy around indels. 
Samtools mpileup performs base alignment quality (BAQ) which aims at reducing 
SNVs miscalled due to nearby indels.

Variant calling, annotation and standardised output

To allow a fair comparison between variant callers, variants were called with MuTect, 
Samtools mpileup + VarScan and VarDict using their default settings. Variant call-
ing is always performed in tumour-only mode. Variants were then annotated with 
the Variant Effect Predictor (VEP) 89.0 [39]. The genome assemblies GRCh37 and 
GRCh38 were used for the Leucegene and the TCGA-LAML samples respectively. 
The annotated VCF files were parsed using the parsing functions included in the 
varikondo [40] R package to produce a standardized output across callers containing 
the relevant information for the analysis.

Variant filtering

We adopted two variant filtering strategies, namely default-filters and annotation-
filters. The default-filters strategy is based on each caller’s default filters while the 
annotation-filters strategy exploits external databases and applies the same quality 
measures across callers. The current analysis aims at reproducing a general frame-
work to be used in tumor-only RNA-seq variant calling, and we do not wish to “over-
fit” a caller’s settings to benefit this specific type of data. What matters in this study 
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is to compare the performance of variant calls under the same circumstances while 
varying the overall library size.

Default filters

We used only variants flagged with PASS in the VCF output to estimate sensitivity 
and specificity based on each caller’s default settings. We also used a PON samples to 
remove likely artefact variants that are called across many normal independent sam-
ples. In particular, we used a set of 17 RNA-Seq libraries of CD34+CD45RA- cord 
blood cells from 17 non-pooled individuals. We created a PON variants separately for 
every caller (see details in Additional file 1: “Variant filtering” section in Additional 
Methods). A variant is classified as present in normals if it is found in more than two 
normal samples or in less than two normal samples but with VAF > 0.03. We created 
PON variants using both the hg19 and hg38 reference human genomes.

Annotation filters

We set up a series of filters based on variant quality measures, public databases, fea-
tures of the genome known to be challenging (repeat regions, homopolymers, splice 
junctions), and PON samples. Some of these filters, including variants in homopoly-
mers, RNA editing sites [41], variants in repeat regions [42] and variants near splice 
junctions, have been previously shown to be successful in reducing the number of 
false positives [36, 41]. Variant annotation using VEP adds information from external 
databases of mutations such as COSMIC [14], ExAC [43] and dbSNP [44]. Details 
about how to download the databases mentioned here and how we used them to flag 
variants can be found in Additional file  1: “Variant filtering” section in Additional 
Methods. Flags and quality filters are then used for filtering. In particular:

• Variants are removed if they are found in the PON (using the same strategy as 
explained in the “Default-filters” section) and they are not found in COSMIC.

• Variants are removed if they are not found in COSMIC but they are present in 
dbSNP and ExAC.

• Even if present in COSMIC, variants are removed if they overlap with exon 
boundaries, homopolymer stretches or repeated regions. Overlap with exon 
boundaries is defined if the variant falls within 4  bp upstream of an exon start 
site or downstream of an exon end site. Exon boundaries were obtained from the 
hg19 and hg38 inbuilt RefSeq Rsubread annotation. We considered as homopoly-
mers, stretches of the same nucleotide longer than 5 bp as obtained from the hg19 
and hg38 reference human genomes (more details provided in Additional file  1: 
“Annotation databases and genomic features” section in Additional Methods).

• Finally, a variant is kept only if it has an average base quality >  18, a minimum 
alternative allele depth of 5, a minimum total depth of 15 and a minimum VAF of 
0.03. This means, for example, that in order to keep a rare variants with VAF < 0.03 
the mutation needs to be covered by at least 167 reads.
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Matching alternative alleles

In both strategies a variant is classified as called in a downsampled library only if the 
alternative allele matches the alternative allele in the truth set, if available, or the one 
obtained when calling variants using the initial deeply sequenced libraries. The alter-
native alleles were available for the TCGA-LAML dataset but not for the Leucegene 
cohort. The three callers were consistent in reporting the same alternative alleles for all 
the SNVs called with the Leucegene cohort but not for indels. To reduce callers differ-
ences in reporting indels, we first ran the variant normalization tool vt normalize [45]. 
To take into account persisting differences we considered a match if an indel lied within 
100 bp (+/-50 bp) of the position reported in the Leucegene truth set. Manual curation 
was then needed to remove false positives. An extra level of complexity derives from the 
fact that callers report composite events differently, making it hard to assess a match 
with the alternative allele. MuTect and VarScan output indels as separate SNVs and 
short indels rather than as block substitutions, while VarDict, like the km algorithm, out-
puts composite variants in the same line. This is why we also explored whether a partial 
match with the reference and alternative alleles would increase sensitivity for MuTect 
and VarScan. A partial match required at least 3 bp overlap with the alleles reported in 
the truth set.

Computation of sensitivity

At every downsampled run, the sensitivity was computed as in Equation 2 below:

where TPijt is the number of variants called by caller i with library size j that belong to 
truth set t, and FNijt is the number of variants in truth set t missed by caller i at the 
library size j. A variant is reported as a match with respect to a truth set, if it is called by 
a caller and it matches the genomic information (chromosome, position etc..) reported 
in the truth set.

The sensitivity by intervals on total depth is computed as in Eq. 2 but stratifying by 
intervals on the total depth. The intervals are set from 0X to the maximum total depth 
observed in the data by gaps of 10 until 100X. When total depth > 100X only two inter-
vals are considered, 100X–130X and 130X to the maximum total depth.

The sensitivity as a function of the depth d is computed as in Eq. 3 below:

where TPij | tot depth ≥ d is the number of variants called by caller i with library size j that 
has total depth ≥ d and that belong to the truth set. FNij | tot depth ≥ d is the number of 
variants with total depth ≥ d present in the truth set but missed by caller i with library 
size j.

R packages used in the study

The variant calling workflow was developed using the package optparse [46]. The pack-
ages foreach [47] and doParallel [48] were used to parallelize the parsing of the variant 

(2)Sensitivityijt =
TPijt

TPijt + FNijt

(3)Sensitivity ij | tot depth ≥ d =
TPij | tot depth ≥ d

TPij | tot depth ≥d + FNij | tot depth ≥ d



Page 17 of 19Quaglieri et al. BMC Bioinformatics          (2020) 21:553  

annotation fields added by VEP. Variants output were standardised across callers using 
the package varikondo [40], available on GitHub. The Bioconductor package Genomi-
cRanges [49] was used to create the files needed to annotate variants with respect to 
genomic features (see Additional file  1: Additional Methods for more details). The 
library seqinr [50] was used to read FASTA files into R in order to detect stretches of 
homopolymers used for variant filtering. The package samplepower [51], only available 
on GitHub, contains the functions used to compute sensitivities throughout the analysis 
(more details in Additional file 1: Additional Methods). Data manipulation to parse vari-
ants output and to produce summary of the sensitivity results was obtained using the R 
packages readr [52], dplyr [53], tidyr [54], stringr [55]. All figures in this paper were pro-
duced with the libraries ggplot2 [56] and cowplot [57]. All analysis in R were run using 
R3.5.2.
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