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Abstract

Introduction

The human malaria parasite, Plasmodium vivax, is proving more difficult to control and elimi-

nate than Plasmodium falciparum in areas of co-transmission. Comparisons of the genetic

structure of sympatric parasite populations may provide insight into the mechanisms under-

lying the resilience of P. vivax and can help guide malaria control programs.

Methodology/Principle findings

P. vivax isolates representing the parasite populations of four areas on the north coast of

Papua New Guinea (PNG) were genotyped using microsatellite markers and compared

with previously published microsatellite data from sympatric P. falciparum isolates. The ge-

netic diversity of P. vivax (He = 0.83–0.85) was higher than that of P. falciparum (He = 0.64–

0.77) in all four populations. Moderate levels of genetic differentiation were found between

P. falciparum populations, even over relatively short distances (less than 50 km), with 21–

28% private alleles and clear geospatial genetic clustering. Conversely, very low population

differentiation was found between P. vivax catchments, with less than 5% private alleles

and no genetic clustering observed. In addition, the effective population size of P. vivax
(30353; 13043–69142) was larger than that of P. falciparum (18871; 8109–42986).

Conclusions/Significance

Despite comparably high prevalence, P. vivax had higher diversity and a panmictic popula-

tion structure compared to sympatric P. falciparum populations, which were fragmented into
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subpopulations. The results suggest that in comparison to P. falciparum, P. vivax has had a

long-term large effective population size, consistent with more intense and stable transmis-

sion, and limited impact of past control and elimination efforts. This underlines suggestions

that more intensive and sustained interventions will be needed to control and eventually

eliminate P. vivax. This research clearly demonstrates how population genetic analyses can

reveal deeper insight into transmission patterns than traditional surveillance methods.

Author Summary

The neglected human malaria parasite Plasmodium vivax is responsible for a large propor-
tion of the global malaria burden. Efforts to control malaria have revealed that P. vivax is
more resilient than the other major human malaria parasite, Plasmodium falciparum. This
study utilised population genetics to compare patterns of P. vivax and P. falciparum trans-
mission in Papua New Guinea, a region where infection rates of the two species are similar.
The results demonstrated that P. vivax populations are more genetically diverse than those
of P. falciparum suggestive of a parasite population that is more resilient to environmental
challenges, undergoing higher levels of interbreeding locally and between distant parasite
populations. Unique characteristics of P. vivax such as relapse, which allows different
strains from past infections to produce subsequent infections, may provide more opportu-
nities for the exchange and dissemination of genetic material. The contrasting patterns ob-
served for the two species may be the result of a differential impact of past elimination
attempts and indicate that more rigorous interventions will be needed in efforts to control
and eventually eliminate P. vivax.

Introduction
Plasmodium vivax and Plasmodium falciparum are responsible for the majority of the human
malaria burden worldwide. Malaria control and elimination initiatives have had enormous suc-
cess, preventing an estimated 1.1 million deaths and approximately 274 million cases between
2001 and 2011 [1]. P. falciparum has traditionally attracted the greatest interest, as it is respon-
sible for the majority of malaria deaths, while P. vivax has been relatively neglected. However,
the classification of P. vivaxmalaria as “benign” has been revised in recent years as reports of
severe vivax malaria have become commonplace in scientific literature [2,3]. Indeed, this spe-
cies is estimated to be responsible for up to 300 million episodes of clinical malaria each year,
predominantly in malaria-endemic regions outside sub-Saharan Africa [4]. Alongside the ac-
knowledgment that P. vivax is of major global health significance, control programmes have re-
vealed that this species is more resistant to control measures than P. falciparum [5]. Several
unique features of P. vivax biology are thought to facilitate evasion of control efforts, including:
relapse [6,7], the early appearance of transmission stages (gametocytes) [6,8] and a more rapid
acquisition of clinical immunity [8,9]. P. vivax transmission is therefore likely to be more stable
over time and during control efforts, when compared to P. falciparum [9].

Population genetic analyses using microsatellite markers have revealed important insights
into malaria epidemiology, with genetically diverse populations suggesting endemic transmis-
sion [10–12] and clonal population structure signaling epidemic expansion [10–12]. The genet-
ic diversity of P. falciparum populations is strongly associated with regional levels of
transmission, thought to be the result of increasing proportions of multiple clone infections
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and consequent genetic recombination (outbreeding) in the mosquito vector [11,13,14]. P.
vivax challenges this paradigm, maintaining high levels of diversity even in areas of low trans-
mission [13–19]. Furthermore, P. vivax populations have consistently shown greater levels of
genetic diversity than those of P. falciparum parasites circulating in the same region [15–19].
In South America, these differing patterns of diversity can primarily be explained by epidemic
P. falciparum transmission leading to clonal expansion, whereas transmission of P. vivax is sta-
ble and hypoendemic [15,17]. In an area of South East Asia (Pursat, Cambodia), diversity of P.
vivax was higher than P. falciparum despite a similar case prevalence (among all symptomatic
malaria cases, 52% are caused by P. falciparum, 44% by P. vivax and, 4% by mixed infections)
[17,20] however these numbers suggest higher P. vivax prevalence in the community since a
lower proportion of P. vivax infections lead to clinical symptoms than P. falciparum. These
findings raise important questions about how P. vivax diversity is generated and maintained,
the relationship between diversity and endemicity and what consequences this knowledge may
have for national control programs.

Genetic diversity secures evolutionary fitness, increasing the potential for adaptation to
changing environments [20,21]. Indeed, genetically diverse parasite populations have greater
potential to resist antimalarials [21–23], vaccines, and host immune responses [12,22–26].
Studies of the population structure of sympatric P. falciparum and P. vivax on local scales and
at differing levels of transmission are needed to define potential drivers of genetic diversity in
P. vivax. Population genetic studies are also necessary to guide malaria control and elimination
strategies by tracing routes of transmission and the sources of epidemics [12,24–27], by identi-
fying locations where the risk of reintroduction (gene flow) is lowest [27–30] and by monitor-
ing drug and vaccine resistance [28–33].

On the north coast of Papua New Guinea (PNG) both P. falciparum and P. vivax are highly
endemic, with P. falciparum entomological inoculation rates (EIR) marginally exceeding those
for P. vivax [1,4,31–34]. In this region, the prevalence of P. falciparum rivals that of sub-Saha-
ran Africa, while that of P. vivax is the highest in the world [1,4,34,35]. By comparing parasite
population genetic structures, we aimed to gain an understanding of how local gene flow and
genetic diversity differ between the two species in an area of similarly high prevalence. To in-
vestigate the genetic structure of sympatric P. falciparum and P. vivax populations, we deter-
mined multilocus microsatellite haplotypes in P. vivax isolates from four distinct geographic
areas of PNG and compared the data to reanalysed, previously published data from the sym-
patric P. falciparum populations [35,36]. The results confirm the high diversity of these major
malaria parasites in PNG and contrasting population genetic structures that highlight the po-
tential consequences of the unique biology of P. vivax for malaria control programs.

Methods

Parasite isolates
Samples were collected from the Madang and East Sepik provinces on the north coast of PNG.
In this region, all four major species of human malaria are endemic (P. falciparum, P. vivax,
Plasmodium malariae and Plasmodium ovale), with year-round, intense transmission of malar-
ia showing slight seasonal variations. In order to capture the diversity of parasites circulating in
the community, venous blood samples were collected from 2359 asymptomatic volunteers of
all ages in a cross sectional baseline survey at the start of an Intermittent Preventative Treat-
ment of infants (IPTi) trial (Koepfli and Robinson et al. submitted). In the Wosera catchment
area of the East Sepik Province, samples (n = 1077) were collected in the relatively dry period
of August and September in 2005. The Wosera catchment comprises a cluster of eight villages
spaced between 2–10km apart. In Madang Province samples were collected in the rainy season
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of March 2006 from twelve villages, clustered 5–20 km apart within three catchments areas
surrounding Malala (n = 379), Mugil (n = 503) and Utu (n = 397) health centres, which are
>50km apart (Table 1 and S1 Fig). These samples and the identification of parasite isolates
have been described in detail elsewhere [35–37]. Only parasite isolates containing monoclonal
infections were selected to ensure that multilocus haplotypes could be correctly reconstructed.
Multiplicity of Infection (MOI) was previously determined using validated methods [37]. For
the P. falciparum isolates, this included Pfmsp2 [36–38] and for P. vivax isolates, Pvmsp1F3
and PvMS16 genotyping [36,38–44].

Ethics statement
The samples were archived in a biobank at the PNG Institute of Medical Research. The original
study in which samples were collected was explained in detail through both individual and
community awareness meetings after which volunteers were invited to participate in the study.
During enrolment, adult volunteers or the legal guardians of child volunteers were asked to
provide oral informed consent to participate as this was the ethical requirement for this partic-
ular study, as approved by the local Institutional Review Board (details below). Whether oral
consent was given to participate in the study and for samples to be used in further research,
was documented in a database. Enrolment in the study was possible only if consent was given.
All consenting members of selected populations were eligible for enrolment into the communi-
ty surveys. People with concurrent or chronic illness that might impede their participation in
the surveys were excluded. Ethical approval to conduct this study was granted by the PNG In-
stitute of Medical Research Institutional Review Board (No. 11–05), the Medical Research Ad-
visory Committee of PNG (No. 11–06) and the Walter and Eliza Hall Institute Human
Research Ethics Committee (No. 11–12).

Microsatellite genotyping
For P. falciparum, we used previously published data for 320 monoclonal P. falciparum isolates
genotyped at ten previously validated and commonly used, putatively neutral, microsatellite
markers including TA1, TAA60, Polya, ARA2, Pfg377, TAA87, TAA42, PfPK2, TAA81 and
2490 [35,45].

Table 1. Prevalence andmultiplicity of infection of P. falciparum and P. vivax populations on the north coast of Papua New Guinea.

Species Province Catchment n No. Infections (%)a Infections with multiple clones (%)b Mean MOI

P. falciparum East Sepik Wosera 1077 240 (22.3) 45 1.72

Madang Malala 379 129 (34.0) 39 1.59

" Mugil 503 195 (38.8) 44 2.01

" Utu 397 162 (40.8) 45 1.97

TOTAL 2359 726 (30.8) 44 1.83

P. vivax East Sepik Wosera 1077 165 (15.3) 58 1.97

Madang Malala 379 131 (34.6) 48 1.80

" Mugil 503 167 (33.2) 48 1.76

" Utu 397 109 (27.5) 51 1.97

TOTAL 2359 574 (24.3) 52 1.88

n = number of samples collected,
a. based on LDR-FMA;
b.based on Pfmsp2 or PvMS16/Pvmsp1f3; MOI = multiplicity of infection

doi:10.1371/journal.pntd.0003634.t001
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For P. vivax, eleven putatively neutral microsatellites were genotyped including; MS1, MS2,
MS5, MS6, MS7, MS9, MS10, MS12, MS15, MS20 and Pv3.27, chosen as a result of their fre-
quent use in other studies [39–44,46], thereby allowing our data to be compared with P. vivax
data from previous studies [46]. The microsatellite markers were amplified using an 11-plex
primary PCR followed by individual nested PCRs as previously described [35,46] with a total
of 35 cycles were used in both the primary and secondary rounds of PCR. All PCR products
were sent to a commercial facility for fragment analysis on an ABI3730xl platform (Applied
Biosystems) using the size standard LIZ500.

Data analysis
The P. vivax electropherograms were analysed with Genemapper V4.0 (Applied Biosystems)
with the same peak calling strategy as that used for P. falciparum [35,47,48]. To avoid artefacts
in the results that may occur with microsatellite markers [47–49] precautions were taken to en-
sure allele calling was as consistent as possible, including the reconstruction of dominant hap-
lotypes (S1 Text). For both species the dominant and single haplotypes were compared within
catchments to identify any significant differentiation by calculating both GST and Jost’s D in
the DEMEtics R package (see below, [35,49]). The two datasets were pooled only if genetic dif-
ferentiation was very low.

Previous analyses of the P. falciparum dataset identified strong to moderate population
structure [35,50] and were based on diploid genotypes coded as homozygote at each locus.
However, blood stage parasites are haploid and therefore both species were analysed here using
haploid datasets, thus maintaining the correct sample size.

To identify outlier samples and markers, and as an alternative method for investigating pop-
ulation structure, multidimensional scaling (MDS) was performed on the haplotype datasets.
MDS, an alternative to principal component analysis (PCA) that allows for missing data, aims
to project the distance matrix of the data to a lower dimension k, while trying to minimise the
distances between data points. MDS was performed with the set of dissimilarity measures (Eu-
clidean distance). Multiple pairwise scatterplots of the transformed data were examined to de-
termine whether sample outliers could be identified and clustering observed. These analyses
were performed in the statistical software R [50,51], using the cmdscale function. PCA was also
performed using the princomp R command. The biplot function in R plots the projection of
the original microsatellite marker variables in the new data space was used to identify the outli-
er markers.

To conduct the population genetic analyses, allele frequencies and input files for the various
population genetics programs were created using CONVERT version 1.31 [51,52]. Genetic di-
versity was measured by calculating the number of alleles (A) and expected heterozygosity (He)
using ARLEQUIN version 3.5.1.2 [52,53] and allelic richness (Rs) using FSTAT version 2.9.3.2
[49,53]. Pairwise genetic differentiation was measured by calculating Jost’s D and the FST-de-
rivative, GST with bias correction using the DEMEtics package [49,54–56]. It should be noted
that GST and its relatives have been shown to underestimate genetic differentiation when ap-
plied to diverse microsatellite markers [54–56]. Jost’s D however, is a more appropriate mea-
sure of genetic differentiation for diverse microsatellites, as it first normalises heterozygosity,
thus allowing comparisons between species with different sets of microsatellite markers. Fur-
thermore, Jost’s D is considered a superior diversity measure over GST and FST since it shows
correct behaviour for highly polymorphic loci where GST and FST underestimate diversity
[49,54,55,57]. We have therefore used Jost’s D as the primary measure of differentiation, how-
ever we have included GST to allow for comparison with previous studies. All markers (except
TAA42 and Pv3.27, see results below) were used in these analyses regardless of their mode of
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mutation (simple step-wise or complex mutation). Jost’s D was calculated as follows:

D ¼ ½ðHT � HSÞ=ð1� HSÞ� ½n=ðn� 1Þ�

The bias-corrected Dest values were based on equation twelve of Jost 2008 [54]:

Dest ¼ ½ðHT est � HS estÞ=ð1� HS estÞ� ½n=ðn� 1Þ�

and GST:

GST ¼ ðHT � HSÞ=HT

Bias-corrected GST_est values were calculated according to Nei & Chesser [58]:

GST est ¼ ½ðHT est � HS estÞ=HT est� ½n=ðn� 1Þ�

AMantel test was performed between Jost’s D and GST and geographical distance between
catchments, using the mantel.rtest function from the ade4 library in R, with 10,000 replicates
[59]. Correlations between; prevalence, mean MOI and percentage of multiple infections with;
D and GST were tested by measuring Spearman’s correlation coefficient (ρ).

To calculate effective population size (Ne), the same method previously described for P. fal-
ciparum was used for both species [11]. Data for the mutation rate of P. vivaxmicrosatellites
are lacking, and therefore the microsatellite mutation rate (μ) for P. falciparum of 1.59×10–4
(95% confidence interval: 6.98×10−5, 3.7×10−4), was used for both species [46]. Not all markers
adhere to a strict stepwise mutation model (SMM), therefore Ne was calculated using both the
SMM and infinite allele models (IAM) [11]. For SMM, Ne was calculated as follows:

Nem ¼ 1

8

1

1� HE mean

� �2

� 1

( )

whereHE_mean is the expected heterozygosity across all loci. For the IAM, Ne was calculated
using the formula:

Nem ¼ HE mean
4ð1� HE meanÞ

As a measure of inbreeding in each population, multilocus linkage disequilibrium (LD) was
calculated using LIAN version 3.6, applying a Monte Carlo test with 100,000 re-sampling steps
[60]. The markers Pv3.27 (Pv) and TAA42 (Pf) and the sample outliers identified using the
PCA biplot analysis were not included in LD analysis. To estimate associations among loci
using this program, the Index of Association (ISA) was calculated for all complete haplotypes
and also those from single infections only. ISA was also calculated in single infections alone as a
precaution against the potential for incorrectly reconstructed dominant haplotypes to artificial-
ly inflate outbreeding.

To further investigate parasite population genetic structure, the Bayesian clustering soft-
ware, STRUCTURE version 2.3.4 was used to investigate whether haplotypes clustered accord-
ing to geographical origin. Unlike the genetic differentiation parameters described above which
are based on predefined populations, this program attempts to form groups of haplotypes
based on the allele frequencies at each locus with no prior geographical information, assigning
individuals to one or more populations (K) [61]. The analysis was run 20 times for K = 1 to 8
for 100,000 Monte Carlo Markov Chain (MCMC) iterations after a burn-in period of 10,000
using the admixture model and correlated allele frequencies. The log probability of the data
LnP[D] used for determining optimal K has been shown to be suboptimal in some situations
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and therefore the second order rate of change of LnP[D], ΔK was also calculated according to
the method of Evanno et al. [62].

Due to the small number of data points (four catchments), statistical analysis of the resulting
molecular epidemiological and population genetic parameters was done using non-parametric
methods as indicated using R or Prism software (GraphPad Prism, version 6.0d, GraphPad
software, San Diego) [50].

Results

Prevalence and MOI
As previously reported, amongst the 2359 blood samples collected, a total of 765 (30.8%) P. fal-
ciparum and 574 (24.3%) P. vivax infections were detected by molecular diagnostic methods
[35–37]. The prevalence of both species was lowest in the Wosera and P. falciparum was the
dominant species in all but one catchment (Malala), where prevalence was comparable
(Table 1). The difference in species prevalence in the different catchments was not significant
(two sample Mann-Whitney U test: p = 0.34). Based on genotyping using Pfmsp2 and the com-
bination of Pvmsp1F3 and PvMS16, the mean MOI was only slightly greater for P. vivax (1.88)
than that for P. falciparum (1.83, [37]) however P. vivax had a significantly larger proportion
of multiple infections (52%) than did P. falciparum (44%) (Chi-squared test, 1 df: p = 0.0045).

Identification of haplotypes and data cleaning
For P. falciparum, multilocus haplotypes with at least four of the ten microsatellites were avail-
able for 320 isolates including 214 confirmed single infections (single) and 106 “dominant” in-
fections comprising dominant allele calls (major peaks) from two or more markers (dominant)
[35] (S1 Dataset). Reanalysis of the cleaned dataset for the two groups of haplotypes again
showed no genetic differentiation (S1 Table), and therefore the single infection and dominant
infection datasets were combined for further analyses.

For the new P. vivaxmicrosatellite data produced in this study, haplotypes for five or more
microsatellites were successfully reconstructed for 204 P. vivax isolates [36]. Of these, 82 were
single and 122 were dominant (S1 Dataset). Comparisons revealed negligible genetic differenti-
ation, with all GST and D values being insignificant (S1 Table), therefore they were also com-
bined for further analyses.

Before investigating population structure, the datasets were first screened using MDS and
PCA to identify outlier markers or samples that might obscure signals of local population
structure. For P. falciparum, this analysis identified 12 outlier samples that when removed, re-
vealed separation between Madang and East Sepik samples and tight clustering of Utu samples
within the Madang cluster (S2A Fig and S2B Fig). As indicated in the biplot for the PCA, the
vertically aligned clustering pattern was driven by marker TAA42 (S2C Fig). This marker fea-
tures a 57 bp indel and displayed a bimodal allele frequency distribution [35], which could ei-
ther be due to the indel itself or due to genotyping artefacts. TAA42 was therefore removed
from the P. falciparum dataset (S1 Dataset). For P. vivax, the analysis identified 11 outlier sam-
ples (S3A Fig). Furthermore, Pv3.27 introduced a clustering pattern independent of geographi-
cal origin (S3B Fig and S3C Fig). This marker was previously found to display excess diversity
[63], which also occurs in these PNG populations. Pv3.27, as well as the 11 outlier samples,
were consequently removed from all further analysis of P. vivax (S3 Table). Population struc-
ture is analysed in more detail below using the cleaned datasets.
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Genetic diversity
Levels of genetic diversity were high for both species in all four sympatric populations and all
haplotypes were unique (Table 2). Genetic diversity was consistently higher for P. vivax for all
parameters (Table 2). For P. vivax, estimates of genetic diversity within catchments were simi-
lar to that of all catchments combined, consistent with little or no population structure
(Table 2). In contrast, the overall genetic diversity for P. falciparum was higher than that for
the catchments (Table 2) consistent with a hierarchical level of population structure. For both
species, Utu was the least diverse population, and all of the other catchments had similar levels
of diversity (Table 2). No correlation was found between prevalence, mean MOI or percent of
multiple infections with the levels of genetic diversity (S2 Table) indicating that diversity was
not reduced as a result of lower transmission in the Wosera catchment, an observation we have
previously made using other highly polymorphic markers [36,37].

Effective population size
Using both the SMM and IAMmodels of evolution (see Materials and Methods), effective pop-
ulation size was estimated and found to be substantially greater for P. vivax than those for P.
falciparum (Table 3). It must however be noted that in the absence of a microsatellite mutation
rate for P. vivax (the same mutation rate was used for both species), and in light of the very
large confidence intervals as a result of the variable estimates of the mutation rate, these results
should be interpreted with care.

Multilocus linkage disequilibrium
No evidence of multilocus LD was found in any of the P. falciparum catchments for all infec-
tions or single infections alone. Extremely low, yet significant LD was found when all catch-
ments were combined (Table 4) however this was likely a result of subpopulation structure, a
phenomenon known as the Wahlund effect [64]. For P. vivax, no significant LD was found
with the exception of Wosera (Table 4) where two pairs of closely related haplotypes were
found in one village (Nindigo). Linkage equilibrium was restored after removal of one of the
shared nine loci haplotypes (ISA = 0.0052, p = 0.279). These closely-related isolates suggest in-
stances of near clonal transmission or the presence of meiotic siblings among isolates from
Nindigo [65].

Table 2. Estimates of genetic diversity of P. falciparum and P. vivax populations on the north coast of Papua NewGuinea.

Species Province Catchment n He±SE A ±SE Rs ±SE

P. falciparum East Sepik Wosera 110 0.74 ± 0.05 10.44 ± 0.96 9.33 ± 0.79

Madang Malala 62 0.77 ± 0.02 8.89 ± 0.81 8.64 ± 0.78

" Mugil 72 0.77 ± 0.03 9.33 ± 0.67 9.04 ± 0.69

" Utu 64 0.68 ± 0.06 7.78 ± 0.91 7.49 ± 0.87

TOTAL 308 0.80 ± 0.03 13.44 ± 1.26 10.27 ± 0.79

P. vivax East Sepik Wosera 61 0.82 ± 0.03 11.20 ± 1.30 10.59 ± 1.19

Madang Malala 41 0.83 ± 0.02 11.00 ± 1.28 10.89 ± 1.29

" Mugil 54 0.84 ± 0.02 11.40 ± 1.00 10.99 ± 0.96

" Utu 37 0.83 ± 0.02 9.20 ± 0.95 9.19 ± 0.95

TOTAL 193 0.84 ± 0.02 15.30 ± 1.87 11.99 ± 1.28

n = number of isolates genotyped after exclusion of outliers; He = expected heterozygosity; A = Mean number of alleles, Rs = Allelic richness.

doi:10.1371/journal.pntd.0003634.t002
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Population structure
After exclusion of outlier samples and markers (see above), the MDS demonstrated clear diver-
gence of P. falciparum populations in Madang province from the Wosera group of data points,
indicating population structure at least between provinces (Fig 1A). In addition, Utu isolates
were more closely clustered within the Madang cluster. For P. vivax, no such structure was visi-
ble in the MDS analysis, with isolates distributed throughout the main cluster independent of
geographic origin (Fig 1B).

To measure levels of interpopulation differentiation between the different catchments,
pairwise GST values were then determined. GST values were ten-fold higher between

Table 3. Effective population size estimates for P. falciparum and P. vivax populations on the north
coast of Papua NewGuinea.

SMM IAM

P. falciparum Wosera 10508 (4515–23936) 4387 (1885–9994)

Malala 14696 (6315–33476) 5405 (2323–12313)

Mugil 14017 (6023–31929) 5250 (2256–11960)

Utu 6853 (2945–15612) 3329 (1431–7583)

Total 18871 (8109–42986) 6290 (2703–14328)

P. vivax Wosera 24108 (10360–54917) 7276 (3127–16573)

Malala 25344 (10891–57732) 7492 (3220–17067)

Mugil 31778 (13656–72388) 8547 (3673–19470)

Utu 25883 (11123–58960) 7586 (3260–17279)

Total 30353 (13043–69142) 8323 (3577–18960)

SMM = Stepwise mutation model, IAM = Infinite Alleles Model. The mutation rate of 1.59 X 10−4 for P.

falciparum was used for both species. Numbers in brackets are lower and upper estimates derived from

using the 95% confidence upper and lower mutation rates for P. falciparum (Lower = 6.98 X 10−5,

Upper = 3.7 X 10−4) [11].

doi:10.1371/journal.pntd.0003634.t003

Table 4. Estimates of multilocus linkage disequilibrium for P. falciparum and P. vivax populations on the north coast of Papua NewGuinea.

All Infections Single Infections

na ISA (p-value) na ISA (p-value)

P. falciparum Wosera 38 -0.0049 (0.67) 32 -0.0076 (0.72)

Malala 34 0.0015 (0.39) 22 0.0074 (0.71)

Mugil 35 0.0013 (0.43) 21 0.0044 (0.38)

Utu 52 0.0013 (0.42) 36 0.0033 (0.35)

TOTAL 159 0.0088 (0.01) 111 0.0046 (0.15)

P. vivax Wosera 53 0.0071 (0.05) 26 0.0146 (0.04)

Malala 39 0.0079 (0.09) 18 0.0049 (0.32)

Mugil 37 0.0066 (0.12) 10 -0.0235 (0.89)

Utu 27 0.0093 (0.11) 9 -0.0018 (0.58)

TOTAL 156 0.0023 (0.08) 63 0.0053 (0.07)

ISA = Index of Association,
a = all infections,
b = single infections only

doi:10.1371/journal.pntd.0003634.t004
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populations of P. falciparum (range of (0.0171, 0.0264)) than for those of P. vivax (range of
(-0.0011, 0.0028), Table 5). In addition, the more robust measure Jost’s D, also showed higher
levels of differentiation between P. falciparum populations (0.2105, 0.2811) than for P. vivax
((-0.0311, 0.0555),Table 5). D values can be interpreted as the mean proportion of pairwise
private alleles between populations therefore for P. falciparum, 20–28% of alleles in each pop-
ulation are private, while for P. vivax less than 5% of alleles are private (S3 Table). The Mantel
test for correlation between geographical and genetic distance found no significant correla-
tion (S4 Table) indicating that the genetic differentiation observed was consistent with popu-
lation fragmentation and genetic drift rather than isolation by distance.

Fig 1. Multidimensional scaling analysis of P. falciparum and P. vivaxmicrosatellite haplotypes from Papua NewGuinea.Results of
multidimensional scaling analysis (MDS) with cleaned datasets are shown for (A) P. falciparum and (B) P. vivax. Dots indicate individual microsatellite
haplotypes and colours indicate the four sample catchment areas.

doi:10.1371/journal.pntd.0003634.g001

Table 5. Estimates of genetic differentiation among P. falciparum and P. vivax populations on the North Coast of Papua NewGuinea.

P. falciparum Wosera Malala Mugil Utu

Wosera - 0.0199 0.0255 0.0171

Malala 0.2550 - 0.0192 0.0208

Mugil 0.2811 0.2144 - 0.0264

Utu 0.2105 0.2485 0.2560 -

P. vivax Wosera Malala Mugil Utu

Wosera - 0.0028 0.0015 0.0017

Malala 0.0555 - 0.0023 0.0016

Mugil 0.0264 0.0488 - -0.0011

Utu 0.0300 0.0415 -0.0311 -

Jost’s D values lower left, GST values upper right

doi:10.1371/journal.pntd.0003634.t005
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In order to confirm the geospatial population structure observed, Bayesian cluster analysis
of the haploid datasets was run before and after the exclusion of outliers and markers (TAA42
and Pv3.27) for both species using STRUCTURE version 2.3.4 [61]. Preliminary runs with
10,000 MCMC showed additional clustering by catchment in the P. falciparum dataset after
MDS data cleaning (S4 Fig), however the use of a longer chain length of 100,000 MCMC also
resolved four genetically distinct populations that were associated with each of the four catch-
ments, with ΔK peaking at K = 3 (Fig 2A). Although there was evidence of some admixture
among populations, this indicated three or four genetically distinct populations concordant
with the catchment areas and the moderate values of genetic differentiation described above.
For P. vivax there was no clear peak in the ΔK values. As the method of Evanno et al. is not reli-
able at identifying optimal K if K = 1 [62] we inspected the distribution of membership coeffi-
cients at K = 4. This partitioned all genotypes equally into four genetic clusters (Fig 2B), clearly
demonstrating a complete lack of population structure. In addition we compared the new P.
vivax data to that previously produced by Koepfli et al. [46] for nearby villages in East Sepik
and Madang Provinces, as well as data from a village located in a remote inter-montane valley
in the highlands (Sigimaru) and the Solomon Islands (S5 Fig). The results confirm a complete

Fig 2. Bayesian cluster analysis of P. falciparummicrosatellite haplotypes from Papua NewGuinea. Individual ancestry coefficients are shown for (A)
P. falciparum for K = 2–4 and (B) P. vivax for K = 4. Data generated in this study were analysed with STRUCTURE version 2.3.4 software [61]. Each vertical
bar represents an individual haplotype and the membership coefficient (Q) within each of the genetic populations, as defined by the different colours. A chain
length of 100,000 Monte Carlo Markov Chain iterations was used after a burn in of 10,000 steps using the admixture model and correlated allele frequencies.
Each vertical bar represents an individual haplotype and its membership to each population is defined by the different colours. Black borders separate the
four catchments.

doi:10.1371/journal.pntd.0003634.g002
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lack of detectable population structure for P. vivax in the SW Pacific region, based on the mi-
crosatellite markers [46].

Discussion
Higher diversity among global P. vivax isolates than among P. falciparum isolates has been pro-
posed to be consistent with more stable transmission over a long period of time and/or deeper
evolutionary roots [66]. In some co-endemic areas, such as South America, the higher micro-
satellite diversity of P. vivax can be explained by its more stable transmission than P. falcipa-
rum [19,67]. A higher mutation rate of P. vivaxmicrosatellites has also been proposed as one
possible mechanism for the higher diversity of this species in South East Asia [17]. Within
PNG, we have shown that despite comparably high transmission, as measured by EIR [31–33]
and slightly lower infection prevalence than P. falciparum [36,37], P. vivax has greater genetic
diversity and larger effective population sizes. Furthermore, we show for the first time that pop-
ulations of P. vivax are highly admixed compared to sympatric populations of P. falciparum,
which appear to be fragmented according to the analyses of genetic differentiation and popula-
tion structure. In addition to the previous explanations for the higher diversity of P. vivax, we
propose that the contrasting patterns of population structure at least partially reflect differences
in the biology of these species. In particular, the ability of P. vivax to develop dormant hypno-
zoites and cause consecutive relapses is likely to provide more opportunities for the exchange
and dissemination of alleles.

Higher genetic diversity suggests that P. vivax has greater evolutionary potential, which may
allow it to adapt more rapidly to various environmental challenges including new antimalarial
interventions. Indeed, our previous work has shown that P. vivax has much greater diversity in
genes encoding the orthologs encoding the vaccine candidate AMA1, suggesting that it will be
more difficult to vaccinate against all strains [68]. Because of its panmictic population structure
in PNG, P. vivaxmay also be able to disseminate advantageous traits, such as drug resistance,
more effectively than P. falciparum.

The generation of diversity in malaria parasite populations is facilitated by multiple clone
infections [11], that permit the concurrent transmission of distinct clones which recombine in
the mosquito midgut, generating novel genotypes [69]. Mean MOI values were similar between
species, however the proportion of multiple infections differed considerably between species
and between populations, possibly reflecting differences in transmission, which may be the re-
sult of relapsing P. vivax hypnozoites [70]. It should also be noted that the detection of clones
would have been limited to a greater extent for P. vivax since it has lower density infections, in
which case MOI for P. vivaxmay be underestimated. Whatever the case, the higher proportion
of multiple infections in P. vivax provides a possible mechanism for generating and maintain-
ing high levels of genetic diversity. That neither species showed any significant multilocus LD
confirms high levels of outcrossing and overall high levels of transmission for both species,
which contrasts with areas of low transmission where significant LD and clonal population
structures have been observed in both species [17,19]. Differences in the proportion of multiple
infections, if maintained over long periods of time, may be enough to drive the higher diversity
of P. vivax compared to P. falciparum in PNG.

The contrasting patterns of population structure in PNG are consistent with P. vivaxmain-
taining a large and relatively constant population size for a long period of time. For P. falcipa-
rum, the data suggest that allelic exchange between geographic regions may be or has been
restricted or subject to population bottlenecks in the past. P. vivax was historically the domi-
nant species in PNG [10,71] and the greater diversity observed could have resulted from an ear-
lier colonisation of PNG by this species, and/or more frequent outcrossing as a result of a
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consistently higher proportion of multiple infections. While microsatellites can yield important
information into population structure on an epidemiologically relevant time scale (tens to hun-
dreds of years), studies using mitochondrial DNA (mtDNA) have provided great insight into
the global spread and local population history of these two parasites. P. vivax has extraordinary
mtDNA diversity in PNG with distinct haplotypes compared to other regions of the world. The
most recent common ancestor has a wide age range (41–251 kya) and demographic modelling
indicates a steady increase in population size over past millennia [72]. On the other hand, the
P. falciparum population of PNG is dominated by one mtDNA haplotype also found in all
other global P. falciparum populations, in addition to a number of rarer, private haplotypes,
consistent with a relatively recent introduction and rapid population expansion within the last
30–50 kya [73,74]. It is therefore plausible that an earlier colonisation by P. vivaxmay have
contributed to the higher baseline microsatellite diversity. It is also highly likely that recent
events have shaped the population structure of P. falciparum and P. vivax in PNG, in a time
frame detectable by microsatellite markers. The Indoor Residual Spraying programme, initiat-
ed in 1957 as part of the last Global Malaria Eradication Program, led to a substantial decline
in the prevalence of all malaria species in PNG and particularly P. falciparum. After this control
programme was abandoned in the late 1970s, malaria resurged with P. falciparum emerging as
the dominant species [10,71], facilitated by the emergence of chloroquine resistance (CQR)
[75]. The greater impact of control efforts and possibly CQR on P. falciparum is likely to have
caused population bottlenecks, with consequent reductions in effective population size and
limited gene flow leading to substantial genetic differentiation between populations. P. vivax
cases also declined during this time, but as we have mentioned above, this parasite has high lev-
els of population diversity even at low transmission [13,14,17,19,42,43], indicating that it may
be less susceptible than P. falciparum to population bottlenecks resulting from declining trans-
mission. In other geographic areas where interventions have succeeded in reducing the trans-
mission of both species to very low levels, continuing malaria control efforts have had a less
dramatic impact on P. vivax, suggesting that this parasite is more resistant to interventions
[1,5,76]. This is likely to be a consequence of its unique biological characteristics, especially re-
lapse, which provides more opportunities for outcrossing and dissemination of clones and may
thus have allowed P. vivax to maintain large effective population sizes and gene flow even at
low transmission.

In tropical areas such as PNG, relapsing hypnozoites contribute to at least 50% and up to
80% of all blood stage infections [70], with activation of hypnozoites allowing multiclonal in-
fections even during times of low transmission intensity, in turn increasing the chances of out-
breeding and reducing the likelihood of bottlenecks [77]. Dormancy may also aid the break
down of population structure over large distances, as parasites hitchhike during human migra-
tion over greater distances than mosquitoes can travel. Human movement has been shown to
be important for gene flow between island populations, however where human populations are
continuous, gene flow likely occurs from a combination of both human and vector movement
[78]. Hypnozoites not only facilitate the movement of parasite genotypes over large geographic
distances, but constant reinfection and relapses of parasites from distinct inocula would allow
for the recombination of distinct parasite clones and generations, promoting and maintaining
high genetic diversity. In addition, P. vivax gametocytes appear in the blood stream earlier dur-
ing an infection than P. falciparum gametocytes, and may be infective to mosquitoes before pa-
tients become symptomatic and seek treatment, thereby increasing the overall gene pool [6]. In
the context of intensive malaria control, decreases in P. vivax diversity and subdivision of pop-
ulations are thus less likely than for P. falciparum, and would only result from long-term, sus-
tained interruption of transmission. This also provides an explanation for how P. vivax
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maintains high diversity even at low transmission and the absence of population structure ob-
served here and in previous studies [46].

It is important to point out that the inclusion of outlier samples and markers in the popula-
tion genetic analyses had a clear impact on the resolution of population structure. Clustering
methods such as PCA and MDS are affected by outlier samples and markers, thus failure to re-
move these may hide true clustering patterns. These may be aberrant genotypes or infections
imported from other endemic areas of PNG or beyond, however without samples from poten-
tial source populations this is not possible to confirm. After the removal of outliers, geographic
population structure could be detected in P. falciparum samples based on one MDS coordinate.
The bimodal clustering pattern observed along the other axis was driven by TAA42, which
may be due to selection or technical artefacts. Running STRUCTURE for at least 100,000
MCMC steps also resolved the populations in the presence of TAA42, indicating that STRUC-
TURE was somewhat robust to outliers. However the analysis required more MCMC steps
than are usually employed, indicating that the outliers produced a more complex likelihood,
making it more difficult for the method to identify the maximum likelihood. As far as we are
aware, data cleaning such as this is not routinely performed in microsatellite studies. Given the
high probability of technical artefacts, and that population specific selection that may influence
the allele frequencies of certain markers [63], we advocate the MDS and PCA data cleaning ap-
proaches for other studies of microsatellite-based population structure.

In conclusion, in an area of PNG where EIR and prevalence were comparably high at the
time of sampling, P. vivax populations were consistently more genetically diverse, had larger ef-
fective population sizes and were more highly admixed compared to sympatric P. falciparum
populations, which consisted of fragmented subpopulations. We propose this is driven by
higher effective transmission of P. vivax, at least in part due to the re-activation of parasites
from a pool of genetically diverse hypnozoites. The results underline the biological and histori-
cal differences between these two malaria species and illustrate why P. vivax is a greater chal-
lenge to elimination efforts. Distinct evolutionary histories [72–74,79], historically higher
prevalence of P. vivax in PNG [80] and maintenance of high diversity at low transmission dur-
ing the last eradication program are also likely to be contributing factors [10,37,46]. This war-
rants investigations to further elucidate the comparative demographic histories of P.
falciparum and P. vivax in endemic areas, to understand the impact of past control efforts on
the different species and to predict future outcomes of current control efforts. Since the sam-
ples were collected prior to intensified malaria control, these results will form the baseline
against which future changes will be compared [81]. Significant reductions in the prevalence of
both species in recent years, as the result of a nationwide control programme [1,82], may have
had an impact upon these population structures. As intensive control has been maintained, re-
ductions in diversity and increases in population structure could ultimately result, signalling
the interruption of transmission [27]. The results also show that it will be important to measure
changes in parasite population structure to inform control and elimination programs in areas
where P. vivax is present, since traditional epidemiological parameters will underestimate true
transmission rates.

Supporting Information
S1 Fig. Map of the study area. This map has been previously published in Schultz et al. 2010
Malaria Journal 2010, 9:336 10.1186/1475-2875-9-336 (copyright A. E. Barry).
(DOCX)

S2 Fig. Data cleaning for P. falciparummicrosatellite haplotypes.Multidimensional Scaling
(MDS) analyses for P. falciparum: (A) All genotyped samples. This analysis identified sample
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outliers that were distinct to the main cluster. Arrows indicate the five outliers that were appar-
ent with coordinates one and two only. Removal and reanalysis of all coordinates revealed 12
outliers in total that were distinct to the main cluster. (B) After the removal of outlier samples.
Separation of Wosera (green) and Madang (blue, yellow and red) was observed along the sec-
ond principle component axis. Furthermore, the Utu (red) samples appeared to form a more
compact cluster than other populations consistent with other analyses of genetic differentiation
(Table 5) and population structure (Fig 1 and S4 Fig). The separation observed along the first
component was unusual and was investigated further using Principle Components Analysis
(PCA). (C) Biplot from PCA. PCA was only performed with individuals with no missing geno-
type data (N = 123). Inspection of the PCA biplot confirmed that the clustering was primarily
driven by the marker TAA42, which has a bimodal allele frequency distribution. The cause of
this is unknown and needs to be investigated. Further clustering was observable along the co-
ordinate two axis with polyalpha showing some ability to discriminate between populations.
As TAA42 did not conform to the patterns observed for other markers, genotypes for this
locus were removed from the final dataset (see Fig 1A). Dots indicate individual microsatellite
haplotypes and colours indicate the four sample catchment areas.
(TIF)

S3 Fig. Datacleaning for P. vivax haplotypes.Multidimensional Scaling (MDS) analyses for
P. vivax samples: (A) All genotyped samples. This identified sample outliers. Eight were found
with these two coordinates as indicated by the arrows and samples in the ellipse. Removal and
reanalysis of all coordinates revealed 11 outliers in total that were distinct to the main cluster.
(B) After the removal of outlier samples. This shows samples from all populations were distrib-
uted throughout the main cluster demonstrating a lack of population structure as shown by
other analyses (Fig 1 and Table 4). (C) Biplot for the PCA without the 11 outliers. PCA was
only performed with individuals with no missing genotype data (N = 148). Inspection of the
PCA biplot confirmed that some clustering was primarily driven by the marker Pv3.27, which
has excess diversity in PNG populations [83]. As Pv3.27 did not conform to the patterns ob-
served for other markers, genotypes for this locus were removed from the final dataset. Dots in-
dicate individual microsatellite haplotypes and colours indicate the four sample catchment
areas.
(TIF)

S4 Fig. Bayesian cluster analysis of P. falciparummicrosatellite haplotypes before and after
data cleaning. Individual ancestry coefficients are shown for P. falciparum haplotypes (A)
prior to data cleaning and (B) after data cleaning. Haplotypes were analysed with Structure ver-
sion 2.3.4 software [61]. A chain length of 10,000 Monte Carlo Markov Chain iterations was
used after a burn in of 10,000 using the admixture model and correlated allele frequencies. Re-
sults are shown for four populations (K = 4), demonstrating the partitioning of diversity
amongst each of four genetic clusters. Each vertical bar represents an individual haplotype and
the membership coefficient within each of the four genetic populations, as defined by the dif-
ferent colours. Black borders separate the four catchments. Note the greater definition of the
four geographic populations following data cleaning.
(TIF)

S5 Fig. Bayesian cluster analysis of P. vivaxmicrosatellite haplotype data for Papua New
Guinea and the Solomon Islands. Individual ancestry coefficients for P. vivax haplotypes
from this study and previously published data. Haplotypes generated in this study were com-
bined with those from Koepfli et al. [46] and analysed using Structure version 2.3.4 software
[61]. A chain length of 100,000 Monte Carlo Markov Chain iterations was used after a burn in
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of 10,000 using the admixture model and correlated allele frequencies. Results are shown for
two populations (K = 2). Each vertical bar represents an individual haplotype and the member-
ship coefficient (Q) within each of the two genetic populations, as defined by the different col-
ours. Black borders separate haplotypes from different catchments in the following order: East
Sepik Province (Wosera, IlaitaA, IlaitaB, IlaitaC, Kunjingini, Ingambils, Kamanakor and
Sunuhu), Madang Province (Malala, Mugil, Utu and Alexishafen), Sigimaru, which is a rela-
tively isolated population located in an intermontane valley in the highlands, and the Solomon
Islands (Guadalcanal).
(TIF)

S1 Table. Estimates of genetic differentiation between single and dominant infection hap-
lotype datasets for P. falciparum and P. vivax. Jost’s D values and GST were calculated be-
tween haplotypes reconstructed from single and dominant infections. All values were negative
or very low indicating no genetic differentiation between single and dominant infection data-
sets. Therefore the two datasets were combined for each species and population thus increasing
sample size.
(DOCX)

S2 Table. Associations between different molecular epidemiological parameters.
(DOCX)

S3 Table. Microsatellite allele frequencies for P. vivax populations from Papua New Guin-
ea.
(DOCX)

S4 Table. Associations between geographical and genetic distance (Mantel test).
(DOCX)

S1 Text. Strategy for exclusion of stutter peaks in fragment analysis.
(DOCX)

S1 Dataset. P. falciparum and P. vivaxmicrosatellite haplotypes including all data and
cleaned datasets.
(XLSX)
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