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Impact of RNA‑seq data analysis 
algorithms on gene expression 
estimation and downstream 
prediction
Li Tong1,24, Po‑Yen Wu2,24, John H. Phan1,24, Hamid R. Hassazadeh3, SEQC Consortium*, 
Weida Tong5,25 & May D. Wang1,25*

To use next‑generation sequencing technology such as RNA‑seq for medical and health applications, 
choosing proper analysis methods for biomarker identification remains a critical challenge for most 
users. The US Food and Drug Administration (FDA) has led the Sequencing Quality Control (SEQC) 
project to conduct a comprehensive investigation of 278 representative RNA‑seq data analysis 
pipelines consisting of 13 sequence mapping, three quantification, and seven normalization methods. 
In this article, we focused on the impact of the joint effects of RNA‑seq pipelines on gene expression 
estimation as well as the downstream prediction of disease outcomes. First, we developed and applied 
three metrics (i.e., accuracy, precision, and reliability) to quantitatively evaluate each pipeline’s 
performance on gene expression estimation. We then investigated the correlation between the 
proposed metrics and the downstream prediction performance using two real‑world cancer datasets 
(i.e., SEQC neuroblastoma dataset and the NIH/NCI TCGA lung adenocarcinoma dataset). We found 
that RNA‑seq pipeline components jointly and significantly impacted the accuracy of gene expression 
estimation, and its impact was extended to the downstream prediction of these cancer outcomes. 
Specifically, RNA‑seq pipelines that produced more accurate, precise, and reliable gene expression 
estimation tended to perform better in the prediction of disease outcome. In the end, we provided 
scenarios as guidelines for users to use these three metrics to select sensible RNA‑seq pipelines for 
the improved accuracy, precision, and reliability of gene expression estimation, which lead to the 
improved downstream gene expression‑based prediction of disease outcome.

The first phase of the FDA-led microarray quality control project (MAQC-I) investigated the reliability of 
microarray platforms for gene expression  estimation1. The second phase of the project, MAQC-II, studied 
30,000 + microarray data analysis pipelines to assess the reproducibility of microarray-based predictive  models2. 
Given the rise of the significance of next-generation sequencing in gene expression analysis, the FDA initiated 
the sequencing quality control project (SEQC) as a continuing MAQC effort to conduct an in-depth assessment 
of RNA-seq by combining the objectives of both MAQC-1 and MAQC-II3–6. Specifically, the goal of SEQC 
was to conduct a comprehensive evaluation of both RNA-seq technology and RNA-seq data analysis pipelines, 
which was similar to the objectives of MAQC-I and MAQC-II for microarrays. While Su et al. summarized the 
RNA-seq technology  investigation7, this complementary article focuses on the RNA-seq data analysis pipelines 
targeting medical and health applications. Specifically, this article examines the effect of RNA-seq pipelines on 
gene expression with three critical metrics (i.e., accuracy, precision, and reliability), and further on downstream 
gene expression-based prediction of disease outcomes. Although other analyses of RNA-seq are possible (e.g., 
differential expression  analysis8–10, alternative  splicing11–13, and RNA  fusion14,15), we focus on gene expression 
because it is the most widely used genetic variations in biomedical and health applications.
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For medical and health applications, choosing a proper RNA-seq gene expression analysis pipeline remains 
a critical challenge due to its relative immaturity (i.e., fewer standards reported compared with microarrays), 
complexity, and diverse  applicability16,17. We performed a literature survey on RNA-seq pipelines consisting 
of sequence  mapping18–29, expression  quantification30–33, and expression  normalization6,34–36. For evaluation 
of RNA-seq pipelines, the majority strategy is to use some sorts of benchmark datasets, or reference standards 
to enable quality control (e.g., natural well-characterized genetic materials or synthetic spike-in controls)37. 
For benchmark dataset-based evaluation, multiple comparative investigations exist for focusing on individual 
components of RNA-seq pipelines, such as mapping  alone25,38–42, quantification  only33,43, or  normalization34,44,45. 
Correspondingly, the joint impact of each of these three components is less understood. For examples, a previous 
analysis of 50 RNA-seq pipelines examined combinations of ten mapping and five quantification algorithms, but 
it did not study the effect of different normalization methods’ impact and the interaction effect among pipeline 
 components46; another study investigated three mapping, two quantification, and five differentially expressed 
gene (DEG) detection methods, but it did not report the interaction effect among components  either47; a third 
study by Sahraeian et al. examined 120 combinations of 39  tools14 for RNA variant calling, RNA editing, RNA 
fusion, gene expression, and differential expression, but it did not provide an assessment on their impact on 
gene-expression-based downstream prediction. Most FDA approvals on medical genomics would be relevant to 
gene expression applications. To the best of our knowledge, no studies have comprehensively examined the joint 
effect of RNA-seq pipeline components on gene expression and its downstream prediction of disease outcomes. 
Thus, this article dedicates to this goal.

The FDA coordinated multiple sites of SEQC to generate a multi-replicate benchmark dataset (referred to as 
SEQC-benchmark)7 and a clinical dataset consisting of neuroblastoma patient samples (referred to as SEQC-
neuroblastoma)48. In addition, we have another real-world clinical dataset on lung adenocarcinoma (referred to as 
TCGA-lung-adenocarcinoma) from The Cancer Genome Atlas (TCGA). These datasets were used to investigate 
the joint impact of pipeline components on downstream gene expression-based prediction in a two-phase study:

(1) Phase-1 we developed three metrics—accuracy, precision, and reliability—for assessing the performance 
of a representative set of 278 RNA-seq pipelines (Fig. 1, blue box) using the SEQC-benchmark dataset (i.e., 
A, B, C and D where C is 75/25 of A/B while D is 25/75 of A/B).

(2) Phase-2 we validated the benchmark metrics by quantifying gene expression in the SEQC-neuroblastoma 
dataset and the TCGA-lung-adenocarcinoma dataset, and demonstrated that the benchmark metrics are 
informative for inferring downstream prediction of disease outcome (Fig. 1, pink box).

Our comprehensive investigation revealed that RNA-seq pipeline components—mapping, quantification, and 
normalization—jointly impacted the accuracy, precision, and reliability of gene expression, and consequently, 
affected the downstream performance of predicting neuroblastoma and lung adenocarcinoma outcome. RNA-
seq pipelines that performed well in gene expression estimation also performed well in downstream prediction 
of disease outcome.

Results
Phase‑1: assessing the joint impact of pipeline components on gene expression estimation 
with the benchmark metrics. We systematically investigated 278 RNA-seq pipelines (Supplementary 
Table S1) that included combinations of mapping, quantification, and normalization components listed in Sup-
plementary Tables S2–S4. Sequence mapping algorithms were further categorized based on mapping strategy 
(i.e., un-spliced and spliced) and mapping reporting (i.e., single-hit and multi-hit) (refer to the “Method” sec-
tion “Sequence mapping”). To gain insight into these pipelines, we used the SEQC-benchmark dataset and a 
quantitative PCR (qPCR) benchmark dataset. Because the qPCR results vary among  platforms7, we filtered them 
to keep the genes that fit the titration ratio of A–D samples (Supplementary Fig. S1). After filtering with the 
titration ratio, we only used 10,222 genes (out of a total of 20,801 genes assayed with qPCR) as a benchmark 
reference. Supplementary Tables S5 and S6 summarize SEQC benchmark samples and datasets. Supplementary 
Table  S7 summarizes the three metrics—accuracy, precision, and reliability—used to evaluate each pipeline. 
These metrics are detailed in the “Method” section. The joint effect of mapping, quantification, and normali-
zation with respect to these three metrics was assessed comprehensively for all genes (the entire set of 10,222 
genes, referred as AllGenes hereafter) and for the low-expression genes (2044, the subset of AllGenes, referred as 
LowExpressGenes hereafter) as described in Supplementary Fig. S1 and “Method” section.

We defined the accuracy metric as the deviation of RNA-seq pipeline-derived log ratios of gene expression 
from the corresponding qPCR-based log ratios and visualized the median accuracy of AllGenes and LowEx-
pressGenes using heatmaps (Fig. 2a, Supplementary Fig. S2). We observed the following results:

(1) Using AllGenes, the log-ratio deviation between RNA-seq and qPCR ranged from 0.27 to 0.63 (Fig. 2a). A 
smaller deviation represents higher accuracy. Median normalization exhibited the lowest deviation, or the 
highest accuracy, compared with all other normalization methods. In addition, for all mapping-quantifica-
tion combinations, the [Bowtie2 multi-hit + count-based] pipelines showed the largest deviation. Moreover, 
pipelines with multi-hit mapping and count-based quantification generally showed a larger deviation than 
other pipelines. Among all pipeline factors, normalization was the largest statistically significant (p < 0.05) 
source of variation (Fig. 3a).

(2) The log-ratio deviation using LowExpressGenes was larger than that using AllGenes, and it ranged from 
0.45 to 0.69 (Supplementary Fig. S2). The trends of pipeline performance were similar to those using All-
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Genes, and normalization was also the largest statistically significant (p < 0.05) source of variation (Sup-
plementary Fig. S3).

(3) In summary, median normalization with most mapping and quantification algorithms, except for the 
[Bowtie2 multi-hit + count-based] pipelines, was the best choice for quantifying genes with high accuracy, 
or low deviation from qPCR.

We defined the precision metric as the coefficient of variation (CoV) of gene expression across replicate 
libraries, and visualized the median precision of AllGenes and LowExpressGenes using heatmaps (Fig. 2b, Sup-
plementary Fig. S4). We observed the following results:

(1) Using AllGenes, the CoV ranged from 6.30 to 7.96% (Fig. 2b). Smaller CoV represents higher preci-
sion. Pipelines with any of Novoalign, GSNAP un-spliced, or WHAM mapping, and RSEM quantification 
resulted in higher CoV, or lower precision, despite the choice of normalization methods. In addition, the 
[Bowtie2 multi-hit + count-based + med.] pipeline led to the largest CoV. Moreover, for each mapping-
normalization combination, pipelines with either count-based or Cufflinks quantification reported higher 
precision than those with RSEM quantification, except the [Bowtie2 multi-hit + count-based + med.] pipe-
line mentioned previously. Quantification, mapping algorithm, and their interaction were the largest sta-
tistically significant (p < 0.05) sources of variation (Fig. 3b).

(2) The CoV using LowExpressGenes was larger than that using AllGenes, and it ranged from 11.0 to 15.6% 
(Supplementary Fig. S4). The trends of pipeline performance were similar to those using AllGenes, except 
that the [Bowtie2 multi-hit + count-based] pipelines exhibited the highest precision among others. Again, 
quantification, mapping algorithm, and their interaction were the largest statistically significant (p < 0.05) 
source of variation (Supplementary Fig. S5).

(3) In summary, pipelines with any of Bowtie2 multi-hit, GSNAP un-spliced, or Subread mapping and either 
count-based or Cufflinks quantification, except for the [Bowtie2 multi-hit + count-based + med.] pipeline, 
were the best choice for quantifying genes with high precision, or low CoV.

Figure 1.  The SEQC consortium developed and validated a guideline for selecting RNA-seq pipelines for 
gene expression-based predictive modeling using the SEQC-benchmark, SEQC-neuroblastoma, and TCGA-
lung-adenocarcinoma datasets. Phase-1 of the investigation developed the metrics that captured the accuracy, 
precision, and reliability of RNA-seq pipelines (the blue box). Using the SEQC-neuroblastoma and TCGA-lung-
adenocarcinoma datasets, Phase-2 of the investigation determined that RNA-seq pipeline metrics can be used to 
select pipelines that result in better performance in terms of predicting cancer outcome (the pink box).
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We defined the reliability metric as the intra-class (i.e., intra-sample in the context of the SEQC-benchmark 
dataset) correlation (ICC) of gene expression, and visualized the median reliability of AllGenes and lowEx-
pressGenes using heatmaps (Fig. 2c, Supplementary Fig. S6). We observed the following results:

(1) Using AllGenes, the ICC ranged from 0.972 to 0.991 (Fig. 2c). Larger ICC represents higher reliability. 
Median normalization exhibited the highest ICC, or the highest reliability, compared with all other nor-
malization methods. In addition, pipelines with Novoalign mapping and RSEM quantification resulted in 
lower ICC for all but Median normalization. Moreover, the [Bowtie2 multi-hit + count-based] pipelines 
showed the lowest ICC. Furthermore, for each mapping-normalization combination, pipelines with either 
count-based or Cufflinks quantification always reported higher ICC than those with RSEM quantifica-
tion, except the [Bowtie2 multi-hit + count-based] pipelines mentioned previously. Normalization was 
the largest statistically significant (p < 0.05) source of variation (Fig. 3c), followed by two-way [mapping 
algorithm*quantification] interaction.

(2) The ICC using LowExpressGenes was smaller than that using AllGenes, and it ranged from 0.938 to 
0.975 (Supplementary Fig. S6). The trends of pipeline performance were similar to those using AllGenes, 
except that the [Novoalign + RSEM] pipelines exhibited the lowest ICC, followed by the [Bowtie2 multi-
hit + count-based] pipelines. Normalization, two-way [mapping algorithm*quantification] interaction, 
quantification, and mapping algorithm were the largest statistically significant (p < 0.05) sources of varia-
tion (Supplementary Fig. S7).

(3) In summary, median normalization along with most mapping and quantification algorithms, except for the 
[Bowtie2 multi-hit + count-based] and [Novoalign + RSEM] pipelines, was the best choice for quantifying 
genes with high reliability, or high ICC.

We also examined whether the performance of metrics depended on the characteristics of sequence mapping 
results. We used M-estimation with Huber weighting to fit robust linear models that capture the relationship 
between the benchmark metrics and alignment profiles (see the “Method” section for details). The accuracy 
metric correlated with the number of mismatches per mapped read, and the precision and reliability metrics 
correlated with the number of mapped fragments (Supplementary Fig. S12). Fewer mismatches per read and 
more mapped fragments tended to lead to more accurate, precise, and reliable gene expression.

In summary, the Phase-1 investigation using the SEQC-benchmark dataset demonstrated that gene expres-
sion estimation is significantly impacted by the joint effect of multiple RNA-seq pipeline components (Figs. 2, 3).

Phase‑2: the impact of RNA‑seq pipeline on the disease outcome prediction performance. We 
used the SEQC-neuroblastoma and TCGA-lung-adenocarcinoma datasets to assess the impact of upstream 
RNA-seq pipeline components on the downstream prediction of disease outcome using gene expression (Fig. 1). 
The SEQC-neuroblastoma dataset, provided by the SEQC consortium, contains RNA-seq data of 176 primary 
neuroblastomas obtained from high-risk patients with well-annotated clinical  data48, in which survival infor-
mation, including event-free survival (EFS) and overall survival (OS), was used for defining group labels (Sup-
plementary Table S9). The TCGA-lung-adenocarcinoma dataset contains RNA-seq data of patients with known 
survival time used for defining group labels (Supplementary Table S10).

We used the same set of 278 RNA-seq pipelines to process the SEQC-neuroblastoma dataset (we used only 156 
out of the 278 pipelines for the TCGA-lung-adenocarcinoma dataset). For each set of estimated gene expression 
(278 for neuroblastoma and 156 for lung adenocarcinoma), we performed nested cross-validation (Supplemen-
tary Fig. S13, “Method” section) using three classifiers—adaptive boosting, logistic regression, and support vector 
machines, which are proven to be robust and mostly used in machine learning. For each clinical endpoint—neu-
roblastoma EFS, neuroblastoma OS, and lung adenocarcinoma survival—we calculated the AUC (area under the 
ROC curve) and MCC (Matthews correlation coefficient), and visualized these using heatmaps (Supplementary 
Figs. S14–S16). We observed the following results:

(1) For the neuroblastoma EFS endpoint, pipelines using count-based quantification with TMM, RLE, upper 
quartile, or median normalization tended to achieve high AUC and MCC; while those with FPM or FPKM 
normalization tended to perform poorly. In addition, Novoalign with Cufflinks and Bowtie2 or BWA with 
RSEM led to poor AUC and MCC, especially when combining with FPM or FPKM normalization (Sup-
plementary Fig. S14).

Figure 2.  The 278 RNA-seq pipelines applied to the SEQC-benchmark dataset differ in terms of gene 
expression accuracy, precision, and reliability. In each heatmap, the rows are different settings for 13 aligners 
and the columns are combinations of three quantification and seven normalization methods. (a) Accuracy is 
defined as the deviation of pipeline-derived log ratios of gene expression from the corresponding qPCR-based 
log ratios. Median accuracy of all genes (i.e., 10,222 genes) is encoded as color, with red representing the highest 
accuracy, or the lowest deviation from qPCR. (b) Precision is defined as the coefficient of variation (CoV) of 
gene expression over replicate libraries. Median precision of all genes is encoded as color, with red indicating 
the highest precision, or the lowest CoV. (c) Reliability is defined as the intraclass (or intra-sample in our 
context) correlation that quantifies how similar replicate libraries of a sample are to one another using analysis 
of variance techniques. Median reliability of all genes is encoded as color, with red representing the highest 
reliability, or the highest intraclass correlation. Refer to the “Method” section for mathematical definitions of 
accuracy, precision, and reliability in the context of RNA-seq pipelines.

▸
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Figure 3.  Analysis of variance decomposes the overall variance in (a) median accuracy of all genes, (b) median precision of all genes, 
and (c) median reliability of all genes into various factors considered, including five RNA-seq pipeline components (i.e., mapping 
algorithm, mapping strategy, mapping reporting, quantification, and normalization) and nine associated two-way interactions. The 
statistical significance of each component’s or interaction’s contribution is denoted by red asterisks, with ‘***’ indicating p-values are 
smaller than 0.001, ‘**’ indicating p-values are smaller than 0.01, and ‘*’ indicating p-values are smaller than 0.05.
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(2) For the neuroblastoma OS endpoint, median normalization led to higher AUC and MCC than other 
normalization methods for most mapping-quantification combinations. GSNAP un-spliced mapping per-
formed well with count-based or Cufflinks quantification but not RSEM quantification. In addition, pipe-
lines with RSEM quantification and any of upper quartile, RLE, or TMM normalization tended to result 
in poor AUC and MCC (Supplementary Fig. S15).

(3) For the lung adenocarcinoma survival endpoint, pipelines with count-based quantification and TMM nor-
malization tended to achieve high AUC and MCC. TopHat alignment with either count-based or Cufflinks 
quantification also performed well. In contrast, pipelines with any of Novoalign single-hit, STAR, GSNAP 
un-spliced multi-hit, or Bowtie2 multi-hit and Cufflinks resulted in lower AUC and MCC (Supplementary 
Fig. S16).

(4) ANOVA for each neuroblastoma endpoint showed that normalization was the largest statistically significant 
(p < 0.05) source of variation, followed by mapping algorithm, two-way [mapping algorithm*quantification] 
interaction, and two-way [quantification*normalization] interaction (Supplementary Figs. S17, S18). For 
the lung adenocarcinoma endpoint, several pipeline components and their interactions contributed more 
evenly to the overall variance that may be due to only 156 pipelines were conducted (Supplementary 
Fig. S19). All ANOVA reported large residual variance that should be explained by higher order interac-
tions.

These results suggested that the choice of upstream RNA-seq pipeline components significantly impacted the 
performance of downstream prediction of disease outcome. Supplementary Tables S11 and S12 summarize the 
predictive modeling performance for the 278 and 156 RNA-seq pipelines applied to the SEQC-neuroblastoma 
and TCGA-lung-adenocarcinoma datasets, respectively.

We ranked the 278 RNA-seq pipelines base on the average rank of a combination of the three metrics. The 
top 10% pipelines were chosen as the good-performing pipelines while the bottom 10% pipelines were chosen 
as the poor-performing pipelines. We then compared good-performing versus poor-performing pipelines in 
conducting gene-expression-based prediction of disease outcome and the success rates of patient stratification 
for the three endpoints (see the “Method” section for details). The comparison was assessed with the one-sided 
Wilcoxon rank-sum test (Fig. 4).

For the prediction of neuroblastoma OS endpoint, average prediction performance (i.e., AUC and MCC) of 
good-performing pipelines was statistically significantly (p < 0.05) larger than that of poor-performing pipelines 
(Fig. 4a,b). For the prediction of neuroblastoma EFS endpoint, average MCC of good-performing pipelines was 
statistically significantly (p < 0.05) larger than that of poor-performing pipelines (Fig. 4c) and the average AUC 
of good-performing pipelines was larger than that of poor-performing pipelines with p slightly larger than 0.05 
(Fig. 4d). For the prediction of LUAD survival endpoint, average prediction performance (i.e., AUC and MCC) 
of good-performing pipelines was larger than that of poor-performing pipelines (Fig. 4e,d) but also with p 
slightly larger than 0.05.

In addition, good-performing pipelines (e.g., the [GSNAP un-spliced single-hit + Cufflinks + median] pipe-
line) tended to result in higher success rates of patient stratification than poor-performing pipelines (e.g., the 
[BWA + RSEM + RLE] pipeline). Figure 5 demonstrates Kaplan–Meier estimated survival functions for high-risk 
and low-risk patients for all endpoints. Good-performing pipelines tended to achieve statistically significant 
separation (p < 0.05) of the two patient groups (Fig. 5a–c), while poor-performing pipelines were more likely to 
fail (Fig. 5d–f). Supplementary Table S13 summarizes the success rates of patient stratification (i.e., p < 0.05 based 
on the two-tailed log-rank test) for the 278 and 156 RNA-seq pipelines applied to the SEQC-neuroblastoma and 
TCGA-lung-adenocarcinoma datasets, respectively.

Discussion
We performed a systematic investigation of the 278 representative RNA-seq pipelines in two sequential phases. 
In Phase-1, we developed three metrics to characterize RNA-seq pipelines using the SEQC-benchmark dataset: 
(1) accuracy measures gene expression estimation against the qPCR ground truth results, providing justification 
to support downstream biological interpretation; (2) precision assesses the fluctuation of such a measurement 
across replicates, estimating the measurement behavior; (3) reliability the consistency of such a measurement 
among all the samples, offering the confidence of such a measurement. All these metrics are of great value to 
support the downstream biological interpretation of gene expression results. We observed that RNA-seq pipeline 
components jointly affected gene expression estimation (Figs. 2, 3). This comprehensive investigation provides 
a framework to assist pipeline selection, which had not previously been reported where individual RNA-seq 
pipeline components are usually focused (e.g.,  mapping42).

Supplementary Table S15 summarizes and compares the results of our study to previous studies focusing on 
individual pipeline components. For example, previous studies observed that RUM, GSNAP spliced, STAR, and 
MapSplice mapping led to more accurate base-level alignment and splice junction  detection25,39. In addition, 
BWA, Bowtie, and Bowtie2 mapping were reported to be robust to sequencing errors and  indels38. We similarly 
observed considerable differences in alignment profiles among mapping algorithms, and such the differences 
led to variations in the benchmark metrics (Supplementary Fig. S12, “Method” section). For example, Bowtie2 
multi-hit mapping aligned many more reads, a higher percentage of which were sub-optimal mapping variants 
(i.e., secondary mappings, mismatches, insertions, deletions, and splicing), than WHAM single-hit mapping 
(Supplementary Fig. S20a–c). Consequently, pipelines with Bowtie2 multi-hit mapping resulted in a larger devia-
tion from the qPCR reference, or lower accuracy, than those with WHAM single-hit mapping. However, such 
the observation applied to only count-based quantification but not Cufflinks or RSEM (Fig. 2a, Supplementary 
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Fig. S2). In addition to the observations corresponding to previous literature, we also observed a joint effect 
between mapping and quantification components.

Variations in mapping performance propagated to the quantification stage. The quantification strategy for 
multi-hit mappers may explain the variation in gene expression accuracy. For example, Cufflinks and RSEM use 
Poisson distribution-based models and assign probabilities to each mapping while HTSeq simply counts total 
mapped reads regardless of quality. Thus, Cufflinks and RSEM are better able to handle multi-hit information, 
resulting in a smaller deviation from the qPCR reference (Fig. 2a, Supplementary Figs. S2, S20d). It is worthwhile 
to point out that, although variation in performance was observed for different pipelines investigated, singling 
out one pipeline for general application is not justified. This is specifically true by giving the fact that the joint 
effect of multiple components plays a role. Therefore, we aim to demonstrate the importance of pipelines selec-
tion and their impact on downstream analysis, such as classification.

In Phase-2, using the SEQC-neuroblastoma and TCGA-lung-adenocarcinoma datasets, we showed that RNA-
seq pipelines with better performance in gene expression estimation (using average ranks of three metrics) 
resulting in a better downstream prediction of disease outcome. Subsequently, we demonstrated the effect of 
pipeline selection on patient stratification and provided a guideline for pipeline selection. Compared to previous 
RNA-seq pipeline evaluation studies that were restricting on genetic variations (e.g., gene fusions)14, we have 
extended the scope to downstream applications such as survival predictions using gene expression. The results 

Figure 4.  RNA-seq pipelines selected based on benchmark metrics (i.e., accuracy, precision, and reliability) 
were informative for inferring the performance of gene-expression-based prediction of disease outcome—(a) 
prediction performance measured by the area under the receiver operating characteristic curve (AUROC, 
or AUC) for the overall survival (OS) endpoint of the SEQC-neuroblastoma (NB) dataset; (b) prediction 
performance measured by the Matthews correlation coefficient (MCC) for the OS endpoint of the SEQC-NB 
dataset; (c) prediction performance measured by the AUC for the event-free survival (EFS) endpoint of the 
SEQC-NB dataset; (d) prediction performance measured by the MCC for the EFS endpoint of the SEQC-NB 
dataset; (e) prediction performance measured by the AUC for the survival endpoint of the TCGA-lung-
adenocarcinoma (LUAD) dataset; and (f) prediction performance measured by the MCC for the survival 
endpoint of the TCGA-LUAD dataset. The red line in each panel shows the probability density of the prediction 
performance of good-performing RNA-seq pipelines selected based on benchmark metrics; and the blue 
line demonstrates that of poor-performing pipelines selected based on the same. Statistical significance (i.e., 
p-values) was determined using the one-sided Wilcoxon rank-sum test. (a,b,d) show statistically significant 
difference (p < 0.05) between the two groups (i.e., the prediction performance of good-performing pipelines vs. 
that of poor-performing pipelines). The good-performing (Top 10%) and poor-performing pipelines (Bottom 
10%) were determined based on the average rank of each RNA-seq pipeline over all benchmark metrics of both 
all and low-expressing genes.
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Figure 5.  The RNA-seq pipeline selection guide was validated by assessing the ability of pipelines to stratify 
patients based on Kaplan–Meier survival analysis. For each pipeline, patients were grouped by predictive labels 
(i.e., high risk vs. low risk), and two Kaplan–Meier curves were plotted. The two-tailed log-rank test was used to 
determine the statistical significance of the seperation between the two curves. For good-performing pipelines 
selected based on benchmark metrics, the success rates of patient stratification (i.e., predictive labels led to a 
statistically significant separation of Kaplan–Meier curves) were higher. For example, the success rates of the 
[GSNAP (un-spliced, single-hit) + Cufflinks + Median] pipeline were 93%, 70%, and 67% for the SEQC-NB 
OS, SEQC-NB-EFS, and TCGA-LUAD-Survival endpoints, respectively (Supplementary Table S13). (a–c) 
demonstrate the most statistically significant separation of the two Kaplan–Meier curves for each endpoint. In 
contrast, poor-performing pipelines led to lower success rates of patient stratification. For instance, the success 
rates of the [BWA (un-spliced, single-hit) + RSEM + RLE] pipeline were 33%, 30%, and 33% for the SEQC-NB 
OS, SEQC-NB-EFS, and TCGA-LUAD-Survival endpoints, respectively (Supplementary Table S13). (d–f) 
demonstrate the least statistically significant separation of the two Kaplan–Meier curves for each endpoint.
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revealed that RNA-seq pipelines jointly impact the gene expression estimation, and the influence will carry on 
to downstream applications. Most importantly, we found that RNA-seq pipelines that produced more accurate 
gene expression resulted in better survival prediction performance.

Putting our results in the context of real-world application, we offer the following scenarios by taking advan-
tage of our findings:

In scenario 1 where researchers need to select a pipeline to analyze an Illumina dataset (or similar short-read 
sequence dataset), they may refer to Supplementary Table S8 to choose a pipeline by following these steps (Fig. 6):

(1) Select a metric based on the requirements of the clinical application (not necessarily predictive modeling).
(2) Sort the pipelines based on this metric and choose the top pipeline.

For example, depending on the application, different weights can be assigned to the three metrics instead of 
using the average rank. Researchers who want to conduct initial filtering of genes to identify DEGs may want to 
stress the importance of correct quantification of relative gene expression. Thus, they may want to focus on the 
accuracy metric. Top and bottom pipelines in terms of accuracy are listed in Fig. 6a. Median normalization is the 
frequently occurring component in the most accurate pipelines. If experimental conditions limit the sample size, 
small variation among replicate libraries may be important to better estimate gene expression. The precision and 
reliability metrics were designed to capture variation in gene expression from different perspectives. Researchers 
who need small variation in gene expression across replicate libraries for a single sample may want to weight the 
precision metric. Bowtie2 multi-hit and GSNAP un-splice mapping are the frequently occurring components in 
the most precise pipelines. Researchers who need small within-sample variation in gene expression relative to 
between-sample variation may want to emphasize on the reliability metric. Again, median normalization is the 
frequently occurring component in the most reliable pipelines.

In scenario 2 where researchers want to evaluate a newly developed RNA-seq pipeline for an Illumina dataset, 
they may use the SEQC-benchmark dataset, qPCR benchmark dataset, and the three metrics as follows (Fig. 6b):

(1) Analyze the SEQC-benchmark dataset with the new RNA-seq pipeline.
(2) Evaluate the new pipeline with the three metrics.
(3) Compare the performance of the new pipeline to the 278 RNA-seq pipelines.

The 278 RNA-seq pipelines serve as a representative sample, or benchmark, of pipelines for gene expression 
estimation that include both good-performing and poor-performing pipelines.

In the third scenario, researchers who want to evaluate a new RNA-seq protocol may use the RNA samples 
from the SEQC protocol (i.e., samples A, B, C, and D), the qPCR benchmark dataset, and the three metrics as 
follows:

(1) Sequence the RNA samples with the new RNA-seq protocol.
(2) Analyze the new dataset with new pipelines specifically designed for the new RNA-seq protocol.
(3) Evaluate the new pipelines and the new RNA-seq protocol with the three metrics.

Ideally, existing pipelines could be applied as fixed variables to both old and new RNA-seq protocols to attrib-
ute any changes in gene expression estimation performance to the change in RNA-seq protocols.

It is worthwhile to mention that, in the Phase-II experiment, we set a threshold to divide patients in each 
dataset into two groups to conduct downstream predictions. This choice is to balance the numbers of samples 
in two groups, and also to balance the computational complexity with the biological meaningfulness. With 
RNA-seq pipeline evaluation as the main focus of this study, we want to minimize the sample size imbalance 
introduced bias in the downstream biological applications. With that said, the investigation can be improved 
if the choice of threshold is more towards to the real-world clinical scenarios. Moreover, we did not investigate 
the underlying genes that contribute to the prediction. The biological and medical contexts of the gene signature 
are critical for the causality assessment and clinical application in explaining the disease outcome predictions. 
Thus, more sophisticated down-stream applications of RNA-seq can be explored in the future to evaluate the 
impact of RNA-seq pipelines.

In summary, we showed that upstream RNA-seq pipelines that performed well in gene expression estima-
tion generally performed well for downstream gene expression-based prediction of disease outcome. Our study 
represents a large-scale and objective assessment of the predictive performance of various RNA-seq pipelines 
and should prove useful in moving RNA-seq-based predictive models closer to clinical applications.

Methods
FDA SEQC benchmark datasets. The FDA SEQC-benchmark dataset (Gene Expression Omnibus acces-
sion number GSE47792) includes paired-end RNA-seq data generated using the Illumina HiSeq 2000 platform 
with the read length of 100  nucleotides7. We used a subset of the SEQC-benchmark dataset sequenced at two 
sites—Beijing Genomics Institute (BGI) and Mayo Clinic (MAY). We used four samples (i.e., A, B, C, and D), 
each with four replicate libraries prepared at the sequencing sites. Sample A contains the Universal Human 
Reference RNA (UHRR), sample B contains the Human Brain Reference RNA (HBRR), sample C contains a 
mixture of A and B (75% A and 25% B), and sample D contains a mixture of A and B (25% A and 75% B). We 
used data from two lanes of a single flow cell for each sample replicate. The SEQC also provided a quantitative 
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PCR (qPCR) benchmark dataset that includes 20,801 genes assayed with PrimePCR (Bio-Rad, Hercules, Califor-
nia). Each PrimePCR gene was assayed once for each of the four samples (i.e., A, B, C, and D). The FDA SEQC 
benchmark datasets and samples are summarized in Supplementary Tables S5 and S6.

Figure 6.  The resources provided by this study (i.e., the 278 RNA-seq pipelines, the benchmark metrics, and 
the SEQC-benchmark datasets) can serve as guidelines for biological and clinical researchers as well as for 
bioinformaticians and biotechnologists. (a) Depending on the gene expression application, the three metrics 
(i.e., accuracy, precision, and reliability) may be used to choose a pipeline. We have associated each metric 
with an RNA-seq application and listed the top-performing pipelines for each metric. The red-highlighted 
component in each listed RNA-seq pipeline indicates components that occur frequently among the top-
performing pipelines for each metric. (b) Biological or clinical researchers who want to analyze Illumina RNA-
seq data (or data from similar platforms with short, fixed-length reads) can choose an existing RNA-seq pipeline 
using the provided table of 278 pipelines ranked by accuracy, precision, or reliability. Bioinformaticians that 
are developing a new RNA-seq pipeline for Illumina data (or data from similar platforms) can use the SEQC-
benchmark datasets and benchmark metrics to evaluate the new pipeline and assess its performance relative 
to the 278 pipelines. Bioinformaticians or biotechnologists that are developing new RNA-seq protocols can 
first sequence the same RNA mixture samples (i.e., samples A, B, C, and D), and then evaluate associated data 
analysis pipelines using the qPCR benchmark dataset and the benchmark metrics.
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Neuroblastoma and lung adenocarcinoma datasets. We used a 176-sample neuroblastoma dataset 
(a subset of a larger 498-sample dataset; referred to as SEQC-neuroblastoma in this manuscript) to assess the 
performance of RNA-seq pipelines in terms of gene expression-based prediction of disease outcome. These sam-
ples were provided by the University Children’s Hospital of Cologne and sequenced at BGI using the Illumina 
 platform48. All 176 samples were taken from high-risk patients that were defined as those either with stage 4 neu-
roblastoma and age > 18 months or with MYCN-amplified tumors of any stage or age. The SEQC-neuroblastoma 
dataset was deposited to the Gene Expression Omnibus with accession number GSE47792.

We predicted two clinical endpoints—event-free survival (EFS), that is, the occurrence of events such as 
progress, relapse, or death, and overall survival (OS), that is, death. For both endpoints, patients were parti-
tioned into two groups (i.e., high risks versus low risks). High-risk patients experienced an event or died before 
a predefined survival-time threshold, while low-risk patients experienced an event or died after the threshold, or 
their last follow-up exceeded the threshold. Survival-time thresholds for EFS and OS were two and three years, 
respectively. The thresholds were chosen to balance the number of high-risk and low-risk patients. Details of the 
SEQC-neuroblastoma dataset are provided in Supplementary Table S9.

We also used an 87-sample lung adenocarcinoma RNA-seq dataset from The Cancer Genome Atlas (TCGA) 
repository. The prediction endpoint was also survival, and we used the same criteria to define high-risk and 
low-risk groups with the survival-time threshold of two years. The two-year threshold was chosen to balance 
the number of high-risk and low-risk patients. Details of the TCGA-lung-adenocarcinoma dataset are provided 
in Supplementary Table S10.

Filtering the qPCR benchmark dataset to produce a reference set of genes. Because of vari-
ability in qPCR measurements and disagreements among qPCR  platforms7, we filtered the qPCR benchmark 
dataset to retain genes that exhibited “correct” behavior. We then used these genes to calculate the benchmark 
metrics (i.e., accuracy, precision, reliability, and reproducibility). Such the filtering process is summarized in 
Supplementary Fig. S1.

Starting with the initial set of 20,801 genes assayed with PrimePCR, we filtered these genes to retain only genes 
that were quantified as non-zero (i.e., detected) and with Ct (cycle threshold) values ≤ 35 (35 indicates detection 
of only a single molecule in a sample). Filtering PrimePCR data resulted in 14,014 genes that also matched with 
the AceView transcriptome used for mapping the SEQC-benchmark RNA-seq dataset.

Subsequently, we filtered the 14,014 qPCR genes to retain only 12,610 genes that exhibited the correct titra-
tion order (TO) and expected mixing ratios (EMR). Details of this process are in the “Filtering qPCR genes by 
titration order and expected mixing ratios” section.

Lastly, since some benchmark metrics such as accuracy and precision are sensitive to zero- or very low-
expressing genes, we further selected genes that were expressed as non-zero in all replicates of all samples of all 
sequencing sites and all 278 RNA-seq pipelines. The final reference set contains only 10,222 qPCR genes (referred 
to as “all genes”) that were used to compute all three benchmark metrics for RNA-seq pipelines.

Based on the previous study, the genes with lower expression are more likely to be inconsistent among 
 pipelines49. Thus, we also identified a set of low-expressing genes in the 10,222 genes based on the average qPCR 
expression of samples A, B, C, and D. The lowest 20% of the 10,222 genes (i.e., 2044 genes, referred to as “low-
expressing genes”) were also used to compute the same set of benchmark metrics for RNA-seq pipelines. This 
design enabled us to investigate the capability of RNA-seq pipelines in estimating low-expressing gene expression.

Filtering qPCR genes by titration order and expected mixing ratios. The SEQC-benchmark data-
sets (RNA-seq and qPCR) have unique properties that enable the assessment of quantification correctness. After 
identifying detectable (i.e., non-zero and Ct ≤ 35) and AceView-matched qPCR genes, we used two metrics (TO 
and EMR) to further filter the benchmark qPCR dataset, leaving only “correct” qPCR genes. The TO and EMR 
metrics capture unique mixing properties of the data, that is,

Because of this property, all genes are expected to be expressed in one of the following orders, depending on 
the relative expression of samples A and B:

The TO metric determines if genes are expressed in the correct order. The expression value of a qPCR gene is 
defined as qs,n,k , where s ∈ {A,B,C,D} indicates the sample, n = 1 . . .N indicates the replicate, and k = 1 . . .K 
indicates the gene (for the PrimePCR dataset, N = 1 and K = 10,222). For a qPCR dataset with multiple replicates, 
given that the mean expression value for gene k and sample s over all replicates is

the set of qPCR genes that follow the correct titration order is
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For a single replicate qPCR dataset (e.g., the PrimePCR dataset we analyzed), the inherent variability of 
a single qPCR measurement may result in some false negative genes that follow the correct TO but fail to be 
identified. From the  literature50,51, the coefficient of variation for replicate qPCR measurements is generally 15% 
or larger, so we used this number to adjust the margin for determining whether a gene follows the correct TO. 
Mathematically, we calculated the range of plus and minus one standard deviation from each qPCR measurement 
and used it as the margin. The revised equations for KTO are as follow:

 where a = 1.15, b = 0.85
Besides TO, samples should additionally exhibit a specific mixing ratio. Given that the ratio between samples 

A and B is

the EMR between samples C and D is

where z = mRNAConcentration in A
mRNAConcentration in B = 1.43 , a correction factor for the difference in mRNA concentration between 

samples A and  B7.
The EMR metric examines if EMRC,D of a gene is close enough to observed RC,D = C

D of the same gene. As 
described previously, the PrimePCR dataset contains only a single measurement for each sample, and thus, 
wider margins are needed for EMR metric calculation. Using the same technique, we calculated the width of 
one standard deviation of each ratio as

and finally determines a set of genes that satisfies the EMR criterion as follows:

RNA‑seq data analysis pipelines—mapping, quantification, and normalization. We investi-
gated 278 RNA-seq pipelines that included thirteen sequence mapping  algorithms18–29, three categories of expres-
sion quantification  algorithms31–33, and seven expression normalization methods. Supplementary Tables S2–S4 
summarize all options considered for each pipeline component (sequence mapping, expression quantification, 
and expression normalization). The thirteen mapping algorithms investigated are  Bowtie18,  Bowtie219,  BWA20, 
 GSNAP21,  Magic22 (a new pipeline developed by NCBI for the SEQC project: ftp://ftp.ncbi.nlm.nih.gov/repos 
itory /acedb /Softw are/Magic ),  MapSplice23, Novoalign (a commercialized package developed by Novocraft: 
https ://www.novoc raft.com/produ cts/novoa lign/),  OSA24,  RUM25, STAR 26,  Subread27,  TopHat28, and  WHAM29. 
Some use un-spliced mapping of reads to the transcriptome, and some others perform spliced mapping to the 
genome. Magic uses both in parallel and compares the quality of each alignment to keep the best across multiple 
targets. Mapping algorithms may report only unique mapping, or allow for multiple mapping locations per read. 
Quantification algorithms include simple count-based methods (i.e.,  HTSeq31) and Poisson distribution-based 
probabilistic methods applied to either genomic (i.e.,  Cufflinks32) or transcriptomic mapping data (i.e.,  RSEM33). 
The Magic, RUM, and Subread (i.e.,  featureCounts52) pipelines include embedded quantification methods that 
fall into the category of simple count-based methods. Normalization methods include simple scaling methods 
(i.e., fragments per million mapped fragments [FPM], fragments per kilobase of gene length per million mapped 
fragments [FPKM], median, and upper quartile), robust scaling methods (i.e., relative log expression [RLE] and 
trimmed mean of m-values [TMM]), and methods embedded in specific pipelines (i.e., Magic expression index).

Sequence mapping. We mapped sequences to each reference in successive steps using either un-spliced 
or spliced mapping algorithms. Un-spliced mapping refers to algorithms that align entire read sequences (e.g., 
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Bowtie2, BWA, and Novoalign) whereas spliced mapping refers to algorithms that split reads into segments 
to accommodate long gaps or introns in a read (e.g., TopHat and MapSplice). In the first step of un-spliced 
mapping, we attempted to map all paired-end sequences to the ERCC/MT/rRNA reference (i.e., External RNA 
Controls Consortium sequences, the mitochondrial genome, and ribosomal RNA sequences). All unmapped 
read pairs were then mapped to the AceView transcriptome. Finally, all read pairs that did not map to either the 
ERCC/MT/rRNA or AceView references were mapped to the human genome reference. Transcriptomic map-
ping coordinates were then translated into genomic mapping coordinates and merged with the human genome 
mapping results to produce the final results (Supplementary Fig. S21, left panel). We used Bowtie2 as the map-
per for the first step of all spliced mapping pipelines (Supplementary Fig. S21, right panel). Spliced mapping 
algorithms either directly mapped reads to the human genome (e.g., MapSplice and GSNAP) or mapped whole 
un-spliced reads to the transcriptome and then merged these mapping results with spliced mapping results of 
the remaining reads to the human genome (e.g., TopHat and OSA). Supplementary Table S2 summarizes all 
mapping tools investigated in this study.

Bowtie2, GSNAP, Novoalign, TopHat, and WHAM allow control over the number of reported mappings per 
read pair. By default, these algorithms typically report a single best mapping location per read pair. However, 
some quantification algorithms can use information about multiple ambiguous mapping locations to improve 
gene expression estimation. Thus, in addition to single-hit reporting, we also generated mapping results that 
reported up to 200 hits per read (multi-hit). We also included the Bowtie mapping pipeline with mapping param-
eters specific for quantification with RSEM, as described in the following  section33.

Command-line options for all sequence alignment tools are detailed in Supplementary Note 1.

Gene expression quantification. The quantification stage included three categories of quantifiers—
count-based quantifiers (i.e., HTSeq and built-in quantifiers for the Magic, RUM, and Subread pipelines), prob-
ability model-based quantifiers for genomic mapping (i.e., Cufflinks), and probability model-based quantifiers 
for transcriptomic mapping (i.e., RSEM). The key characteristics of these quantifiers are summarized in Sup-
plementary Table S3. Cufflinks is a Poisson model-based quantifier that estimates read assignment probabilities 
based on the alignment  information32. It is capable of both assembling transcripts and quantifying gene or tran-
script expressions. In this study, we disabled the assembly function and provided the genome annotation GTF 
file as a quantification reference. HTSeq is a naïve count-based quantifier that assigns mapped reads to  genes31. 
HTSeq is able to quantify gene expression, but not transcript expression. RSEM is also a Poisson model-based 
quantifier that is similar in concept to  Cufflinks33. Information from multi-hit reads is important for both Cuf-
flinks and RSEM. These algorithms use multi-hit read information to more accurately estimate gene or transcript 
expression.

Mapping results from alignment pipelines were not always compatible with the three categories of quantifiers. 
Cufflinks requires that alignment results are sorted by alignment coordinates and multi-hit reads are marked with 
the ‘NH’ tag in the attribute field of the SAM file. HTSeq requires that the alignment results are sorted by read 
names and that the ‘NH’ tag is absent in the SAM file. RSEM only quantifies transcriptomic mapping, that is, 
reads mapped and reported in transcriptomic coordinates. Moreover, RSEM only handles un-gapped alignments. 
Thus, filtering is required to remove gapped alignments. Because of these requirements, we pre-processed all 
alignment results before quantification. In summary, twenty alignment pipelines, including spliced, un-spliced, 
single-hit, and multi-hit pipelines, were suitable for count-based quantification. Sixteen alignment pipelines 
were suitable for Cufflinks, and only ten were suitable for RSEM. RSEM is specifically designed to work well with 
Bowtie. Thus, we also included this embedded mapping and quantification pipeline.

Command-line options for all quantification tools are detailed in Supplementary Note 1.

Gene expression normalization. RNA-seq data normalization enables inter-sample comparison. Gener-
ally, normalization methods correct library size (i.e., the total number of reads in a sample), which is the primary 
source of inter-sample variance. We investigated seven normalization methods—fragments per million mapped 
fragments (FPM), fragments per kilobase of gene length per million mapped fragments (FPKM), median 
(Med.), upper quartile (UQ), relative log expression (RLE), trimmed mean of M-values (TMM), and expression 
index (EIndex, which is specific to the Magic pipeline) (see Supplementary Table S4). We describe each of these 
normalization methods based on the following mathematical description of the SEQC-benchmark dataset.

The raw count of a sample is defined as xs,n,k , where s ∈ {A,B,C,D} indicates the sample, n = 1 . . .N indi-
cates the replicate, and k = 1 . . .K indicates the gene. For the SEQC-benchmark dataset, N = 4 and K = 55,874. 
We normalized data within each of the two sites (i.e., BGI and MAY), each of which contains 16 samples (four 
replicates for each of the four samples). Because we used AceView as the transcriptome reference, a large portion 
of the genes had no counts. Moreover, the number of genes with zero counts was highly variable across samples 
and replicates. Thus, for each RNA-seq pipeline, we identified and used only present genes during normalization. 
Given that the mean of the counts for gene k and sample s over all replicates is

we defined the set of present genes to be
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and the final present gene set is

We used the same set of present gens for all normalization methods for a RNA-seq pipeline.
The total count of present genes for a given sample s and replicate n is

and the average total count of present genes for all data from a single site is

Thus, we defined FPM-normalized expression for each sample s, replicate n, and gene k as

Similarly, we defined x̃s,n and x̂s,n as the median and upper quartile of counts, respectively, of all present genes 
in sample s and replicate n:

Median- and upper-quartile-normalized expression for each sample s, replicate n, and gene k are then defined 
as

For FPKM normalization, we defined the length of a gene k as ℓk , which is the length of the union of all exons 
related to the gene as defined by the AceView transcriptome. The original formulation of FPKM arbitrarily used 
scaling factors of 1 × 103 for the gene length and 1 × 106 for the total number of mapped fragments. In order to 
maintain comparable dynamic range among all normalization methods, we instead scaled by the average gene 
length and average total count for all present genes. The average length of all present genes is

Thus, rescaled FPKM-normalized expression for each sample s, replicate n, and gene k is

The TMM and RLE normalization methods are similar to the FPM normalization, but introduce an addi-
tional scaling factor to adjust the library size. We used the edgeR package in R to estimate a scaling factor for 
each sample  replicate36,53. The TMM method selects a reference library from a pool of sample replicate libraries 
and then calculates gene-wise log expression ratios (M-values) and gene-wise average log expression values 
(A-values) between the target library and the reference library. Extreme numbers in M-values and A-values are 
trimmed, and the scaling factor for the target library is the weighted average of remaining M-values. The RLE 
method determines a scaling factor by first defining the median library as the gene-wise geometric mean across 
sample  replicates35. The median ratio of each target library to the median library is taken as the scaling factor. 
TMM- and RLE-normalized expression for each sample s, replicate n, and gene k are then defined as:

where f̂ TMM
s,n  and f̂ RLEs,n  are the scaling factor for sample s, replicate n.

RNA‑seq pipeline performance metrics. Benchmark metrics for RNA-seq pipelines are summarized in 
Supplementary Table S7.

Accuracy measured as deviation from qPCR references. We measured deviation of RNA-seq pipe-
line-derived inter-sample log ratios from qPCR-based inter-sample log ratios, and defined such the deviation 
as the accuracy metric. We previously defined qPCR assayed gene expression as qs,n,k , where s ∈ {A,B,C,D} 
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indicates the sample, n = 1 . . .N indicates the replicate, and k = 1 . . .K indicates the gene (for the PrimePCR 
dataset, N = 1 and K = 10,222). The mean expression of a qPCR gene k in sample s over all replicates is

Given samples A and B, the absolute log-ratio deviation of RNA-seq-based expression from qPCR-based 
expression for a gene k is

and the final accuracy metric was defined as the median of all � A
B ,k

 , k = 1 . . .K.

Precision measured as variation of gene expression across replicate libraries. We computed the 
coefficient of variation (CoV) for each gene and each sample across four replicate libraries as follows:

where k = 1 . . .K indicates the gene and s ∈ {A,B,C,D} indicates the sample. We then used the median of all 
CoVs across all genes and all samples as the final measure of precision.

Reliability measured as intra‑sample correlation of gene expression. The reliability of a measure-
ment system can be assessed by the intraclass correlation coefficient (ICC)54,55. ICC is applicable to measure-
ments that can be organized into groups, and it describes how similar measurements of the same group are to 
one another. Modern ICC definition borrows the framework of analysis of variance (ANOVA), or more specifi-
cally ANOVA with random  effects55. The type of ANOVA depends on the experimental design and generally fol-
lows the definition in Shrout’s article published in  197955. ICC(1,1) and ICC(1,k) are based on the one-way ran-
dom effects model and are applicable to the case that each group is assessed by a different set of k raters randomly 
selected from a larger population of raters. ICC(2,1) and ICC(2,k) are based on the two-way random effects 
model and are applicable to the case that a random sample of k raters is preselected from a larger population and 
each rater assesses each group exactly once (i.e., each rater assesses n groups altogether). ICC(3,1) and ICC(3,k) 
are based on the two-way mixed effects model and are applicable to the case that each group is assessed by 
each of the same k raters, who are the only raters in the population. The second parameter in ICC([1,2,3],[1,k]) 
denotes whether the ICC is to measure the reliability of a single measurement or the average of k measurements.

For the SEQC benchmark dataset with replicate libraries for each sample, ICC(1,1) or ICC(1,k) fitted our 
objective since, for a gene g, gene expression of replicate libraries for different samples (or different groups in 
the previous context) were not assessed under exactly the same conditions (or assessed by the same raters in the 
previous context). We chose to use ICC(1,k) as replicate libraries are available for most experiments. Mathemati-
cally, a one-way random effects model can be formulated as

where Yij is the ith observation in the jth group, µ is an unobserved overall mean, αj is the group-specific random 
effect with zero mean and variance σ 2

α , and εij is an unobserved noise term with zero mean and variance σ 2
ε  . The 

formula for ICC(1,k) is as follows:

where BMS stands for the between groups mean square formulated as kσ 2
α + σ 2

ε  and WMS stands for the within 
group mean square formulated as σ 2

ε  . Higher ICC indicates higher reliability.
We calculated ICC for each gene k, k = 1 . . .K , and then used the median of all ICCs as the final measure 

of reliability.
We have also investigated other potential metrics, such as reproducibility, which is defined as the Spearman 

correlation between two replicate libraries of the same sample (Supplementary Note 2). The Spearman correlation 
ranged from 0.993 to 0.996 (Supplementary Fig. S8) using AllGenes. We discarded the reproducibility metric 
because of the relatively small dynamic range.

Evaluating the utility of the benchmark metrics for RNA‑Seq pipeline selection. We ranked 
RNA-seq pipelines base on the average rank of the three benchmark metrics (i.e., accuracy, precision, and reli-
ability). We then evaluated the utility of the benchmark metrics by examining whether good-performing and 
poor-performing pipelines identified based on the benchmark metrics were informative for inferring the per-
formance of gene-expression-based prediction of disease outcome and statistical significance of patient strati-
fication for all clinical endpoints (i.e., the SEQC-neuroblastoma EFS and OS endpoints and the TCGA-lung-
adenocarcinoma survival endpoint).

First, for the 278 representative RNA-seq pipelines applied to the SEQC-benchmark dataset, we computed 
the average rank using a subset of the benchmark metrics as the final performance indicator for each pipeline. In 
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total, we had 6 metrics (3 benchmark metrics [accuracy, precision, reliability] × 2 gene sets [2044 low-expressing 
genes, 10,222 all genes]), and we investigated 12 subsets (4 × 3) of the 6 metrics using the following criteria:

(1) Four combinations of the three benchmark metrics with at least two in a subset—one combination with 
all three benchmark metrics, three combinations with two out of the three benchmark metrics.

(2) Three subsets formed by metrics derived from all genes, those derived from low-expressing genes, or a 
combination of both.

Second, for each of the 278 representative RNA-seq pipelines (156 for the TCGA-lung-adenocarcinoma 
survival endpoint), we calculated nested cross-validation AUC and MCC, as described in the “Method” section 
“Neuroblastoma and lung adenocarcinoma predictive modeling,” resulting in 834 (468 for the TCGA-lung-
adenocarcinoma survival endpoint) AUC and MCC values for each clinical endpoint (i.e., 278 pipelines × 3 
classifiers, or 156 pipelines × 3 classifiers) (Supplementary Tables S11,S12). We also modeled survival functions 
using Kaplan–Meier analysis for each pipeline, as described in the “Method” section “Kaplan–Meier survival 
analysis”. For each RNA-seq pipeline, we summarized the performance of gene-expression-based prediction of 
disease outcome using both the average AUC and MCC across classifiers and the success rate of patient strati-
fication (i.e., statistically significant separation of two Kaplan–Meier curves) across all iterations and classifiers 
in the nested cross-validation framework.

Finally, we identified the top 10% good-performing pipelines and the bottom 10% poor-performing pipelines 
based on the average rank of a subset of the three benchmark metrics. The corresponding prediction performance 
(i.e., AUC and MCC) of the good-performing pipelines was tested against that of the poor-performing pipelines 
using the one-sided Wilcoxon rank-sum test with the null hypothesis that the median of the former group was 
not larger than that of the latter group.

Neuroblastoma and lung adenocarcinoma predictive modeling. We assessed the performance 
of 278 RNA-seq pipelines in terms of gene expression-based decision-making using the SEQC-neuroblastoma 
 dataset48. The SEQC-neuroblastoma dataset and associated clinical endpoints are summarized in Supplementary 
Table S9. The RNA-seq pipelines were evaluated in terms of predicting neuroblastoma patient outcomes for two 
clinical endpoints using nested cross-validation (Supplementary Fig. S13)56,57. We also similarly assessed the 
performance of 156 RNA-seq pipelines applied to the TCGA-lung-adenocarcinoma dataset to predict disease 
outcome. The TCGA-lung-adenocarcinoma dataset and the associated clinical endpoint are summarized in Sup-
plementary Table S10.

Nested cross-validation involves training and testing of an optimal prediction model. This is accomplished 
using the three-fold optimizing or inner cross-validation, applied to the training subset from the fivefold outer 
cross-validation. Once the final optimal prediction model parameters (i.e., the classifier hyperparameters and 
feature size) are identified, the final model is trained using the entire training subset, and then tested using 
the remaining fold from the fivefold outer cross-validation. This process was repeated for ten iterations. We 
conducted nested cross-validation separately for each of the three classifiers (i.e., adaptive boosting, logistic 
regression, and support vector machines) and used the minimum redundancy, maximum relevance (mRMR) 
feature selection method to choose optimal feature sizes from within the range of 5 to 40 with the step size of  558.

Kaplan–Meier survival analysis. For each RNA-seq pipeline and classifier (i.e., 278 pipelines × 3 classifi-
ers for the SEQC-neuroblastoma endpoints and 156 pipelines × 3 classifiers for the TCGA-lung-adenocarcinoma 
survival endpoint), we modeled Kaplan–Meier survival functions based on the predicted labels of each sample. 
We then used the two-tailed log-rank test to determine if estimated survival curves for each predicted patient 
group were statistically different.

Analysis of variance and calculation of the contribution of each RNA‑seq pipeline factor to the 
overall pipeline variance. We used analysis of variance (ANOVA) to determine if each RNA-seq pipeline 
factor significantly contributes to the variance of each of the three benchmark metrics (i.e., accuracy, precision, 
and reliability) as well as to the variance of prediction performance (i.e., AUC and MCC). For each of the three 
benchmark metrics, we used a linear model (R function “lm”) to fit the data from all 278 pipelines using the 
metric as the dependent variable and the RNA-seq pipeline factors as independent categorical variables. We 
considered the following factors as independent categorical variables—mapping algorithm, mapping strategy 
(i.e., spliced vs. un-spliced), mapping reporting (i.e., single-hit vs. multi-hit), quantification algorithm, and nor-
malization algorithm. We included all factors and their two-way interactions in the linear model. For each of the 
prediction endpoints, we applied the same technique to fit the data from all 278 pipelines using average AUC or 
MCC as the dependent variable and the same set of RNA-seq pipeline factors as independent categorical vari-
ables. We then conducted the ANOVA on the linear model (R function “anova”). ANOVA calculates a “sum of 
squares” (i.e., variance) attributed to each factor or interaction and uses an F-test to determine if the variance is 
statistically significant. We calculated the percent that each factor or interaction contributes to the total variance 
by calculating the ratio of “sum of squares” for each factor to the total sum of squares.

Regression analysis. We investigated the relationship between alignment profiles or gene expression dis-
tribution characteristics and benchmark metrics. The alignment profiles included the total number of mapped 
fragments, the total number of reads spanning the intronic region, the total number of reads with insertions or 
deletions, the total number of perfectly matched reads, the total number of reads with at most one mismatch, 
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and the number of mismatches per mapped read. Each alignment algorithm was represented by the average 
statistics over 2 sequencing sites, 4 samples, 4 replicate libraries, and 2 lanes. Using the “MASS” package in R, 
we adopted the M-estimation with Huber weighting approach to fit robust linear regression models between a 
dependent variable (benchmark metric performance) and an explanatory variable (an alignment profile). The 
M-estimation with Huber weighting approach is a regression method that is robust in the presence of outliers. 
The gene expression distribution characteristics included the lower quartile, median, upper quartile, maximum, 
interquartile range, standard deviation, skewness, kurtosis, and entropy of a gene expression distribution. We 
used the same M-estimation with Huber weighting approach to fit robust linear regression models, and then 
reported the residual standard error for each model.

Disclaimer. The views presented in this article do not necessarily reflect current or future opinion or policy 
of the US Food and Drug Administration. Any mention of commercial products is for clarification and not 
intended as an endorsement.
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