GigaScience, 9, 2020, 1-12

(GI A)n doi: 10.1093/gigascience/giaal21
OXFORD £ Technical Note
CIEN<.E

TECHNICAL NOTE
Unifying package managers, workflow engines, and
containers: Computational reproducibility with BioNix

Justin Bed6 ©1.27, Leon Di Stefano®” and Anthony T. Papenfuss 13456

1Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde., Parkville, VIC
3052, Australia; ?School of Computing and Information Systems, University of Melbourne, Melbourne, VIC
3010, Australia; *Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne, VIC 3000, Australia; *Department
of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia; >Sir Peter MacCallum Department
of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia; ®School of Mathematics and Statistics,
University of Melbourne, Melbourne, VIC 3010, Australia and ’Department of Biostatistics, Bloomberg School
of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland, U.S.A.

*Correspondence address. Justin Bedd, Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, 3010, Parkville, VIC 3052, Australia.
E-mail:cu@cua0.org

Abstract

Motivation: A challenge for computational biologists is to make our analyses reproducible—i.e. to rerun, combine, and
share, with the assurance that equivalent runs will generate identical results. Current best practice aims at this using a
combination of package managers, workflow engines, and containers. Results: We present BioNix, a lightweight library
built on the Nix deployment system. BioNix manages software dependencies, computational environments, and workflow
stages together using a single abstraction: pure functions. This lets users specify workflows in a clean, uniform way, with
strong reproducibility guarantees. Availability and Implementation: BioNix is implemented in the Nix expression language
and is released on GitHub under the 3-clause BSD license: https://github.com/PapenfussLab/bionix (biotools:BioNix)
(BioNix, RRID:SCR_017662).

/[/SD!UE/SOUQ!OS!?ﬁ!5/LUOO'an'O!LuepEOB//ZSduL] woJj papeojumoq

Introduction “virtual machines”; these provide controlled environments
within which workflows can be executed. Environments can
also be managed in a more lightweight fashion using envi-
ronment variables and per-process namespaces.

iii. Managing workflows. This is commonly handled with
“workflow engines” (e.g., Toil [7], SnakeMake [8], WDL [9],
Cromwell [10], NextFlow [11], Ruffus [12], and Rubra [13]),
which manage stages (we define a “stage” as the concrete

There are many aspects to the ongoing reproducibility crisis
in science—imprecise laboratory protocols, selective reporting,
poor use of statistical methods [1,2]—but for researchers in
bioinformatics the most important of these is computational re-
producibility. Three main challenges exist in practice:

i. Managing software versions and dependencies. This is com- execution of >1 executable on >1 input file, producing >1
monly handled with “package managers” (e.g., Conda [3]), output file) and their execution, providing features such as
which provide both a central repository of software and parallelism, remote building, resumability, and logging.
tools to manage installation on a user’s system. Extra repos-
itories for software such as BioConda [4] exist for providing Some tools tackle >1 of these challenges: Conda, for exam-
domain-specific software. ple, began life as a Python package manager but more recently

ii. Managing computational environments. This is commonly aims to manage both software and environments in a language-
handled with “containers” (e.g., Docker [5], Singularity [6]) or agnostic way [3].

Received: 17 September 2019; Revised: 10 April 2020

© The Author(s) 2020. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.

1202 U9Je|\l 20 uo Josn auinogjely Jo jisieaiun A 2,2/866/1.2Leeib/L |

http://www.oxfordjournals.org
http://orcid.org/0000-0001-5704-0212
http://orcid.org/0000-0002-1102-8506
https://github.com/PapenfussLab/bionix
https://scicrunch.org/resolver/RRID:SCR_017662
http://creativecommons.org/licenses/by/4.0/

All of these challenges need to be addressed at scale: bioin-
formatics workflows are computationally demanding and often
need to be executed on computing clusters, on remote comput-
ing farms, or in the cloud. The combination of technologies used
to address these challenges are called a “reproducibility stack”
by Grining et al. [14].

We present BioNix, a lightweight library that cleanly deals with
all 3 of these challenges within the one system.

Two aspects of BioNix’s design enable these improvements.
The first is that BioNix is built on Nix, a next-generation cross-
platform software deployment system. The second is that in
BioNix, stages of a workflow are modelled as “pure functions”—
i.e., functions that are free of adverse effects: workflow stages
cannot modify shared state, and so are extremely modular.

These design choices give BioNix several novel features,
which we explain using the complete workflow and associated
build graph depicted in Example 1:

i. BioNix manages both software and workflows within the
one system. The build graph in Example 1 has nodes cor-
responding not just to workflow stages and inputs but also
to software dependencies.

ii. Each stage of a BioNix workflow implicitly specifies its en-
tire computational environment. Dependencies are tracked
down to the kernel level, and each stage is executed in its
own sandbox, resulting in strong reproducibility guarantees
and obviating the need for containers (containers and static
binaries can still be used in a BioNix workflow if required,
but they are generally avoided to reduce adverse effects). In
Nix, sandboxing is enabled by default and may be explicitly
disabled for either any specific build or globally.

iii. Nix tracks the entire tree of runtime and build time de-
pendencies with fine-grained versioning. In the example
pipeline this means that not only the version of bwa, but
also the specific versions of gcc and bash under which bwa
was compiled, are captured. All of these versions are fixed
by specifying which versions of BioNix and Nixpkgs we use
(by their commit hashes): the code on the right forms a fully
reproducible specification of the associated workflow.

At the same time, it is straightforward to specify specific ver-
sions of software for distinct stages and to use distinct ver-
sions of a given piece of software in parallel.

iv. BioNix uses a simple, purely functional domain-specific
language—the Nix expression language—for specifying
workflows. Constructing a workflow is reduced to function
composition; stages, workflows, and software dependencies
are all represented as pure functions from dependencies to
outputs. Because of purity, stages are guaranteed not to in-
fluence each other except through their inputs and outputs
and so can be safely recombined. An example of this in Ex-
ample 1 is our ability to compose workflow steps using the
higher-order map and pipe functions.

The Nix expression language can be considered a compro-
mise between the safety of static configuration files and
the expressiveness of a general-purpose programming lan-
guage. Configuration files are predictable, but writing them
can involve a lot of boilerplate and repetition. General-
purpose programming languages allow one to abstract away
much of this verbosity, but at the cost of some safety and
predictability, e.g., when they allow workflows to modify un-
related parts of the filesystem. Domain-specific languages

like Nix aim to be sufficiently expressive without the error-
prone power of a general-purpose programming language.

BioNix includes many features found among the most pow-
erful existing workflow managers. Intermediate files do not need
to be named or managed. Multiple versions of the same piece of
software can be used simultanously. BioNix workflows are au-
tomatically parallelizable, can be executed in high-performance
computing (HPC) environments or in the cloud, and are fully re-
sumable in cases of interrupted execution. BioNix also allows
for conditional execution: i.e., different stages may be executed
depending on previous stages’ outputs.

BioNix includes the following components over and above
base Nix:

i. A framework for specifying workflows in the Nix expression

language.

ii. A library containing some commonly used bioinformatics
tools and helpful workflow specification utilities.

iii. A module allowing workflows to be executed on HPC clus-
ters.

iv. Basic typing to capture metadata and prevent invalid work-
flow specifications.

The rest of the article first explains the basics of the Nix sys-
tem and associated expression language. Next, we describe the
design and implementation of BioNix. Finally, we describe an
example workflow and compare Bionix with existing bioinfor-
matics workflow managers.

The Nix deployment system emerged from the work of Dolstra

[15] and Dolstra et al. [16]. Nix was originally designed as a soft-

ware package manager but has since been adapted to managing

OS configurations (the NixOS project [17, 18]). BioNix represents

a further extension of Nix to manage bioinformatics workflows.
The Nix system has 3 main components:

i. “Build products” or “outputs” may be any kind of directory,
file, or collection of files. When Nix is being used as a tra-
ditional package manager, the build products typically con-
sist of the compiled binaries and libraries associated with
an application. In our case, build products are any output
associated with a bioinformatics workflow or stage.

ii. “Derivations” are static configuration files (ending in .drv)
that specify all of the inputs and procedures required to pro-
duce a given build product. If a build product has prerequi-
sites, then its derivation will refer to the derivations corre-
sponding to those prerequisites.

iii. “Nix expressions” are written in a simple, high-level
domain-specific language designed for specifying and ma-
nipulating derivations. Derivations are represented in the
Nix language as collections of name-value pairs—similar to
JSON objects—called “sets.” Nix expressions may also make
use of various built-in design patterns to provide further ex-
tensibility and flexibility.

The basic build process in Nix is as follows: a Nix expres-
sion is instantiated to yield a tree of derivations describing
how to generate the associated build products. Derivations are
then realized by the build system to produce the build products
themselves. Nix expressions, derivations, and build products are

1 Z0Z Y24\ Z0 UO Jasn auinogia 1o Ausiaaiun Aq 22z.865/1zZ1Leelb/| |/6/a1o1n1e/sousiosebib/woo dnooiwspese//:sdiy woll pspeojumoq

stage-bwa-index

8qbkf56ay

samtools-

samtools-faidx stage-bwa-mem

aw78xdsmgz @q/\xwlw;qr‘

stage-samtools-fixmate

\ V zgs81kanbq

stage-samtools-sort

afc6pz47ke

platypus-unstable-2018-07-22
wr85p93bhn stage-samtools-markdup

3qjp7harxh
\ stage-sal
lyx 3

stage-platypus
dmévpzy8l

1qlw7] fe2i

{ bionix ? import (builtins.fetchTarball
"http://github.com/PapenfussLab/bionix/archive/5cdc23b.tar.qgz") {
pkgs = import (builtins.fetchTarball

"http://github.com/nixos/nixpkgs/archive/19.07.tar.qz") {};
}

, inputs

, ref ? bionix.ref.grch38.seq }:
with bionix;

let

preprocess = pipe [
(bwa.align { inherit ref; })
(samtools.fixmate {})
(samtools.sort {})
(samtools.markdup {})
I;

in platypus.call {} (map preprocess inputs)

Example 1: An example workflow specified in BioNix (right) with a portion of the resulting build graph (left). In the build graph, rectangular nodes correspond to software
dependencies and elliptical nodes to data files. Grey arrows indicate dependencies that are not illustrated in the figure. The workflow on the right corresponds to the
terminal node in the build graph annotated with (1). The node annotated (2) in the graph corresponds to a single stage in workflow and the corresponding BioNix code
can be found in Example 4. The final node annotated (3) corresponds to a software dependency provided by Nixpkgs with the corresponding code in Example 6.

somewhat analogous to source code, object files, and compiled
binaries.

The Nix expression corresponding to a given build product
will generally take the form of a pure function from dependen-
cies to the corresponding output derivation. Using ML-style no-
tation for types, one can represent this as

Dependencies — Output.

Nix ensures that derivations are precisely specified by giv-
ing both derivations and build products hash-based names. The
hash of a derivation is a function of all of the steps required to
produce the associated build product, as well as the hashes of
all of its dependencies.

The “Nix store,” usually located on the filesystem at/nix, pro-
vides a single, flat namespace for all derivations and build prod-
ucts and is writable by only the Nix system. Users typically ac-
cess the store through “environments”: organized collections of
soft links exported to $PATH.

The Nix community maintains an online repository of pre-
built software called Nixpkgs [18], which contains >40,000 soft-
ware packages.

We briefly introduce those parts of the Nix expression language
required to understand the rest of the article.

“Sets” are the most important datatype in Nix and corre-
spond to what are sometimes called associative arrays, records,
or dictionaries in other languages. Set elements can be accessed
by name: { a=1; }.a == 1.

“Lists” are delimited by square brackets and may contain el-
ements of heterogeneous types separated by whitespace, e.g.,
[123 ““a’” ““‘b’’ “‘c’’ true false].

The Nix language makes heavy use of anonymous func-
tions (also called “A expressions”). The following denotes a
function that increments its argument: x: x + 1. Nix does
not support functions of multiple arguments; instead, it is
common for functions to take a set as input. This is written
{a, b, ¢, ...}:Nix allows defaults to be provided for
some elements, which are used if the function is called without
providing the element. This is denoted using a question mark:
the function { a ? 5 }: ... will by default assign a the value
5. Alternatively, one can mimic multi-argument functions using
higher-order functions, i.e., functions that return functions. For
example, x: y: x + y denotes a function that adds its 2 argu-
ments together.

Values can be bound to variable names using the
. construction. We could bind the exam-
ple above to a name and then invoke it on some pa-
rameters: let f = x: y: x + y; in f 1 2. Function ap-
plication is denoted with whitespace (with lower prece-
dence than list elements) and associates to the left;
e.g, a b c denotes (a(b))(c). Pattern matching allows
simultaneous binding of elements contained in a set:
let {a, b} = {a =1; b = 2;}; in a + b == 3. Finally,
the with x; ... construction brings the field names of a set x
into scope in the subsequent expression.

let ... in ...

The BioNix library itself is designed as a tree of functions, with
each function representing 1 stage of processing. The BioNix
tree follows the pattern of Nixpkgs; bioinformatics software (e.g.,
BWA, samtools) forms the top level, and stages based on subcom-
mands form the second level (e.g., bwa.align). As in Nixpkgs,
defaults can be overridden throughout the whole tree easily.
We step through 3 examples of (slightly simplified) BioNix
code that generates the build graph in Example 1: the workflow

1 Z0Z Y24\ Z0 UO Jasn auinogia 1o Ausiaaiun Aq 22z.865/1zZ1Leelb/| |/6/a1o1n1e/sousiosebib/woo dnooiwspese//:sdiy woll pspeojumoq

specification, a stage specification, and an expression for a soft-
ware dependency.

Example 1 shows a simple variant-calling workflow using
BWA [19, 20] for alignment, samtools [21] for sorting and dupli-
cate marking, and platypus [22] for variant calling. The whole
workflow is a single anonymous function, taking dependencies
and inputs—the set spanning the first 8 lines—to an output (the
final line):

(Inputs, Options, & Dependencies) — Output.

The output of this workflow is the output of platypus, which is
a .vcf file.

One of the dependencies of the workflow is BioNix itself. If
the user does not specify a version to use, the workflow defaults
to using the specific commit indicated. Similarly, if the user does
not specify a reference, the workflow defaults to GRCh38. Fixing
a version of BioNix and Nixpkgs automatically fixes versions of
all software used in the pipline, although these can be individu-
ally specifically altered if desired (see Examples 2 and 3).

let
oldnix = import (fetchFromGitHub {
owner = "Nix0S";
repo = "nixpkgs";

rev = "83a893c38a83877588e3ca7ccfeabaa973c30acd";
sha256 = "0q7214hag7h95irvhkdb648m0@9b9jspbOrawlqjrx7y4grzbl65h”;

Hi{}
jre = oldnix.openjdk7;

in ...

Example 2: This example is an extract from the MuTect stage and demonstrates
how specific software versions can be referenced. Here the deprecated JDK 7
required by MuTect is accessed through an old revision of Nixpkgs.

Each stage, e.g., Dbwa.align, samtools.fixmate, oOr
platypus.call, is represented by a higher-order function
that takes options and dependencies and returns a function
from inputs to outputs. The type of a stage (functional program-
mers will recognize this as a “curried” version of the type of a
workflow) can be represented as

(Options & Dependencies) — (Inputs — Output).

let
octopus-git = octopus-caller.overrideAttrs (attrs: {
src = fetchFromGitHub {
owner = "luntergroup";
repo = "octopus";
rev = "f88d35b9b93d11a086eb87bb3722874a3ea5250e" ;

b
1)

in ...

Example 3: Nixpkgs has a flexible overrides system that allows derivations to
be selectively modified. Here the Octopus variant caller switched to the latest
development branch (as of 20 March 2020) instead of the current release.

BioNix dependencies by default include the BioNix tree
itself—to allow use of other (sub-)stages—as well as the Nixpkgs
collection, which provides the necessary general-purpose soft-
ware. For most of our stages we do not pass in any additional

options, and so the first argument is {}. However, bwa.align re-
quires that we specify a reference, and so we explicitly pass in
the ref declared at the beginning of the workflow.

We make use of several helpful abstractions from func-
tional programming. For example, we define a new function,
preprocess, that takes a sample and performs alignment, mate-
fixing, sorting, and duplicate-marking. We also use the pipe
function in BioNix to sequentially compose a list of functions.
Finally, we map this function over all our inputs. The Nix expres-
sion language allows for this abstraction and modularity with-
out introducing adverse effects.

{ bionix
, ref
, bamOutput ? true

}:

{ inputl
, input2 ? null
}:

with bionix;
with lib;

stage {

name = "bwa-mem";

buildInputs = with pkgs; [bwa] ++
optional bamOutput samtools;

buildCommand = "'
n -s ${ref} ref.fa
for f in ${bionix.bwa.index {} ref}/* ; do

1in -s $f

done

bwa mem -t $NIX BUILD CORES \
ref.fa \
${inputl} \
${optionalString (input2 !'= null) input2} \
${optionalString bamOutput "| samtools view -b"} \
> $out

Example 4: Specifying an alignment stage using BWA-mem. The expression de-
fines a function mapping parameters (e.g., a choice of reference genome) and the
fastq inputs to a derivation produced by the stage function. The stage function
takes as arguments a build script and the requisite software.

Example 4 illustrates an example stage in BioNix. In line with
our design pattern, the whole stage is represented by an anony-
mous higher-order function: it takes a record of options and
dependencies and returns a function that takes inputs (in this
case, a pair of FASTQ files representing read pairs) and returns
a derivation. Note that we give the reference as part of the first
argument to the stage (options and dependencies) rather than
as part of the second argument (inputs). This is because often
an entire workflow will be parametrized by a single reference
genome.

Links are created for both the reference and its associated
BWA indices to deal with the standard bioinformatics conven-
tion that indices are located in the same directory as the associ-
ated indexed file.

Finally, the output is optionally converted to the .bam format
within the shell script associated with the derivation. BioNix

1 Z0Z Y24\ Z0 UO Jasn auinogia 1o Ausiaaiun Aq 22z.865/1zZ1Leelb/| |/6/a1o1n1e/sousiosebib/woo dnooiwspese//:sdiy woll pspeojumoq

cannot stream data between stages of a workflow: both inputs
and outputs of a stage must be a file or set of files.

stage {
name = "picard-markDuplicates";
buildInputs = with pkgs;
[picard-tools];
outputs = ["out" "metrics"];
buildCommand = "'
picard MarkDuplicates \
I=${inputBam} \
0=%$out \
M=$metrics

Example 5: Extract from the definition of the mark duplicates expression for
picard tools demonstrating multiple outputs. The output attribute names the
build products, which are assigned unique paths in the store and exposed to the
build script via environment variables of the same name.

Example 4 has multiple inputs and only a single output (the
BAM file); however, multiple outputs are also supported by Nix
derivations. Example 5 demonstrates multiple outputs for picard
tools [23] with metrics in addition to the main output. The extra
output can be accessed via the metrics attribute in the returned
derivation.

For completeness, we also show how to specify a software de-
pendency. In our example workflow, the BWA software is pro-
vided by Nixpkgs and Example 6 shows a simplified version of
its specification there.

The expression is an anonymous function from
dependencies—in this case, the utility libraries stdenv and
fetchurl and the C library dependency zlib—to outputs—in
this case, the compiled binary for bwa. The function body is just
a single call to the helper function mkDerivation. Because bwa
follows the first 2 parts of the common ./configure; make;
make install pattern for building unix software, only the final
install phase needs to be specified. Here, the resulting binary is
copied into the bin/ directory.

{ stdenv, fetchurl, zlib }:

stdenv.mkDerivation rec {
name = "bwa-${version}";
version = "0.7.17";

src = fetchurl {

url = "mirror://sourceforge/bio-bwa/${name}.tar.bz2";

sha256 = "1zfhv2zg9vlicdlq4p9ssc8kOlmca5d1bd87w71lpy2swfi74s6yy";
+;
buildInputs = [zlib 1;

installPhase = "'
install -vD bwa $out/bin/bwa

e
;

Example 6: Specifying a software dependency for bwa-mem. This is a simplified
version of the expression found in Nixpkgs. The expression defines the build re-
quirements (zlib) and the steps required to build the software. A standard build
process (configure, make, make install)is assumed, so only non-standard com-
mands need to be specified. BWA does not support the standard make install
for installation, so an install script is defined in the expression.

While the Nix build system provides support for both local and
remote building, biocinformatics workflows are commonly exe-
cuted on traditional HPC infrastructure managed by job sched-
ulers. These systems require users to submit jobs to a queue,
along with specified resource limits.

BioNix provides support for queuing systems via a function
that takes resource limits and a derivation and returns a new
derivation that will submit the build process as a job to the queu-
ing system instead of buildingit directly. This design allows arbi-
trary derivations to be lifted to the queue and also allows users
to combine submission to the queue and building via the Nix
build system directly. However, because submission is a (rela-
tively benign) side effect, builds cannot be realized using sand-
boxing. This is because the default sandbox prevents the build
from using software not specified in the expression, and submit-
ting jobs to the scheduler requires interacting with the daemon
running outside the build environment. This restriction only ap-
plies to cluster execution; local and remote builds fully support
sandboxing.

Failures in the queue are handled similarly to execution fail-
ures: the build is aborted and reported to the user. This includes
when jobs are terminated due to resource limits. The jobid of
the submission is recorded in the build log along with any out-
put produced by the job to aid the user in tracing the error.

BioNix gives build products optional types in order to prevent er-
rors in workflow specification and to track useful metadata such
as the reference used for an alignment. This is a lightweight
version of the approach taken by Bioshake [24]. Types are im-
plemented as an abstract data type (ADT) and are tracked using
Nix’s passthru features.

Small variant calling workflow

We have used BioNix to manage a workflow that performs so-
matic variant calling and copy number variant (CNV) calling
on whole-genome deep sequencing human data using Min-
imap?2 [25] for alignment, samtools [21] for sorting and mark-
ing duplicates, Strelka [26] for somatic variant calling, and CN-
Vkit [27] for CNV calling.

This workflow was executed on HPC infrastructure managed
with the TORQUE resource manager [28] using the extensions
presented earlier. A total of 1.1 TB of (compressed) fastq in-
put was processed, producing 755 GB of results (including align-
ments). The workflow is detailed in Example 7, and a full exam-
ple executing the workflow on a publicly available melanoma
dataset [29] is available in the BioNix repository.

Structural variant calling at scale

We have also used BioNix to execute a workflow that processes
6.8 TB of whole-genome sequencing data from mice, performing
quality checking, alignment, and merging, and structural vari-
ant calling using gridss [30] with a range of parameters. This
resulted in a total of 5.3 TB of results. See Example 8 for the work-
flow used.

1 Z0Z Y24\ Z0 UO Jasn auinogia 1o Ausiaaiun Aq 22z.865/1zZ1Leelb/| |/6/a1o1n1e/sousiosebib/woo dnooiwspese//:sdiy woll pspeojumoq

{bionix ? import <bionix> {}, pair, fetch}:

with bionix;
with lib;
with types;

with minimap2;
with samtools;
with snpeff;

let
preprocess = s: pipe s [
fetch
(align { preset =
(fixmate {})
(sort { })
(markdup { })

sr"; ref = ref.grch38.seq;

1;

dropErrors = input: stage {
name = "drop-errors";
buildCommand = "'
grep -v "ERROR " ${input} > $out
passthru.filetype = input.filetype;
}s

bams = mapAttrs (_: preprocess) pair;

variants = let

somatic = strelka.callSomatic { } bams; in mapAttrs (_

(compression.uncompress { })

flags = "-R'@RG\\tID:${s.type;\\tSM:${s.type}'"; })

flip pipe [

(snpeff.annotate { db = ref.grch38.snpeff.db; })

dropErrors

(snpeff.dbnsfp { dbnsfp = ref.grch38.snpeff.dbnsfp; })

N A

"snvs.vcf" = somatic.snvs;
"indels.vcf" = somatic.snvs;
"germline.vcf" = strelka.call { } [bams.normal];

};

cnvs = cnvkit.callCNV { } { normals

in linkOutputs {
inherit variants;

[bams.normal]; tumours = [bams.tumour]; };

alignments = linkOutputs (mapAttrs' (n: nameValuePair (n + ".bam")) bams);

cnvkit = cnvs;

Example 7: The tumour-normal small variant calling workflow used for calling variants on clinical samples. Reads are aligned using Minimap2 [25], variants called
using Strelka [26], and finally CNVs with CNVkit [27]. The inputs are a pair of samples (as an attribute set containing normal and tumour attributes), a method fetch for

fetching the reads associated with a given sample, and BioNix.

BioNix leverages the underyling Nix system to achieve its repro-
ducibility, and consequently is subject to the same limitations
present in Nix.

A given stage may only write to the store location as-
signed to it, so streaming data between 2 distinct stages is
not possible. Streaming steps must therefore be combined
into 1 stage, which can be constructed with higher-order
functions. Streaming between 2 independent builds would
be difficult to support: the distributed design of Nix im-

plies that different builds may be executing on independent
machines.

Nix and BioNix will currently rebuild an output unnec-
essarily when dependencies of its inputs have changed but
the inputs themselves have not. The reason is that the Nix
store is not content addressed; store locations are based on
the cryptographic hash of all inputs used in building an out-
put, rather than the output itself. This has been referred to as
an “extensional” model [16]. The proposed “intensional” store
model [16] introduces content addressable storage and hash

1 Z0Z Y24\ Z0 UO Jasn auinogia 1o Ausiaaiun Aq 22z.865/1zZ1Leelb/| |/6/a1o1n1e/sousiosebib/woo dnooiwspese//:sdiy woll pspeojumoq

{ bionix, baseUrl, mice ? import ../metadata/mice.nix }:

with bionix;
with lib;

let
Utility function
update = f: x: x // (f x);

Process fastqs ###H#H#HHHHHHHHHAHHHHHHHHAHHHH AR

fetch = { filename, sha256sum, ... }:
fetchFastQGZ {
url = baseUrl + filename;
sha256 = sha256sum;
+i

updateFastq = update (fq: { fastqcOutput = fastqc.check { } (fetch fq); });

Process sample run #######HHHHAHHHH AR

fetchInputs = { fql, fq2, ... }: {
inputl = fetch fql;
input2 = fetch fq2;
I

alignSortSampleRun = sr:
pipe sr [
fetchInputs
(bwa.align {
ref = ref.grcm38.seq;

flags = "-R'@RG\\tID:${sr.id col}\\tSM:${sr.sample id}'";

1)
(samtools.sort { })

1;

updateSampleRun = update (sr: {

sampleRunBam = alignSortSampleRun sr;

recurse

fql = updateFastq sr.fql;
fq2 = updateFastq sr.fq2;
1)

Process samples ####H#HHHHHHHHHHHHHHHHHHHIH
mergedBam = flip pipe [(map (sr: sr.sampleRunBam)) (samtools.merge { }) I;

updateSample = update (sample:

let updated sample runs = map updateSampleRun sample.sample_runs;

in {
sample runs = updated sample runs;

1)

mergedBam = mergedBam updated sample runs;

Process mice ####H#HHHHHHHHHHHAHHHHHHHHAHTHHH AR

updateMouse = update (mouse: rec {
gridssCalls =

gridss.callAndAssemble (map (sample: sample.mergedBam) samples);

1)

in map updateMouse mice

samples = map updateSample mouse.samples;

Example 8: Structural variant calling for a mouse dataset. Stages include quality checking with FastQC [31], alignment with BWA [19], merging with samtools [21], and
finally structural variant calling with GRIDSS [30]. The inputs to the expression are BioNix, a base URL where the fastq files can be found, and the metadata describing
the experimental design, sequencing data, and hashes. This workflow is structured so that metadata are “annotated” with build products, analogous to building up a
data structure in a general-purpose language. Because Nix is lazy, the build products will only be built when requested. Comparing with Example 7 shows how flexibly

workflows can be specified within BioNix.

rewriting, allowing better sharing of components and reduc-
ing unnecessary builds. This feature is currently under im-
plementation and is not available in the latest Nix release
(2.3.1).

The Nix language, although extremely simple, has an id-
iosyncratic syntax that draws from both curly brace and func-

tional programming languages; some may find this unfamiliar
or off-putting.

Finally, Nix does not have an advanced type system. BioNix
provides type safety for many of its stages through an imple-
mentation of ADTs, but because these data types are imple-
mented in Nix itself the error reporting can be obscure.

1 Z0Z Y24\ Z0 UO Jasn auinogia 1o Ausiaaiun Aq 22z.865/1zZ1Leelb/| |/6/a1o1n1e/sousiosebib/woo dnooiwspese//:sdiy woll pspeojumoq

{ bionix ? dmport <bionix> {} }:

with bionix;
with lib;

let

task prepare {
command <<<
python -c "print(‘one\ntwo\nthree\nfour")"
>>>
output {
Array[String] array = read_lines(stdout())
}
}

prepare = splitString "\n" (removeSuffix "\n" (readFile (stage {

task analysis {

name = "prepare'"; .
. String str
buildInputs = [pkgs.python3 J; command <<<
buildCommand = '! python -c "print(' ${str} ')
python -c "print('one\ntwo\nthree\nfour', end='"'")" > $out >>>
U output {
1)) String out = read_string(stdout()
}
analysis = str: removeSuffix "\n" (readFile (stage { }
name = "analysis"; task gather {
bu‘i'LdInputs = [pkgspython 1; Array[String] array
buildCommand = "' command <<<

python -c "print('_${str}_")" > $out

1)

gather = strs: stage {
name = '"gather";
buildCommand = "'
echo ${concatStringsSep " " strs} > $out

}i

in gather (map analysis prepare)

echo ${sep=' ' array}
>>>
output {
String str = read_string(stdout())

}
}

workflow example {
call prepare
scatter (x in prepare.array) {
call analysis {input: str=x}
}
call gather {input: array=analysis.out}
}

Example 9: Verbatim scatter-gather example from WDL [46] documentation with the BioNix implementation on the left and WDL on the right. The workflow generates
some input data using Python, parses it into lines, transforms each line via a simple Python script, then collects all lines into a final output. It is unusual to parse
and split using the Nix language—typically this would instead be done through a build—but we have done so to maintain a closer translation of the WDL example. In
BioNix we must specify the Python dependency: because the entire software environment is managed, a failure to specify software will result in a failed build. The
BioNix example also shows how different software versions can be combined: Python 3 is used in the prepare stage, but Python 2 is used in the analysis stage.

We discuss here 2 categories of work related to our own. The first
consists of other projects making use of the Nix deployment sys-
tem to manage data processing workflows; the second concerns
existing workflow management tools popular in bioinformatics
and computational biology.

Similar adaptations of the Nix system

Several groups have made use of Nix to manage the environ-
ments in which computational workflows are executed. Re-
searchers at GRICAD at the Université Grenoble Alpes have made
use of Nix as an HPC package management system [32, 33]. The
Pipelines in Genomics (PiGx) project [34] uses Guix—an imple-
mentation of the Nix system using GNU Scheme in place of
the Nix expression language—to produce a set of reproducible
“turn-key” workflows for bioinformatics and computational bi-
ology, configured via simple static config files. Similar uses of
Nix for reproducible research have also been suggested by Blair
Archibald of the Software Sustainability Institute [35, 36] and
Bruno Vieira at the Mozilla Foundation [37].

However, none of these approaches use Nix to specify work-
flows themselves; instead, Nix is used as a replacement for pack-
age managers and containers. BioNix takes the next step and
embeds the workflows into the Nix system.

Two projects that we know of make use of Nix to man-
age workflows themselves: Mix, a Nix-based system for speci-
fying data processing pipelines developed at SoundCloud [38],
and Fractalide, a service programming platform using dataflow
graphs [39].

Mix is built on the hnix project [40] and implements a new
builder dedicated to data workflows. Mix redefines derivations
to remove the Nix store and allow storage of products on a dis-
tributed file system. Consequently, Mix cannot take advantage
of Nixpkgs and focuses entirely on the workflows, without cap-
turing the associated computational environments.

Fractalide is an effort to provide a dataflow graph program-
ming platform with an initial focus on microservices and the
internet of things. Though it builds on Nix, it also extends the
base language with a new language for specifying the dataflow
graphs, and relies on bindings to other languages to provide an
interface to the actual data processing (i.e., the microservice).
By contrast, BioNix focuses on Bioinformatics workflows, is im-
plemented entirely within the existing Nix ecosystem, and calls
existing pieces of software via their command line interfaces.

GWL [41, 42] is in many ways the workflow manager clos-
est in approach to BioNix. GWL, like PiGx, is built on Guix and
so inherits the reproducibility guarantees of a Nix-like system.
Unlike PiGx, GWL manages workflows themselves using Guix,
rather than using it only to provide the necessary software en-
vironment. However unlike BioNix, stages in GWL are not repre-
sented by functions but by data structures; workflows are spec-
ified via manual construction of the associated build graph; and
workflow stages are untyped.

Existing workflow managers for computational biology

There are a large number of existing workflow systems in use
today [43, 44]. A complete review of the existing systems is out
of scope of this article; however we briefly review the more com-
monly used systems [45].

1 Z0Z Y24\ Z0 UO Jasn auinogia 1o Ausiaaiun Aq 22z.865/1zZ1Leelb/| |/6/a1o1n1e/sousiosebib/woo dnooiwspese//:sdiy woll pspeojumoq

{ bionix ? dmport <bionix> {}
, input ? ./sample.fa}:

with bionix;

with lib;
let
splitSequences = fa: stage {
name = "splitSequences";
buildInputs = [pkgs.gawk 7;
buildCommand = "'
awk '/A>/{f="seq_"++d} {print > f}' ${fa}
mkdir Sout

cp seqx Sout

[
’

1

reverse = fa: stage {
name = "reverse";
buildCommand = ''

${pkgs.utillinux}/bin/rev ${fa} > Sout

’

+;

in pipe [
splitSequences
(each reverse)
] input

Bedéetal. | 9

params.in = "$baseDir/data/sample.fa"
sequences = file(params.in)
J*

* split a fasta file in multiple files
*/
process splitSequences {

input:
file 'input.fa' from sequences

output:
file 'seq_*' into records

IRIRT}

awk '/A>/{f="seq_"++d} {print > f}' < input.fa

nnn

}
/*

* Simple reverse the sequences
*/

process reverse {

input:
file x from records

output:
stdout result

nun

cat $x | rev

nnn

}

/*

* print the channel content
*

/

result.subscribe { println it }

Example 10: Nextflow basic pipeline example [47] (right) taken verbatim from the documentation and translated to BioNix (left). The example splits a single FastA file
into a collection of FastA files, each containing exactly 1 sequence. The sequences are then reversed (in parallel) and then gathered back into 1 file in the final step. The
BioNix pipe function implements reverse function composition for the easy specification of sequences of stages. The BioNix expression requires us to specify which

awk implementation to use; here we chose GNU Awk.

task hello world {
String name = "World"
command {
echo 'Hello, ${name}'

}
output {
File out = stdout()
}
runtime {
docker: 'ubuntu:latest'
}

workflow hello {
call hello _world
}

{ bionix }:

bionix.stage {

name = "hello";
str = "World";
buildCommand = "'

echo "Hello, $str" > $out

’

Example 11: WDL example using Docker for software management (left) taken verbatim from the Cromwell documentation [48] and the equivalent BioNix expression
describing the build (right). The software in WDL is fixed by specifying which Docker container to use (which could be referred to with a specific hash), while in the
BioNix example the software is fixed when a concrete bionix is passed to the function.

Leipzig [45] categorizes workflow systems into 2 main cat-
egories: implicit or explicit syntax. Those with explicit syntax
detail the workflow between stages explicitly; BioNix would fall
into this category because our modelling of a workflow as func-
tion composition explicitly links the steps together into a work-
flow, as does WDL [9]. The other category, implicit syntax, are
those systems whereby the stages are connected through ab-
stract rules linking stages with their dependencies. Examples

of implicit workflows are SnakeMake [8] and Nextflow [11]. We
choose a representative selection of these broad categories in
the following.

As already mentioned, current best practice aims at repro-
ducibility using a combination of package managers, containers,
and workflow engines. BioNix combines the functionality of all
of these, and in this sense is difficult to compare with existing
workflow management tools.

1 Z0Z Y24\ Z0 UO Jasn auinogia 1o Ausiaaiun Aq 22z.865/1zZ1Leelb/| |/6/a1o1n1e/sousiosebib/woo dnooiwspese//:sdiy woll pspeojumoq

However, we can compare the syntax of BioNix with that
of existing workflow managers by implementing toy piplines
in each. Examples 9 and 10 illustrate 2 simple examples from
the documentation of WDL [9] and NextFlow [11] alongside the
equivalent BioNix expression. BioNix necessarily defines the
software used in the execution of the workflow, and software
outside of Nix is unavailable. By contrast, the WDL and NextFlow
examples presented are valid workflow specifications without
software definitions, although they do support software envi-
ronment management via containers (e.g., Docker) or package
managers (e.g., Conda). Example 11 demonstrates support for
Docker in WDL.

BioNix might also be compared with CWL [49], which is a
standard specification language intended for describing work-
flows in a portable way. However, CWL is increasingly used as
a target for other build systems rather than being written di-
rectly. In this sense, CWL increasingly plays a role similar to Nix’s
derivation files, which are complete, portable, machine-readable
specifications that can be built on local or remote systems.

Galaxy [50] is a popular workflow platform that provides a
web-based GUI for specification of workflows and execution con-
trols. Galaxy provides facilities to manage the computational en-
vironment via various package management tools, with Conda
being popular. Nix can be integrated into Galaxy, which would
allow Galaxy to leverage the strong reproducibility guarantees
of Nix [15, 16]. This would be similar to the approach taken by
PiGx.

Cuneiform [51, 52] is a functional programming language for
large-scale data analysis workflows. In Cuneiform, as in BioNix,
workflow stages are modelled as pure functions. Cuneiform
also has an elegant foreign function interface (FFI), allowing the
seamless use of code snippets from a variety of languages—
bash, Python, R, and others—as well as a language-level static
type system. On the other hand, Cuneiform does not manage
software dependencies and so lacks the reproducibility guaran-
tees that BioNix leverages from Nix.

Finally, SciPipe [53] is a recent workflow library that focuses
on dynamic execution and streaming. Like Bionix, SciPipe pro-
vides logs at the resolution of each build and allows incremental
(partial) builds. On the other hand, SciPipe has a strong focus on
streaming, which is not supported in Nix between independent
builds (see Limitations of BioNix).

We have presented BioNix, a framework built on Nix in which
workflows are specified using pure functions. BioNix captures
software versions and dependencies, manages computational
environments, and composes the various stages of workflows all
within the one framework and language. Previous approaches to
computational reproducibility have relied on a combination of
technologies such as containers, package managers, and work-
flow engines to achieve the same ends. BioNix unites these func-
tionalities under the one framework, making it simple to spec-
ify computational biology workflows with strong reproducibility
guarantees.

BioNix is available at http://github.com/PapenfussLab/bionix
under the 3-clause BSD license.

Project name: BioNix

Project home page: https://github.com/PapenfussLab/BioNix
License: 3-clause BSD

Operating system(s): Not applicable

Other requirements: Nix

RRID:SCR_017662

BioTools: biotools:BioNix

A GigaDB archival snapshot is available [54].

ADT: abstract data type; BWA: Burrows-Wheeler Aligner; CNV:
copy number variant; CWL: Common Workflow Language; GUI:
graphical user interface; GWL: Guix Workflow Language; HPC:
high-performance computing; PiGx: Pipelines in Genomics;
WDL: Workflow Description Language.

The authors declare that they have no competing interests.

A.T.P. was supported by the Lorenzo and Pamela Galli Charita-
ble Trust and by an Australian National Health and Medical Re-
search Council (NHMRC) Program Grant (1054618) and NHMRC
Senior Research Fellowship (1116955). The research benefitted
by support from the Victorian State Government Operational In-
frastructure Support and Australian Government NHMRC Inde-
pendent Research Institute Infrastructure Support. J.B. was sup-
ported by the Stafford Fox Medical Research Foundation.

All authors conceived the study and wrote the manuscript. JB
and LDS conceived the initial design of BioNix. JB contributed
code and documentation to BioNix.

Thanks to Ramyar Molania and Jocelyn Sietsma Penington for
being early adopters of BioNix, and to Ramyar for helpful com-
ments on the manuscript. Thanks to Alan Rubin for many help-
ful discussions and comments on the manuscript.

1. Reality check on reproducibility. Nature 2016;533(7604):437-
7.

2. Challenges in irreproducible research. Nature 2018.https://
www.nature.com/collections/prbfkwmwvz/

3. Package, dependency and environment management for any
language—Python, R, Ruby, Lua, Scala, Java, JavaScript, C/
C++, FORTRAN. 2018. https://conda.io/docs/.

4. Griining B, Dale R, Sjodin A, et al. Bioconda: Sustainable and
comprehensive software distribution for the life sciences.
Nat Methods 2018;15(7):475-6.

S. Enterprise container platform. 2018. https://www.docker.c
om.

6. Singularity. 2018. https://www.sylabs.io/singularity/.

7. VivianJ, Rao AA, Nothaft FA, et al. Toil enables reproducible,

1 Z0Z Y24\ Z0 UO Jasn auinogia 1o Ausiaaiun Aq 22z.865/1zZ1Leelb/| |/6/a1o1n1e/sousiosebib/woo dnooiwspese//:sdiy woll pspeojumoq

http://github.com/PapenfussLab/bionix
https://github.com/PapenfussLab/BioNix
https://scicrunch.org/resolver/RRID:SCR_017662
https://www.nature.com/collections/prbfkwmwvz/
https://conda.io/docs/
https://www.docker.com
https://www.sylabs.io/singularity/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

open source, big biomedical data analyses. Nat Biotechnol
2017;35:314-6.

Koster J, Rahmann S. Snakemake-a scalable bioinformatics
workflow engine. Bioinformatics 2012;28:2520-2.

WDL Documentation. https://software.broadinstitute.org/
wdl/. Accessed 23 January 2019.

Cromwell. https://github.com/broadinstitute/cromwell. Ac-
cessed 17 June 2020.

Di Tommaso P, Chatzou M, Floden EW, et al. Nextflow en-
ables reproducible computational workflows. Nat Biotechno
2017;35:316-9.

Goodstadt L. Ruffus: A lightweight Python library for compu-
tational pipelines. Bioinformatics 2010;26:2778-9.

Rubra. https://github.com/bjpop/rubra. Accessed 17 June
2020.

Grining B, Chilton J, Koster], et al. Practical computa-
tional reproducibility in the life sciences. Cell Syst 2018;6:
631-5.

Dolstra E The purely functional software deployment model.
Ph.D. Thesis, Universiteit Utrecht, Utrecht, The Netherlands;
2006.

Dolstra E, de Jonge M, Visser E. Nix: A safe and policy-free
system for software deployment. In: Proceedings of the 18th
Large Installation System Administration Conference, At-
lanta. Berkeley, CA: USENIX; 2004:79-92.

Dolstra E, Loéh A, Pierron N, NixOS: A purely func-
tional Linux distribution.] Funct Program 2010;20(5-6):
577-615.

Nixpkgs. 2019. https://github.com/NixOS/nixpkgs.

Li H. Aligning sequence reads, clone sequences and assem-
bly contigs with BWA-MEM. arXiv 2013:1303.3997.

Li H, Durbin R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 2009;25:1754—
60.

Li H, Handsaker B, Wysoker A, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics
2009;25:2078-9.

Rimmer A, Phan H, Mathieson I, et al. Integrating
mapping-, assembly- and haplotype-based approaches
for calling variants in clinical sequencing applications. Nat
Genet 2014;46:912-8.

Picard toolkit. 2019. http://broadinstitute.github.io/picard/.
Bioshake. BioShake: a Haskell EDSL for bioinformatics work-
flows. Peer] 2019;9(7):e7223.

Li H. Minimap2: pairwise alignment for nucleotide se-
quences. Bioinformatics 2018;34:3094-100.

Kim S, Scheffler K, Halpern AL, et al. Strelka2: Fast and accu-
rate calling of germline and somatic variants. Nat Methods
2018;15:591-4.

Talevich E, Shain AH, Botton T, et al. CNVkit: Genome-
wide copy number detection and visualization from
targeted DNA sequencing. PLoS Comput Biol 2016;12:
€1004873.

TORQUE Resource Manager. 2019. https://adaptivecomputin
g.com/cherry-services/torque-resource-manager/.
Cameron DL, Baber J, Shale C, et al. GRIDSS, PURPLE, LINX:
Unscrambling the tumor genome via integrated analysis
of structural variation and copy number. bioRxiv 2019,
doi:10.1101/781013.

Cameron DL, Schroder], Penington JS, et al. GRIDSS: Sensi-
tive and specific genomic rearrangement detection using po-
sitional de Bruijn graph assembly. Genome Res 2017;27:2050-
60.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Andrews S, Krueger F, Segonds-Pichon A, et al. FastQC. Cam-
bridge, UK: Babraham Institute; 2010.

Bzeznik B, Henriot O, Reis V, et al. Nix as HPC package man-
agement system. In: Proceedings of the Fourth International
Workshop on HPC User Support Tools - HUST’17, Denver, CO.
ACM; 2017, doi:10.1145/3152493.3152556.

Bouttier PA. Nix as HPC package management system. Nix-
Con. 2018. https://www.youtube.com/watch?v=s5iY3CsdSf
Q.

Wurmus R, Uyar B, Osberg B, et al. PiGx: Reproducible
genomics analysis pipelines with GNU Guix. GigaScience
2018;7, doi:10.1093/gigascience/giy123.

Archibald B. Reproducible Environments With Nix. Software
Sustainability Institute. 2017. https://www.software.ac.uk/b
log/2017-10-05-reproducible-environments-nix.

Crouch S, Hong NC, Hettrick S, et al. The Software
Sustainability Institute: Changing research software
attitudes and practices. Comput Sci Eng 2013;15:
74-80.

Vieira B. A truly reproducible scientific paper?. 2017.
https://medium.com/@bmpvieira/a-truly-reproducible

-scientific-paper-5059b282ee9a. Accessed 23 January
20109.
Dubus G. Mix: Nix for data pipeline configuration. Nix-

Con, London. 2018. https://www.youtube.com/watch?v=tc5A
pNghAQ4.

Reusable Reproducible Composable Software. 2019. https://
github.com/fractalide/fractalide.

A Haskell re-implementation of the Nix expression lan-
guage. 2019. https://github.com/haskell-nix/hnix.

Janssen R. Workflow management with GNU Guix. FOSDEM
2017. https://www.youtube.com/watch?v=tpLcwfRXL28.
Wurmus R. GWL: GNU Workflow Language. FOSDEM 2019.
https://www.youtube.com/watch?v=pwYhPqaUiGg.

Pope B. Computational Data Analysis Workflow Systems.
2020. https://github.com/common-workflow-language/com
mon-workflow-language/wiki/Existing-Workflow-systems.
Accessed 2 June 2020.

A curated list of awesome pipeline toolkits inspired by Awe-
some Sysadmin. https://github.com/pditommaso/awesom
e-pipeline. Accessed 2 June 2020.

Leipzig J. A review of bioinformatic pipeline frameworks.
Brief Bioinform 2016, doi:10.1093/bib/bbw020.

Workflow Description Language - Specification and Imple-
mentations. 2019. https://github.com/openwdl/wdl/blob/72
1e16f28f0bf5b3ae8b44df2859b504e10ae13f/README.md#s

cattergather.
Nextflow - Basic pipeline. 2019. https://www.nextflow.io/exa
mplel.html.
Cromwell: Specifying Containers in your Workflow.

https://cromwell.readthedocs.io/en/stable/tutorials/Cont
ainers/#specifying-containers-in-your-workflow. Accessed
18 June 2020.

Amstutz P, Crusoe MR, Tijani¢ N, et al. Common Workflow
Language, v1.0. 2016, doi:10.6084/m9.figshare.3115156.v2.
Afgan E, Baker D, Batut B, et al. The Galaxy platform
for accessible, reproducible and collaborative biomedi-
cal analyses: 2018 update. Nucleic Acids Res 2018;46:
W537-44.

Brandt J, Bux M, Leser U. Cuneiform: A functional language
for large scale scientific data analysis. In: Proceedings of
the Workshops of the EDBT/ICDT, Brussels, Belgium. 2015,
doi:10.13140/RG.2.1.3547.6561.

1 Z0Z Y24\ Z0 UO Jasn auinogia 1o Ausiaaiun Aq 22z.865/1zZ1Leelb/| |/6/a1o1n1e/sousiosebib/woo dnooiwspese//:sdiy woll pspeojumoq

https://software.broadinstitute.org/wdl/
https://github.com/broadinstitute/cromwell
https://github.com/bjpop/rubra
https://github.com/NixOS/nixpkgs
http://broadinstitute.github.io/picard/
https://adaptivecomputing.com/cherry-services/torque-resource-manager/
https://www.youtube.com/watch?v=s5iY3CsdSfQ
https://www.software.ac.uk/blog/2017-10-05-reproducible-environments-nix
https://medium.com/@bmpvieira/a-truly-reproducible-scientific-paper-5059b282ee9a
https://www.youtube.com/watch?v=tc5ApNqhAQ4
https://github.com/fractalide/fractalide
https://github.com/haskell-nix/hnix
https://www.youtube.com/watch?v=tpLcwfRXL28
https://www.youtube.com/watch?v=pwYhPqaUiGg
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/pditommaso/awesome-pipeline
https://github.com/openwdl/wdl/blob/721e16f28f0bf5b3ae8b44df2859b504e10ae13f/README.md#scattergather
https://www.nextflow.io/example1.html
https://cromwell.readthedocs.io/en/stable/tutorials/Containers/#specifying-containers-in-your-workflow

12 | Unifying package managers, workflow engines, and containers

52. Brandt], Reisig W, Leser U. Computation semantics of
the functional scientific workflow language Cuneiform.
J Funct Program 2017;27, doi:10.1017/S0956796817000
119.

53. Lampa S, Dahlé M, Alvarsson], et al. SciPipe: A work-
flow library for agile development of complex and

dynamic bioinformatics pipelines. Gigascience 2019;8,
doi:10.1093/gigascience/giz044.

54. Justin B, Leon DSS, Anthony PT. Supporting data for “Uni-
fying package managers, workflow engines, and containers
with BioNix for computational reproducibility.” GigaScience
Database 2020. http://dx.doi.org/10.5524/100782.

1 Z0Z Y24\ Z0 UO Jasn auinogia 1o Ausiaaiun Aq 22z.865/1zZ1Leelb/| |/6/a1o1n1e/sousiosebib/woo dnooiwspese//:sdiy woll pspeojumoq

http://dx.doi.org/10.5524/100782

