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ABSTRACT

RNA-seq datasets can contain millions of intron
reads per library that are typically removed from
downstream analysis. Only reads overlapping anno-
tated exons are considered to be informative since
mature mRNA is assumed to be the major component
sequenced, especially for poly(A) RNA libraries. In
this study, we show that intron reads are informative,
and through exploratory data analysis of read cover-
age that intron signal is representative of both pre-
mRNAs and intron retention. We demonstrate how
intron reads can be utilized in differential expression
analysis using our index method where a unique set
of differentially expressed genes can be detected us-
ing intron counts. In exploring read coverage, we also
developed the superintronic software that quickly
and robustly calculates user-defined summary statis-
tics for exonic and intronic regions. Across multiple
datasets, superintronic enabled us to identify several
genes with distinctly retained introns that had similar
coverage levels to that of neighbouring exons. The
work and ideas presented in this paper is the first of
its kind to consider multiple biological sources for
intron reads through exploratory data analysis, mini-
mizing bias in discovery and interpretation of results.
Our findings open up possibilities for further meth-
ods development for intron reads and RNA-seq data
in general.

INTRODUCTION

Advances in gene profiling technology, such as RNA-
sequencing (RNA-seq) have allowed researchers to study
transcription in exquisite detail. Previously, quantitative
gene expression analyses by microarray required prior
knowledge of the sequences to be interrogated, limiting de
novo discoveries and understanding of gene transcripts and
alternative splicing especially at a high-throughput level.
Most research efforts focused on gene-level information and
comparison of genes that are differentially expressed (DE)
between two or more groups. Whilst this is still the main fo-
cus for RNA-seq, the technology has the ability to examine
sub-gene components such as at the transcript-level, exon-
level, or even nucleotide base-level without prior sequence
knowledge. As a result, there has been increased interest and
effort into the study of transcript-level information, alterna-
tive gene splicing and gene intron retention (IR) at a global
level using RNA-seq (1–3).

RNA-seq can be used to characterize and study many
RNA types, including non-coding RNAs that regulate a di-
verse range of cellular processes (4,5), but the overwhelm-
ing majority of studies focus on messenger RNAs (mRNAs)
which encode genes that are translated into protein. The
most popular RNA selection protocol captures polyadeny-
lated (poly(A)) RNA seeing that it is optimized for mRNA
selection. In eukaryotes, poly(A) tails are synthesized to aid
transportation of mature mRNA molecules from the nu-
cleus to the cytoplasm, to increase molecule stability and for
translation. Total RNA selection is also widely used, often
including a step to deplete ribosomal RNA so that it does
not compete with sequencing of mRNA. RNA expression
values are highly correlated between the two RNA selection
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protocols, with a higher percentage of reads (≈3% more)
mapping to protein coding genes in poly(A) RNA sam-
ples, and a higher percentage of reads (≈2.5% more) map-
ping to long non-coding RNAs in total RNA samples (6).
The general assumption is that for protein coding genes the
vast majority of RNA captured by the experiment are ma-
ture mRNA transcripts, as such, aligned sequencing reads
are typically summarized only for annotated exons within
genes. It is not common practice to quantify reads that over-
lap uniquely with intronic regions of a gene, perhaps be-
cause few reads are expected or due to suggestions that in-
tron reads represent experimental and transcriptional noise
(7) and/or are unusable in exon and gene quantification (8).
However, intron reads can account for a significant propor-
tion of sequencing reads (9).

In stark contrast, a small subset of studies have high-
lighted the use of intron reads, showing their correlation
with measurements of nascent RNA (10) or by using the
reads to study IR (3,11). The inclusion of intron reads into
data analysis expands areas in which RNA-seq can be used
to interrogate transcriptional biology at a high-throughput
level, where for example IR has been shown to play impor-
tant roles in inactivation of tumour suppressor genes (12)
and during neutrophil (11) and erythroblast (13) differen-
tiation. Whilst previous works on intron reads have been
ground-breaking, they focus solely on one of the many as-
pects of transcription based on the biological interests of
the study at hand. Gaidatzis et al. (10) thoroughly explored
nascent transcription using intron reads in both poly(A)
and total RNA libraries, but without mention of IR. Wong
et al. (11) assumed that poly(A) RNA libraries contain only
processed mRNAs, and successfully showed that genes with
differentially retained introns are enriched in the cytoplasm.
It is unclear, however, whether the same methods can or
should be applied more generally to separate datasets. Per-
haps, this would be determined by an expert with prior and
thorough understanding of the underlying biology within a
given dataset, but does not really allow an analyst to apply
the methods to a randomly selected dataset to see if the re-
sults ‘make sense’. And yet, there is still little consensus on
whether intron reads are informative to begin with.

In this paper, we summarize and explore the general char-
acteristics of intron reads in a data driven manner. The work
presented here allows for a novel perspective on technical, as
well as multiple biological considerations when using intron
reads. Demonstrating that intron reads are informative, we
find that coverage profiles within intronic regions of poly(A)
RNA libraries differ from that of total RNA libraries for
genes that are relatively long. We observe that across most
of the genes, their coverage patterns and strong correlation
between exon and intron counts is consistent with our un-
derstanding of pre-mRNA signal. Amongst the pre-mRNA
signal, for a human cell lines dataset we also select a small
set of genes that have coverage profiles representative of IR.
As a result of our exploratory work on intron reads, we have
also made two novel methods available––index incorporates
intron reads into differential gene expression (DGE) anal-
yses; and superintronic is used to summarize read coverage
for intronic and exonic regions. We expect that the results
presented in this paper will better inform of how RNA-seq
intron reads can be applied appropriately for various bio-
logical interests and further methods development.

MATERIALS AND METHODS

Datasets

Human cell lines of lung adenocarcinoma HCC827 and
NCI-H1975 were cultured on three separate occasions by
Holik et al. (14) giving three pseudo biological replicates.
RNA was extracted from each pseudo biological replicate
and split into two and prepared as poly(A) RNA and to-
tal RNA libraries. Raw sequencing reads were downloaded
from the Gene Expression Omnibus (GEO) (15) under ac-
cession number GSE64098. Twelve libraries were examined
for this dataset.

Human immune cells were sequenced by Linsley et al.
(16) using a poly(A) RNA library preparation; GEO acces-
sion number GSE60424. RNA samples were taken of whole
blood and six immune cell subsets, including pure popu-
lations of neutrophils, monocytes, B cells, CD4+ T cells,
CD8+ T cells and natural killer (NK) cells. A total of 134
libraries were examined for this dataset.

Mouse mammary cells from female virgin mice with ad-
ditional samples from mammosphere and the CommaD-
�Geo (CommaD-bG) cell line were sequenced in a study
by Sheridan et al. (17) to obtain poly(A) RNA libraries;
GEO accession number GSE63310. Mammary cell popula-
tions include mammary stem cell-enriched basal cells, lumi-
nal progenitor-enriched (LP) and mature luminal-enriched
(ML) cell populations. Nineteen libraries were examined for
this dataset.

Megakaryocytes and platelets from mice were se-
quenced separately, with four and six libraries, respectively.
Megakaryocytes were sequenced by Choi et al. (18) us-
ing a poly(A) RNA protocol; GEO accession number
GSE116177. Poly(A) RNA libraries of platelets were
sequenced by Chappaz et al. (19); GEO accession number
GSE141161.

Genomes and gene annotations

FASTQ files containing raw sequencing reads were aligned
to the human hg38 or mouse mm10 genome using sub-
junc (20) with default parameters in the Rsubread software
package (21). GENCODE’s main Comprehensive gene an-
notation file in GTF format was downloaded from https:
//www.gencodegenes.org for human (Release 27) and mouse
(Release M12). Using ‘gene types’ (rather than ‘transcript
types’) from Gencode, the annotation files were simplified
by taking the union of two or more overlapping exons from
transcripts of the same gene. The adjustment provides a
simplification of genomic positions on each strand, such
that each position is classified as belonging to ‘exon’, ‘in-
tron’ or otherwise outside of an annotated gene. Three re-
sultant annotation files were saved in standard annotation
format (SAF)––exon annotation, intron annotation (region
between exons) and genebody annotation (region spanning
first to last exon). Our Supplementary Materials available
at https://github.com/charitylaw/Intron-reads contain the
scripts to process annotation files, together with other data
analyses and supplementary figures.

Intron and exon counts

Aligned reads were summarized by featureCounts (22) us-
ing exon annotation and genebody annotation separately
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to get gene-level exon counts and gene-level genebody counts
respectively. Gene-level intron counts are calculated by sub-
tracting exon counts from genebody counts.

Approximately 15% of genes had exon counts that were
greater than genebody counts (by a median value of eight
counts). This was due to our conservative approach of ex-
cluding reads that overlapped features in multiple genes
during the read summarization step by featureCounts us-
ing the argument allowMultiOverlap=FALSE. Under this
strategy, some reads were counted towards the exon count
set but not the genebody count set. This happens when a
read overlaps the exon in one gene and the intron of an-
other gene––it is counted towards exon counts but not gene-
body counts due to its overlap of multiple genebodies but
not multiple exons.

An alternate count strategy sets
allowMultiOverlap=TRUE and does not result in higher
exon counts than genebody counts. However, this gives
ambiguous assignment of reads to counts via the multi-
counting of reads, and can return a larger number of
total counts than the original number of sequenced reads.
This is not desired for our purpose of quantification and
classification of reads into exon and intron sets.

Any gene with a larger exon count than genebody count,
had its intron count adjusted to zero. Intron counts rep-
resent the gain in information when summarizing reads
across the whole genebody relative to exonic regions only.
Whilst there are other count strategies, such as counting
exon–intron boundary reads separately or towards intron
counts, we take this approach since our interest is in assess-
ing whether the intron reads that are not typically used con-
tain additional signal.

Coverage patterns

Read coverage of intronic and exonic regions were calcu-
lated for poly(A) RNA and total RNA HCC827 human
cell lines using our superintronic package, via the Rsamtools
package (23). Genes of interest were restricted to protein
coding genes on reference chromosomes, and we removed
any genes that overlapped another to simplify the analysis
and reduce coverage ambiguity. Genes were then further fil-
tered if they were not expressed in the poly(A) RNA proto-
col (requiring at least three reads overlapping intronic and
exonic regions). A total of 3262 genes were examined and
categorized as short, regular or long (roughly 1087 genes in
each category) by splitting the length of each gene into three
bins by tertiles.

Using associated BAM files and GENCODE v27 an-
notation GTF, superintronic summarized the number of
bases covered at a given coverage score for each gene and
sample. For exonic regions and intronic regions, coverage
scores were transformed to log2-scale using an offset of
0.5, and then normalized by dividing by each gene and
each sample’s maximum log-coverage score. Normalized
log-coverage scores, or relative log-coverage (relative to each
gene’s maximum coverage), were divided into 20 windows
along the length of each gene using the GenomicRanges
package (24). To summarize coverage patterns across genes,
plyranges (25) was applied to relative log-coverage scores
by intersecting it with the positional windows. Each win-

dow’s mean coverage score (mean relative log-coverage) was
calculated for each gene. Based on the position of the win-
dows, they were further summarized across genes by taking
its mean. The summary values were calculated separately
for genes categorized as short, regular and long to represent
general coverage trends along the gene body.

RESULTS

Intron reads are prevalent across datasets

Taking a conservative approach, we quantify the number
of intron reads that map entirely to an intron of a gene, ex-
cluding those that overlap an exon-intron boundary. Gene-
level intron counts represent the extra counts one may ob-
tain from within a gene when looking outside of annotated
exons. The proportion of reads contributing to gene-level
intron counts ranges from 2 to 14% with a mean value of 7%
for poly(A) RNA libraries across three datasets examined
(Figure 1A). A greater proportion of reads contribute to-
wards gene-level exon counts, ranging from 57 to 78% with
a mean of 69% (Figure 1B). Despite the relatively small pro-
portion of intron reads, they amount to hundreds of thou-
sands to millions of reads per library under typical sequenc-
ing protocols. For a library of size 30 million, the number of
intron reads is ∼2.1 million (using the mean value of 7%).

A higher proportion of intron reads are found in total
RNA libraries in comparison to poly(A) RNA libraries,
as noted in prior studies (8,9). The mean proportion of
reads contributing to intron counts and exon counts for
total RNA libraries in human cell lines is 21 and 56%,
respectively––a profound difference of roughly 15% more
intron counts and 20% fewer exon counts when compared
to corresponding poly(A) RNA samples. This equates to
∼6.3 million intron reads for a library of size 30 million.
Intron and exon read proportions are fairly consistent for li-
braries within the same biological and experimental groups
(such as within cell lines, cell types, tissues and RNA li-
brary protocol). Some variation in read proportions can
be observed for different biological (e.g. neutrophils versus
whole blood) and experimental (e.g. poly(A) RNA versus
total RNA HCC827 cell line) groups. Within libraries, exon
log-counts are positively correlated with intron log-counts
(Figure 1C).

Intron reads are informative and contain biological signal

In DGE analyses, plots of principle components analysis
and multi-dimensional scaling (MDS) methods are com-
monly created from exon counts to provide an overview
of the similarities and differences in transcriptional pro-
files in an unsupervised manner. To determine whether in-
tron reads contain any biological signal, we applied MDS
methods to intron counts instead. Samples cluster by exper-
imental and biological groups in intron MDS plots across
all datasets (Figure 1D) indicating that intron reads are in-
formative, rather than a result of sequencing noise. As ex-
pected, samples also cluster by experimental and biological
groups in exon MDS plots (Figure 1E).

Strikingly, the scales observed in the first and second di-
mensions of the intron MDS plots are comparable to that of
the exon MDS plots even though there are roughly ten times
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Figure 1. With libraries separated by biological and experimental groups, various statistics are summarized as boxplots across the datasets (distinguished
by colour––purple for human cell lines, pink for human immune cells and green for mouse mammary cells) and total RNA samples labelled with a ‘(T)’.
(A) Proportion of reads assigned to intron and (B) exon counts. (C) Pearson correlation of gene-level exon log2-counts (log-counts) and gene-level intron
log-counts. Log-counts are calculated for genes expressed (count of three or more) in both intron and exon count sets, using an offset of 1. (D) MDS plots
of log2-counts-per-million (log-CPM) values calculated using an offset of two for gene-level intron counts and (E) gene-level exon counts for each of the
three datasets. MDS plots were created using limma’s (32) plotMDS function based on the top 500 most variable genes.

fewer intron counts than exon counts. The distance between
points on each plot give an indication of the typical log2-
fold change (logFC) between samples in the top 500 most
variable genes in each set of counts. In other words, the typ-
ical logFC between samples are similar for intron and exon
counts.

Note that the first dimension of separation accounts for
a larger proportion of variation in the data than the second
dimension. The MDS plots for human cell lines indicate
that intron read signal is significantly influenced by RNA
selection protocols. The first dimension in the intron plot
separates samples based on RNA selection method and ac-
counts for 48% of the variation in the intron counts, whilst
the second dimension relates to cell line identity and ac-
counts for 18% of variation in the data. This is in contrast to
the exon plot where the RNA selection protocol (second di-
mension) accounts for 26% of the variation in counts, and
cell lines (first dimension) accounts for 37%. The type of
RNA selection protocol used in library preparation has a
greater influence on intron reads than exon reads.

Comparing counts from poly(A) and total RNA libraries

The human cell line dataset allows us to further ex-
plore count differences between library preparation meth-
ods. Gene-level exon log-CPM values are similar between
poly(A) RNA and total RNA libraries and have a very
strong positive correlation (Supplementary Figure S1).
Gene-level intron log-CPM values are also positively cor-
related but counts tend to be greater in total RNA than
poly(A) RNA libraries (Supplementary Figure S1). Log-
CPM values were calculated using an offset of two and by
setting the library size as the sum of counts from exons and

introns (log-RPKM values are calculated in the same way).
This allows adjustment of intron and exon counts by the
same sequencing depth per library, rather than an intron- or
exon-specific proportion of the original sequencing depth.

Within libraries, we found that the majority (56% on av-
erage) of expressed, multi-exonic genes contain both in-
tron and exon signal simultaneously. This was calculated
by looking for the percentage of multi-exonic genes with
counts of three or more in both intron and exon count sets,
out of genes that are expressed. Expressed genes were de-
fined as having a count of three or more in exon and/or in-
tron counts. 32% of expressed, multi-exonic genes were ex-
pressed in exon regions only (exon count ≥3, intron count
≤2) and 13% of genes were expressed in intron regions only
(exon count ≤2, intron count ≥3) on average.

To understand the nature of intron counts in relation
to exon counts, we focus on the set of genes that are ex-
pressed in both regions, noting that total intron length of
genes tend to become disproportionately large relative to to-
tal exon length (Supplementary Figure S2). Within poly(A)
RNA libraries, intron and exon log-CPM and log-RPKM
values are positively correlated (Supplementary Figure S3).
Log-CPMs provide a reflection of the size of counts used
as inputs to many analysis methods, and log-RPKMs are
adjusted for length differences and provide a representa-
tion of read coverage levels. Intron coverage tends to be
lower than exon coverage within the same gene, but the
relative difference is quite stable across the genes (Supple-
mentary Figure S3). The median difference between gene-
wise exon log-RPKM and intron log-RPKM values is ≈5.1
across all poly(A) RNA HCC827 and NCI-H1975 cell
line libraries, such that gene-wise exon coverage is roughly
34 times greater than intron coverage on average. Average
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intron coverage is affected by total length of intron regions
in genes, such that genes with longer intron regions tend to
have lower log-RPKM values (Supplementary Figure S3).
Also, relative coverage of exons over introns increases as
the total length of intron regions increases, and as exon log-
RPKM increases (Supplementary Figure S3).

Similar trends are observed in total RNA samples (Sup-
plementary Figure S3), though it is worth noting that for
total RNA libraries the intron and exon counts have similar
count size and dynamic range, and have stronger correlation
of log-CPM and log-RPKM values between introns and
exons. For total RNA libraries, exon coverage is roughly
10 times greater than intron coverage on average (median
difference between gene-wise exon log-RPKM and intron
log-RPKM values is ∼3.3 across all total RNA HCC827
and NCI-H1975 cell line libraries).

Intron reads are predominantly from pre-mRNA

The notion that intron reads originate from pre-mRNA
molecules rather than genes with retained introns is sup-
ported by the observation that gene-level exon counts tend
to have a strong positive correlation with intron counts
across all genes (Supplementary Figure S3), and that a large
proportion of expressed, multi-exonic genes express intron
and exon signal simultaneously. Assuming that IR is gener-
ally not widespread across all genes, a weak positive corre-
lation is expected between intron and exon counts if intron
reads were predominantly coming from genes with retained
introns.

To verify this, we examined intron and exon read counts
from nucleated megakaryocytes and compared this to their
anucleate platelet progeny. We observe overwhelmingly
that intron reads are detected in megakaryocytes but are
not detected in platelets (Figure 2A), leading us to con-
clude that the majority of intron reads correspond to pre-
mRNA. Exon reads, on the other hand, are detected in both
megakaryocytes and platelets.

Coverage patterns across the genebody of multi-exonic
genes provide further evidence that intron signal is predom-
inantly from pre-mRNAs with unspliced or partially spliced
introns, where intron reads tend to be uniformly distributed
in total RNA libraries and increasing gradually towards the
3′ end of genes in poly(A) RNA libraries (Figure 2B). Total
gene length appears to play a part in intron coverage pat-
terns. Genes under examination were catergorized by total
gene length (length from first base in first exon to last base
in last exon) such that a third were considered to be short,
regular and long genes each. Coverage patterns were similar
between poly(A) RNA and total RNA libraries for short
genes, whilst patterns differed substantially for regular and
long genes. Exon coverage patterns were similar for poly(A)
RNA and total RNA libraries.

The coverage patterns were calculated by dividing per
base log-coverage values in exonic regions by the maxi-
mum exonic log-coverage value in each gene. We refer to
these values as relative log-coverage values in exonic regions
(see ‘Materials and Methods’). The same is carried out for
intronic regions. To summarize relative log-coverage over
multiple genes, the values were averaged within windows

Figure 2. (A) Log-CPM values for exon counts in mouse megakaryocytes
versus platelets; and for intron counts. Log-CPM values are calculated us-
ing the combined library size of intron and exon count sets, and the average
value across biological replicates is plotted. Only multi-exonic genes and
those that have a mean raw count of three or more in at least one count set
are included. There are a total of four count sets––exon and intron counts
for megakarytocytes, and exon and intron counts for platelets. (B) Cover-
age of intron and exon regions across the genebody. Top: Coverage patterns
of exon regions across the genebody, separated into groups based on gene
length. Coverage is represented by the mean of mean relative log-coverage,
where relative log-coverage is calculated as local log-coverage divided by
maximum log-coverage in a given gene. HCC827 cell line samples are de-
picted with black lines representing poly(A) RNA libraries R1, R2 and R3,
and grey lines representing the corresponding total RNA libraries. Bottom:
Coverage patterns of intron regions across the genebody.

in each gene before taking the average of windows across
genes.

Confirming the same patterns for individual genes, cov-
erage profiles of two short genes F3 and MYC are observed
to be similar between RNA library preparation (Figure 3A
and B). In contrast, the coverage profiles of two long genes
TSC22D2 and FAM3C differ at the 5′ end where poly(A)
RNA libraries are observed to have deflated intron cover-
age relative to the 3′ end, as well as relative to total RNA
libraries (Figure 3C and D). Reduction in read coverage at
5′ introns for poly(A) RNA libraries explain why poly(A)
libraries are observed to have relatively low proportions of
intron reads (Figure 1A) and dynamic range in log-CPM
values relative to total RNA libraries (Supplementary Fig-
ure S3).
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Figure 3. Log-coverage in exon regions (green) and intron regions (orange) in HCC827 poly(A) RNA R1 library (top) and HCC827 total RNA R1 library
(bottom) are displayed for two short genes, (A) F3 and (B) MYC, and two long genes, (C) TSC22D2 and (D) FAM3C. Genes are oriented from 5′ to 3′,
from left to right. These genes were selected based on having a high median intron log-coverage. Intron regions with high expression (log-coverage greater
than three) are highlighted by a shade of darker orange.

Relative gene-level contribution by pre-mRNAs is low
compared to mature mRNAs for the majority of genes,
as reflected in low intron log-RPKM relative to exon log-
RPKM values (Supplementary Figure S3). If intron and
exon log-RPKM values provide an estimate of the rela-
tive proportions of pre-mRNA and mRNA molecules cap-
tured, then on average roughly 1 pre-mRNA molecule is
captured for every 10 molecules in a sequencing experiment
(since exon coverage is roughly 10 times greater than intron
coverage in total RNA libraries, and total RNA libraries
have uniform intron coverage). Unless the sequencing ex-
periment is carried at very high depths, intron signal may
not be detected for genes with relatively short intron regions
since pre-mRNA levels are low, whilst genes with long in-
tron regions have greater ability to accumulate sequencing
reads over the gene.

DGE analyses of transcriptional activity using intron and
exon counts

Classical DGE analyses are performed on gene-level exon
counts, where in light of results from the previous section
we have an understanding that the associated reads orig-
inate from mRNA as well as pre-mRNA molecules. Pre-
viously, signal from microarrays designed with exonic and
intronic probe sets were used to study transcriptional dy-
namics of pre-mRNAs and mRNAs (26). For RNA-seq
data, we propose a method that complements the classi-
cal DGE analysis and includes intron counts to measure
changes in early transcriptional activity. We call our method

index, intron differences to exon, a DGE method catego-
rizing genes by significance and directional changes in in-
tron and exon counts. Relative to a classical DGE analysis
which requires gene-level exon counts and some informa-
tion about the experimental design and comparisons of in-
terest, index simply requires an addition of gene-level intron
counts. Index is an R package which is available to down-
load and install at https://github.com/Shians/index.

The index workflow (Figure 4A) is carried out on genes
that are expressed in both intron and exon regions. Firstly,
sufficiently large intron and exon counts are selected by the
filterByExpr function in edgeR (27,28). Trimmed mean of
M-values (TMM) normalization (29) is then carried out on
intron and exon count sets separately using the combined
library size for samples (sum of both pre-filtered intron and
exon counts). This is a variation on the standard library size
calculation which only sums counts within a single count
set. Intron and exon counts evaluated based on standard
library sizes will be affected by intron and exon read pro-
portions (Figure 1A and B) which vary between samples,
groups and experiments and gives a poor estimate of origi-
nal sequencing depth. The combined library size is used also
for downstream calculations, such as in obtaining log-CPM
values by voom (30).

DE genes are obtained for intron and exon counts sepa-
rately following a standard limma-voom pipeline (31) where
log-CPM values and variables of interest are modelled on
a Normal distribution with precision weights calculated by
voom. Moderated t-statistics are calculated for each gene
using Empirical Bayes’ methods (32,33) and P-values are
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A B

Figure 4. Overview of the index and superintronic workflows. (A) Beginning with matrices containing exon and intron counts by gene and vectors describing
an experimental design and contrasts of interest, index uses edgeR for normalization and gene filtering. Then using voom, DE results are computed and
are categorized according to significance in exon and intron counts. (B) The modular workflow for exploratory genomics data analysis using superintronic
and plyranges. The software requires BAM files, gene annotation and information on experimental design as input prior to any computation. Each stage
can be performed independently depending on the end goal of the analysis. The pre-processing steps compute coverage as a long form GRanges object in
parallel and with respect to an experimental design. The annotation can also be used to construct the exonic and intronic parts of a gene. Region-based
overlaps or filters can be performed to either zoom in on a gene of interest or to split coverage over intron and exon parts. Coverage can then summarized
over regions with respect to a design or a sample using a statistical summary such as the mean, sum or standard deviation or any suitable R function. A
suite of visualization functions are provided to look at coverage in the context of gene annotations or for finding interesting regions of coverage.

adjusted for multiple testing by controlling the FDR (34).
Genes with an adjusted P-value of less than a nominal cut-
off are considered to be DE.

Index categories are formed based on significance in in-
tron and exon counts: + for genes upregulated in both in-
tron and exon counts, - for downregulated in intron and
exon counts, exon+ and exon- for up- and downregulated in
exon counts only, intron+ and intron- for up- and downreg-
ulated in intron counts only, mixed+- for upregulated in ex-
ons and downregulated in intron counts and mixed-+ when
in the opposite direction and 0 for no significant difference
in either exon or intron counts.

The index software performs analysis on intron and exon
DGEList objects (a native object of edgeR) to classify genes
into the respective index categories. Index outputs cate-
gories assigned to each gene, limma-style tables of DGE re-
sults for introns and exons, and other data used by the soft-
ware to create plots. This allows the index analysis to be eas-
ily performed on any dataset where intron and exon counts
can be obtained separately.

Index analysis of human cell lines and immune cells

An index analysis comparing NCI-H1975 versus HCC827
cell lines in total RNA libraries reveals that the majority
of genes are DE in the same direction between intron and

exon counts––2406 genes upregulated (+) in NCI-H1975
and 2464 downregulated (−) using an adjusted P-value
cutoff of 0.01 (Figure 5A–C). Genes DE by exon counts
only form the second biggest group, with 989 genes up-
regulated (exon+) and 914 genes downregulated (exon-) in
exon counts. Interestingly, these genes tend to have short in-
tron regions (Figure 5D). There are 547 genes upregulated
(intron+) and 459 genes downregulated for intron counts
only (intron-), where genes tend to have relatively long in-
tron regions. Similarly, genes DE in opposite directions also
have relatively long intron regions––a small group of 25
genes upregulated in exon counts but downregulated in in-
tron counts, and 29 genes upregulated in intron counts but
downregulated in exon counts. The analysis was carried out
on 11608 genes after lowly expressed genes were filtered out.

An identical analysis comparing monocytes versus neu-
trophils in the immune cells dataset similarly reveals that
the majority of genes are DE in the same direction between
intron and exon counts––3491 genes are upregulated (+) in
neutrophils relative to monocytes and 2628 downregulated
(−) using an adjusted P-value cutoff of 0.01 (Figure 5E–
G). Again, genes DE by exon counts only form the sec-
ond biggest group, with 1073 genes upregulated (exon+)
and 969 genes downregulated (exon−) for neutrophils in
exon counts. These genes again tend to have shorter intron
regions, but the difference in length between index cater-
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Figure 5. Results for DGE analysis of intron and exon counts using index. (A) Number of significant genes in index categories for NCI-H1975 versus
HCC827 cell lines in total RNA libraries, with (B) t-statistics from exon counts plotted against those from intron counts and (C) logFC values from exon
counts plotted against those from intron counts, where colours are associated with different index categories. (D) Distribution of total intron length ordered
by median total intron length of index categories. The categories are combined here, such that genes that are upregulated or downregulated for both intron
and exon counts are reassigned to both; exon for genes up- or downregulated for exon counts only, similarly for intron and mixed. A square-root scale is
used along the vertical axis, with the median total exon length (5126 bases) marked as a reference. (E–H) Similar plots are displayed for a comparison of
monocytes and neutrophils in the immune cells dataset.

gories is subtle compared to that of cell lines (Figure 5H).
There are 441 genes upregulated (intron+) and 340 genes
downregulated (intron-) for intron counts only, where genes
again tend to have longer intron regions. The number of
genes DE in opposite directions between intron and exon
counts is larger for this comparison than in cell lines, with
249 genes upregulated in exon counts but downregulated in
intron counts (mixed+−) and 269 genes downregulated in
exon counts but upregulated in intron counts (mixed−+).
The analysis was performed on 10789 genes after lowly ex-
pressed genes were filtered out.

Index analysis detects additional DE genes

The index DGE analyses demonstrate that transcriptional
changes detected by exon counts are similar to those de-
tected by intron counts. This is expected since exon counts
represent mRNA and pre-mRNA levels, whilst intron
counts largely represent pre-mRNA levels. For most genes,
similarity between intron and exon logFCs (Figure 5C and
G) indicate that pre-mRNA and mRNA levels are simul-
taneously up- or downregulated at similar proportions be-
tween groups.

We hypothesize that genes categorized as intron+ or
intron− mostly contain changes in pre-mRNA levels only.
To verify this, we examine read coverage profiles for genes
with the largest expression differences in cell line samples
(largest absolute t-statistics in intron+ and intron− cate-
gories). We observe that genes in the intron+ and intron−

categories have coverage profiles that are consistent with
what we would expect of changes in pre-mRNA levels, such
that reads are covering most of or all of the genebody for
one cell line and higher than that of the other cell line (see
‘Analyses’ page in Supplementary Materials).

Assignment of genes into different index categories is as-
sociated with total intron length of a gene (Figure 5D and
H), such that genes DE for exon counts only tend to have
relatively short intron regions. Naturally, these genes are
unlikely to accumulate high intron counts due to low cov-
erage and short region lengths, thus lacking power dur-
ing statistical testing. On the other hand, genes DE for
intron counts only tend to have relatively long intron re-
gions; due to their length they are able to accumulate
high intron counts even if coverage levels are low, giv-
ing them a power advantage when testing for differential
expression.

In other words, exon+ and exon− genes may also con-
tain changes in intron regions even though they remain un-
detected. Alternative explanations for observing significant
changes in exon counts only are less likely, for example, that
there are no pre-mRNAs observed, or that pre-mRNA lev-
els are consistent between groups. The former is contra-
dicted by Supplementary Figure S3 which shows high in-
tron coverage for genes with short intron regions, and the
latter is unlikely to be a trait specific to genes with short in-
tron regions. Similarly, intron+ and intron− genes may also
contain changes in exon regions even though they remain
undetected.
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If intron counts represent pre-mRNA levels, then any
change observed between groups in intron counts should
also be reflected in exon counts. However, exons are un-
likely to accumulate high counts over its relatively short
regions if pre-mRNA (and mRNA) levels are very low. If
genes have retained introns or differentially retained introns
in one group versus another, it is also possible for genes to be
detected as DE in intron counts. Intron+ and intron− genes
can be compared against a list of genes detected with re-
tained introns (see superintronic in next section). Given that
significance is influenced by total intron length, it is possi-
ble that exon+, exon−, intron+ and intron− genes may be
reclassified into + and − index categories if sequencing was
performed at greater depths.

Mixed+− and mixed−+ genes form a relatively small set
of genes relative to other index categories. Biologically, a si-
multaneous increase in pre-mRNA levels and decrease in
mRNA levels between two groups can induce changes in
opposing directions between intron and exon counts. For
example, this may occur during nonsense mediated decay
(35), where post-transcriptional regulation may lead to a de-
crease in mature transcripts.

An index DGE analysis adds an extra layer of infor-
mation by overlapping intron and exon results, where ad-
ditional DE genes are detected that are not observed in
a classic DGE analysis alone. The index method has in-
creased power in genes with long intron regions, where
high counts can be detected for low coverage genes. A
classic DGE analysis, by limma-voom or like methods, fol-
lowed by an index DGE analysis allows researchers to make
use of a larger proportion of reads that are already se-
quenced and available to them to detect additional DE
genes.

Superintronic: an exploratory approach to detecting genes
with IR

Considering IR also as another possible source of intron
reads we propose a new method using our superintronic soft-
ware to explore intron signal directly from aligned sequenc-
ing data with the assumption that most intron reads do not
point to IR but pre-mRNA instead. Superintronic is an R
package that is available to download and install at https:
//github.com/sa-lee/superintronic. It extends the plyranges
Bioconductor package (25) for genomics data analysis to
develop a simple and modular interface for performing ex-
ploratory genomics data analysis via coverage estimation.
Each aspect of the superintronic data analysis workflow as
it has been applied for exploring intron signal is outlined in
Figure 4B.

Our software records the per base coverage over intron
and exon regions of each gene, with the option of storing
these per sample or summarized over variables in the ex-
perimental design such as by biological group or by RNA
library preparation. Coverage scores are normalized using a
log2-transformation with an offset of 0.5 to get log-coverage
values for which intron and exon summary statistics are
constructed for each gene (described below). Within super-
intronic, a suite of visualization tools to construct coverage
plots for genes with intron and exon structures and scatter
plots are provided.

Superintronic finds genes with IR-like coverage profiles in hu-
man cell lines

Using superintronic, poly(A) RNA HCC827 cell lines were
examined for genes with IR after selecting genes in the
hg38 reference that were protein coding, did not overlap any
other gene and were placed on the main contigs––a total
of 6606 genes. These genes were then split into intron and
exon regions and intersected with the coverage of each sam-
ple. Per gene intron and exon summary statistics, mean and
standard deviation, were computed on log-coverage values.
We selected genes enriched for IR-like coverage profiles by
looking for ‘expressed’ genes, where for a substantial num-
ber of intron bases its coverage is much higher than other
intron features within the same gene whilst having similar
expression levels to the exon features. To do this we used
the following thresholds––genes had an average exon log-
coverage of greater than two (corresponding to the mean of
average exon log-coverage values across all genes), a stan-
dard deviation of intron log-coverage >1.5 (correspond-
ing to the mean of intron standard deviation values across
all genes), and genes with a large number of intron bases
with log-coverage greater than two (top 1% of genes). The
thresholds were chosen after examining distributions of the
summary statistics (Supplementary Figure S4). Forty-three
genes met these criteria, where a manual check of coverage
profiles revealed that 36 genes indeed appear IR-like (see
‘Analyses’ page in Supplementary Materials). We highlight
three of these genes in Figure 6. The coverage of remaining
seven genes appear to be more pre-mRNA-like, with large
variation in intron coverage, where at its peak it is expressed
similarly to exon features.

We use poly(A) RNA samples in our analysis for con-
sistency with previous studies on IR. In theory, total RNA
samples may be more appropriate for this exercise since it
is less biased towards the 3′ end, where high 3′ intron cov-
erage as a result of 3′ bias in poly(A) RNA libraries can be
mistaken as a 3′ retained intron. For this reason, we review
both the coverage of poly(A) RNA and total RNA samples
in our Supplementary Materials for all selected genes to en-
sure that retained introns found in poly(A) RNA samples
are not an artifact of RNA library preparation.

If differentially retained introns are of interest, one could
simply run superintronic on two conditions separately and
compare lists of IR-like genes between groups. We found
that differences between the lists of IR-like genes were con-
cordant with index results for genes DE by intron counts,
as expected (see ‘Analyses’ page in Supplementary Materi-
als). For example, 14 genes were uniquely selected as IR-
like in total RNA HCC827 cell line when compared to total
RNA NCI-H1975 cell line using superintronic, where 13 of
those genes were also found to be DE in intron counts by in-
dex, and in the expected direction. Similarly, 19 genes were
uniquely detected as IR-like in total RNA NCI-H1975 by
superintronic, 16 of which were also detected as DE in intron
counts by index. Additionally, 12 genes which were found
to be IR-like in both cell lines appear to have varying intron
expression according to index since it is found to be DE in
intron counts.

Whilst genes that are uniquely IR-like were concordant
with directional changes in intron counts, we did not find
that IR-like genes played a large part in index gene cat-
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A B C

Figure 6. Superintronic selects genes with IR-like coverage profiles in poly(A) RNA HCC827 cell lines. Genes (A) PSMB7, (B) EIF2S3 and (C) ARGLU1
are highlighted out of 43 genes selected. Whilst the analysis was carried out on poly(A) RNA libraries, coverage is shown for both poly(A) RNA HCC827
(top) and total RNA HCC827 (bottom) samples to ensure that results are not an artifact of RNA library preparation. Coverage is oriented from 5′ to 3′,
with exon regions coloured green and intron regions coloured orange.

egorization. This was mostly expected since thousands of
genes were detected as significantly DE by index and a rela-
tively small number of genes were detected as IR-like by su-
perintronic. Specifically, IR-like genes did not overlap with
one particular index category (see ‘Analyses’ page in Supple-
mentary Materials). Of genes that are classified as intron+
or intron−, only 3 out of 1006 genes were also detected by
superintronic as IR-like. In the ‘mixed’ category, 2 out of 54
genes were also detected as IR-like.

DISCUSSION

The work presented in this paper provides a broad view of
the characteristics and expression patterns associated with
intron reads in model organisms, namely human and mice.
Incomplete gene annotations may result in misclassification
of reads as intron reads. We looked into this by examining
split reads as indicative of splice events, and found the ef-
fect of unannotated exons in our analyses of human cell line
data to be minimal. For example, HCC827 cell line sam-
ples have a median of zero split reads within introns (third-
quartile of 0.33), as compared to a median number of 38
split reads in exons (third-quartile of 121.33). This demon-
strates that splice events are rare within annotated intronic
regions, and suggests that unannotated exons play a very
minor role in the results we presented overall. For exam-
ple, only 2% of genes in any of the index categories contain
introns with 10 or more split reads (see ‘Analyses’ page in
Supplementary Materials).

Interestingly, 41% of superintronic’s IR-like genes contain
introns with 10 or more split reads. However, we do not be-
lieve that this indicates that the genes were detected because
of unannotated exons since our thresholds ensure the se-
lection of high coverage regions that are much larger than
the typical exon. For the understanding of complex splice
events, further biological validation of the IR-like genes is
of interest but beyond the scope of this paper.

For organisms that are poorly annotated, the number of
reads misclassified as intron reads may be significantly in-
flated. In such cases, ‘intron reads’ that are split reads can be
useful for identifying new exons. DGE analyses using gene-
body counts or by our index method would naturally in-
corporate the transcriptional changes within unannotated
exons of annotated genes.

Using gold standard differential expression methods, in-
dex selects and categorizes genes of interest based on P-
values from moderated t-statistics that are adjusted for mul-
tiple testing and the direction of change. This is statistically
more sophisticated than the EISA method which uses in-
tron and exon logFCs alone and provides no prioritization
of genes of interest––this is, however, sufficient for their pur-
pose of categorizing genes as sets, and determining whether
the biological system under study is driven transcription-
ally or post-transcriptionally as a whole. In contrast, index
looks for DE genes using evidence from intron and exon
counts. Index’s logFC plot (Figure 5C and G) is analogous
to EISA’s main result and logFC plot.

The presence of pre-mRNA in poly(A) RNA libraries
may be somewhat surprising since the RNA library prepa-
ration is optimized for mRNA selection. However, pre-
mRNA can be captured by both poly(A) RNA and total
RNA protocols since transcription from DNA to a pri-
mary RNA transcript, 3′ cleavage of the RNA molecule
and polyadenylation can be completed before splicing is
complete at the 3′ end because the splicing mechanism re-
quires a relatively long processing time (36) – this is regard-
less of whether genes are co-transcriptionally (9,37–38) or
post-transcriptionally spliced. Evidence supporting this in-
cludes the presence of poly(A)-positive molecules in the nu-
cleus that are larger than final mRNAs in the cytoplasm
(36).

Handling of RNA in preparation for sequencing results
in a degree of fragmentation of the original molecule re-
gardless of the level of care taken during this process. This
has minimal downstream effects on total RNA libraries
since 3′ and 5′ fragments are selected randomly. However,
the selection of poly(A)-positive RNA molecules in poly(A)
RNA libraries bias fragments at the 3′ end whilst 5′ frag-
ments are lost in the process. This results in 3′ coverage bias
in poly(A) RNA libraries (Figure 2B)––demonstrated also
by Lahens et al. (39) in their study on technical biases in-
troduced during generation of sequencing libraries. Shorter
genes with fewer and/or shorter introns are less affected by
fragmentation than genes with long RNA molecules, thus
coverage profiles are more similar between total RNA and
poly(A) RNA libraries for these genes (Figure 2B). Read
coverage in total RNA libraries may provide a more accu-
rate representation of the original RNA molecule than in
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poly(A) RNA libraries, especially in long genes. In poly(A)
RNA libraries, the inflated 3′ exon expression and 3′ ‘back-
ground’ intron signal may negatively impact on methods for
de novo transcriptome assembly and transcript quantifica-
tion. total RNA libraries which have uniform ‘background’
intron signal is easier to model in theory and should be bet-
ter suited to such applications. Moreover, existing IR detec-
tion methods applied to poly(A) RNA sequencing libraries
will have increased difficulty in interrogating introns resid-
ing towards the 5′ end of genes.

We have explored intron signal arising in this context
via coverage estimation performed using superintronic and
found that we can visualize IR-like coverage profiles by
using simple summary statistics generated from genomic
overlaps. Our method differs from existing methods such
as IRFinder (40) and IsoformSwitchAnalyzeR (41) in that it
can detect IR-like coverage profiles in individual conditions,
rather than differences between two conditions. Naturally,
the detection of differentially retained introns within a gene
should firstly include a retained intron in at least one con-
dition, and secondly contain differences in the expression
of the intron. Since detection of either of these steps are
non-trivial, we believe that it is more important to focus on
detecting retained introns directly via visualization of ‘in-
teresting’ coverage profiles. However, a downside of our ap-
proach is that does not perform any statistical inference on
a given coverage profile to say whether a region is truly IR-
like. In this way we see the use of superintronic as both com-
plimentary to index and useful in its own right for flexibly
summarizing reads with respect to an experimental design,
it can be used to perform quality control on index results in-
terrogate exon/intron count data further by viewing cover-
age profiles. We have also found that estimation of coverage
profiles can provide a visual check of differential IR results
from other methods; for example we have observed signifi-
cant results in poly(A) RNA libraries tending towards the 3′
end of genes for both IRFinder and IsoformSwitchAnalyzeR
(Supplementary Figure S5). Although the results are not di-
rectly comparable, we note that 23% of genes uniquely de-
tected as IR-like in either of the cell lines using superintronic
overlap with differential IR results using IRFinder’s gener-
alized linear models method. Whilst this is not a big over-
lap, it shows some level of consistency between the methods.
On the other hand, none of the uniquely IR-like genes are
in common with results from IsoformSwitchAnalyzeR (see
‘Analyses’ page in Supplementary Materials).

Compared to bulk RNA-seq, single-cell RNA-seq
(scRNA-seq) data have much smaller library sizes and rel-
atively high proportions of intron reads leading to much
interest in the incorporation of intron reads in scRNA-seq
data analyses (42). Though yet to be tested, DGE analysis
by index should theoretically perform well on scRNA-seq
data since it increases the number of testable genes and li-
braries by increasing the amount of information used.

The work presented in this paper explores multiple ori-
gins of intron reads and signal in RNA-seq data. We demon-
strate the usefulness of applying intron reads to study mul-
tiple aspects of transcriptional biology, and provide tools
to interrogate changes in pre-mRNA and mRNA levels, as
well as genes with IR-like coverage profiles. Biological vali-
dation of our results was not carried out and is beyond the

scope of this paper, since the intention was to make conclu-
sions using a data-driven approach. However, further work
includes closer examination into pre-mRNA-specific and
IR-specific signal, such as by using full length transcripts
by long-read sequencing by Pacific Biosciences (43) or Ox-
ford Nanopore Technologies (44). It is also of interest to ex-
amine intron reads in datasets with RNA from cytoplasmic
and nuclear fractions versus whole cell.

CONCLUSION

Intron reads are prevalent at small to moderate propor-
tions in RNA-seq datasets, however, they provide signal
that can distinguish between biological and experimental
groups. Harvesting these extra reads as pre-mRNA signal,
DGE analysis can be carried out more thoroughly with
the addition of intron counts into index. The extra layer of
analysis enables distinction between changes in pre-mRNA
and mRNA signal enhancing the understanding of tran-
scriptional changes and dynamics under study. IR remains
an important mechanism in biology and can be explored
through the use of superintronic, which can discover genes
with IR-like coverage profiles.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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