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Abstract 

Emerging evidence started to delineate multiple layers of memory B cells, with distinct 

effector functions during recall responses. Whereas most studies examining long-lived 

memory B cell responses have focussed on the IgG
+
 memory B cell compartment, IgM

+

memory B cells have only recently started to receive attention. It has been proposed that 

unlike IgG
+
 memory B cells, which differentiate into antibody-secreting plasma cells upon

antigen re-encounter, IgM
+
 memory B cells might have the additional capacity to establish

secondary germinal centre (GC) responses. The precise function of IgM
+
 memory B cells in

the humoral immune response to malaria has not been fully defined. Using a murine model of 

severe malaria infection and adoptive transfer strategies we found that IgM
+
 memory B cells

induced in responses to P. berghei ANKA readily proliferate upon re-infection and adopt a 

GC B cell-like phenotype. The results suggest that that IgM
+
 memory B cells might play an

important role in populating secondary GCs after re-infection with Plasmodium, thereby 

initiating the induction of B cell clones with enhanced affinity for antigen, at faster rates than 

naive B cells.  
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Introduction 

Malaria is one of the most serious infectious diseases affecting humans, causing 250 million 

clinical cases annually and leaving 3 billion people at risk of infection globally (World 

Health Organisation, 2017). Blood stage parasite infection is responsible for all clinical 

symptoms associated with malaria (Schofield and Grau 2005), which can range from 

relatively mild and uncomplicated disease to severe complications including cerebral malaria, 

respiratory distress, hypoglycaemia, renal failure and pulmonary oedema (Miller et al. 2013). 

Children under five years of age, with low levels of pre-existing immunity, are most 

vulnerable to these severe manifestations of disease. Individuals living in malaria endemic 

regions acquire clinical immunity to the disease only after repeated exposure to the parasite 

over a number of years. This type of immunity is non-sterilising, but can prevent clinical 

episodes by substantially reducing parasite burden (Marsh and Kinyanjui 2006), commonly 

resulting in asymptomatic infection of adults. Parasite specific antibody responses are known 

to play an important role protective immunity to malaria (Cohen et al., 1961; Sabchareon et 

al., 1991) and engage in various effector functions during blood stage infection including the 

prevention of erythrocyte invasion and sequestration (Bolad and Berzins, 2000; Stanisic et 

al., 2009), promotion of complement mediated lysis, and opsonisation for phagocytic parasite 

clearance (Schmidt et al., 2015).  

The development of long-lived, antibody-mediated immunological memory requires 

the establishment of germinal centre (GC) structures. Following initial interaction with 

antigen, naive B cells in lymphoid organs either differentiate into short-lived plasma cells, or 

migrate deeper into the B cell follicles where they establish a GC. Within the GCs, activated 

B cells undertake somatic hypermutations in their Ig genes, followed by selective survival of 

B cells producing antibodies with higher affinity. GC establishment and function requires a 
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specific subset of T cells- named TFH cells (Crotty 2011). Recent studies investigated how 

these processes are modulated in malaria in order to identify immunological processes which 

underpin the slow acquisition of immunity. Epidemiological studies revealed that the 

development of IgG
+
 memory B cells specific for P. falciparum antigens is delayed in

individuals residing in areas of high seasonal malaria transmission, who are vulnerable 

clinical episodes of disease (Weiss et al. 2010). Consistent with those findings, using a rodent 

infection model we previously showed that that the same inflammatory cytokines that 

contribute to the induction of malaria disease symptoms such as IFN-, upregulate the 

expression of the transcription factor T-bet in TFH cells, which prevents their normal 

differentiation and capacity to provide help for the induction of plasma cell and IgG
+
 memory

B cells (Ryg-Cornejo et al. 2016).  

Emerging evidence started to delineate multiple layers of memory B cells, with 

distinct effector functions during recall responses (Dogan et al. 2009). Whereas most studies 

examining long-lived memory B cell responses to infection and vaccination have focussed on 

the IgG
+
 memory B cell compartment, IgM

+
 memory B cells have only recently started to

receive attention. Evidence from murine studies has shown that this compartment remains 

stable (Good-Jacobson and Tarlinton 2012) and recognises antigen with low affinity (Pape et 

al. 2011) compared to class-switched memory B cells. Unlike IgG
+
 memory B cells, which

rapidly differentiate into antibody-secreting plasma cells upon antigen re-encounter, recent 

studies in humans and murine models suggest that IgM
+
 memory B cells have the additional

capacity to establish secondary GC responses, undertake further rounds of somatic 

hypermutation and affinity selection to remodel their existing B cell receptor specificity, as 

well as class switch recombination (Taylor et al. 2012; Seifert et al. 2015). As such, it has 

been proposed that IgM
+ 

memory B cells may assist in the maintenance of long-term
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immunity by replenishing the IgG
+
 memory B cell pool when reactivated by their specific

antigen. 

Recent studies revealed that IgM antibody responses specific for a range of P. 

falciparum surface antigens are associated with protection from symptomatic malaria (Arama 

et al. 2015; Boyle et al. 2019), suggesting a potential role for IgM
+
 memory B cells in the

acquisition of clinical immunity to the infection. Only a few studies have identified IgM
+

memory B cells in malaria-exposed individuals and in malaria mouse infection models 

(Wendel et al. 2017; Krishnamurty et al. 2016; Stephens et al. 2009), with those induced by 

murine malaria found to rapidly differentiate into plasma cells upon antigenic re-stimulation 

(Krishnamurty et al. 2016). Memory B cells isolated from malaria-exposed individuals have 

been shown to undertake Ig somatic hypermutations (Triller et al. 2017) and accumulate 

further mutations after acute infection (Wendel et al. 2017) raising the intriguing possibility 

that IgM
+
 memory B cells might re-enter GC reactions during a secondary infection. To

address that question, here we have used a murine model of severe malaria to investigate the 

differentiation capacity of IgM
+
 memory B cells during re-infection. Our results revealed that

this compartment adopts a GC B cell-like phenotype upon parasite-specific antigenic re-

stimulation. 

Materials and methods 

Mice and infections 

Eight to twelve-week-old C57BL/6 mice were used for all experiments in this study. Mice 

were infected with 5.0 x 10
4
 P. berghei ANKA pRBCs via intravenous (i.v.) tail vein

injection. In most experiments, mice were treated with a dose chloroquine (10 mg/kg) and 
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pyrimethamine (10 mg/kg) intraperitoneally (i.p.) at the onset of severe malaria symptoms on 

day 5 post-infection (p.i.), followed by treatment with drinking water containing chloroquine 

and pyrimethamine (10 mg/kg) for 7 days. Parasitemia was assessed from Giemsa-stained 

smears of tail blood. All experiments conducted with approval from the Walter & Eliza Hall 

Institute Animal Ethics Committee. 

Flow cytometry 

Splenocytes suspensions were incubated with anti-CD16/CD32 antibody. Cells were washed 

twice prior to incubation with fluorescent antibodies for 30 minutes at 4°C. To detect of IgM
+

memory B cells, splenocytes were stained with: APC anti-CD21 (7G6, Miltenyi Biotec), 

FITC anti-IgM (Il/41, BD Biosciences), PE anti-IgD (11-26c.2a, BD Biosciences), PerCP 

Cy5.5 anti-CD19 (1D3, BD Biosciences), BV650 anti-Fas/CD95 (Jo2, BD Biosciences), 

PE/Cy7 anti-CD38 (90, BioLegend) and BV421 anti-CD138 (281-2, BioLegend). To detect 

GC B cells splenocytes were stained with the following antibodies: PerCP Cy5.5 anti-CD19 

(1D3, BD Biosciences), PE anti-GL7 (GL7, BD Biosciences), FITC anti-CD38 (90, 

BioLegend), BV785 anti-CD45.1 (A20, BioLegend) and PE/Cy7 anti-CD45.2 (281-2, 

BioLegend). To detect plasma cells, splenocytes were stained with the following antibodies: 

PerCP Cy5.5 anti-CD19 (1D3, BD Biosciences), FITC anti-IgM (Il/41, BD Biosciences), PE 

anti-IgD (11-26c.2a, BD Biosciences), BV421 anti-CD138 (281-2, BioLegend), BV785 anti-

CD45.1 (A20, BioLegend) and PE/Cy7 anti-CD45.2 (281-2, BioLegend). For detection of 

proliferating cells or intranuclear transcription factors, cells were fixed and permeabilised 

with 200µl of eBioscience permeabilisation buffer for 1hr at 22°C, then washed and stained 

with AF594 anti-Ki67 (SOIA15), or with APC anti- Bcl-6 (GC B cells, BD Biosciences) or 
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APC anti-Blimp-1 (Plasma cells, BD Biosciences) for a another hour. After staining, cells 

were washed twice, and analysed either by flow cytometry on a BD LSRFortessa™ X-20 cell 

analyser (BD Biosciences), or sorted on BD FACSAria™ III/W FACS cell sorters (BD 

Biosciences). Data was analysed using FlowJo v12 software (Treestar Inc.). 

Adoptive transfer 

Ly5.1
+
 C57BL/6 mice were infected with 5.0 x 10

4
 P. berghei ANKA parasitized red blood

cells (pRBCs) and drug cured at day 5 p.i.. On day 21 p.i., CD19
+
CD21

-
CD138

-
Fas

-

CD38
+
IgD

-
IgM

+
 cells were isolated by sorting on a BD FACS Aria III system (BD

Biosciences) with BD Diva software. Isolated IgM
+
 memory B cells

 
were adoptively

transferred (1.0 x 10
6
/mouse) into Ly5.2

+
 C57BL/6 recipients, which were infected with 5.0

x10
4
 P. berghei ANKA pRBCs the following day. Spleen cells from recipient animals were

collected on day 3 p.i. for assessment of immune responses. 

Statistical analysis 

Statistical analysis was performed in Prism version 8 (GraphPad Software Inc.). The 

Student’s t test was used for analysis of data. Information on replicates/error/significance are 

indicated in the figure legends. 

Results 

IgM
+
 memory B cells can be detected after infection with Plasmodium berghei 
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We have previously shown that P. berghei ANKA infection results in the induction of IgG
+

memory B cells (Ryg-Cornejo et al. 2016; Ly et al. 2019). To determine if this infection also 

induced IgM
+
 memory B cells, C57BL/6 mice were infected with 5.0 x 10

4
 pRBCs. As P.

berghei ANKA infection is lethal in C57BL/6 mice, infected animals were cured with anti-

malarial drugs after onset of symptoms at day 5 p.i. to allow the assessment of immune 

responses at later time-points as described (Ryg-Cornejo et al. 2016). After full resolution of 

parasitemia on day 24 p.i., splenocytes were extracted from malaria-exposed mice, stained 

with a panel of fluorescent antibodies and analysed by flow cytometry using the gating 

strategy delineated in Figure 1A. Memory B cells were identified among live lymphocytes by 

high expression of CD19, CD38 and IgM, and low expression of IgD, CD138, the marginal 

zone B cell marker CD21 and the GC B cell marker Fas (Figure 1A). A population of 

CD19
+
CD38

+
IgM

+
 memory B cells was identified at day 24p.i. The absolute number of IgM

+

memory B cells was 3 times higher in  P. berghei infected mice compared to naïve controls 

(Figure 1B). Thus P. berghei ANKA infection induces IgM
+
 memory B cells that can be

detected in the spleen two weeks after parasitemia has been controlled.  

IgM
+
 memory B cells adopt a germinal-centre B cell phenotype upon malaria re-infection 

Having established that an IgM
+
 memory B cell compartment is detectable after infection

with P. berghei, we next sought to understand the functional capacity of this cell subset upon 

re-infection. To that end, congenically marked Ly5.1
+
 C57BL/6 mice were infected with P.

berghei, then drug cured at day 5 p.i. as described above. On day 21 p.i., IgM
+
 memory B

cells were isolated by cell sorting following the gating strategy shown in Figure 1A, and 

adoptively transferred into Ly5.2
+
 congenically marked recipient mice (Figure 2A). Flow

cytometry analysis indicated that the sorted population was ~93% pure (Supplementary 
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Figure 1). Recipient mice were then infected with P. berghei ANKA and on day 3 p.i. the 

phenotype of transferred CD19
+
 donor and recipient cells was examined by flow cytometry

(Figure 2B). Rapid proliferation upon re-stimulation is a key feature of antigen-experienced 

memory cells (Tangye et al. 2003; Good et al. 2009). To determine if adoptively transferred 

IgM
+
 memory B cells from malaria exposed donors rapidly proliferated in response to

secondary infection like conventional memory B cells do,  the expression of Ki67 was 

assessed within Ly5.1
+
 and Ly5.2

+
 CD19

+
 cells. Consistent with a memory-like phenotype,

Ly5.1
+
 donor cells readily proliferated only three days after re-infection with P. berghei

ANKA (Figure 2C) while Ly5.2
+
 cells did not.

Blimp-1 and Bcl-6 are transcription factors required for the differentiation of B cells 

into plasma cells and GC B cells, respectively (Shapiro-Shelef et al. 2003; Crotty et al. 2010). 

Thus, the expression of these transcription factors was examined among Ly5.1
+
 B cells from

malaria-exposed donors and Ly5.2
+
 recipient controls in order to determine the

differentiating capacity of IgM
+
 memory B cells upon antigenic re-stimulation. No Blimp-1

upregulation could be detected among donor or recipient B cells on day 3 p.i. (not shown). In 

contrast, Bcl-6 expression could be readily detected among Ly5.1
+
 B cells from malaria-

exposed donors and was significantly higher to that of recipient controls (Figure 2D), 

suggesting that adoptively transferred IgM
+
 MBCs might adopt a GC B cell-like phenotype

during re-stimulation. To investigate this further, frequencies of plasma cells and GC B cells 

were examined on day 3p.i. in Ly5.1
+
 donor and Ly5.2

+
 recipient B cells. Analysis of Ly5.1

+

donor cells in recipient mice that were left uninfected, was included as controls. No plasma 

cells (CD138
+
CD19

+
) could be detected emerging from the Ly5.1

+
 donor compartment or

Ly5.2
+
 recipients upon malaria infection or from Ly5.1

+
 cells adoptively transferred into

uninfected controls (Figure 2E). Instead, nearly 20% of Ly5.1
+ 

cells from exposed mice

downregulated expression of CD38 and upregulated the GC B cell specific marker GL7 when 
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challenged with P. berghei but not when recipient mice were left uninfected (Figure 2E) . 

Together, these results indicate that IgM
+ 

memory B cells induced in response to malaria

adopt a GC B cell-like phenotype in response to secondary infection. 

Discussion 

Recent evidence support the concept that IgM
+
 memory B cells have the ability to remodel

their B cell receptor specificity by accessing secondary GC reactions after encounter with 

cognate antigen during re-infection. This response has been postulated to be beneficial for 

responding to antigenic variants of the original pathogen; a desirable feature to efficiently 

recognise polymorphic malarial antigens. The present study provided evidence for the 

functional capacity of IgM
+
 memory B cells generated during malaria infection to acquire a

GC B cell-like phenotype upon a secondary challenge. 

Differentiation into antibody-secreting plasma cells is a widely accepted re-

stimulatory role of isotype-switched memory B cells (Tangye and Tarlinton, 2009) and a few 

studies have reported strong plasma cell responses also mediated by IgM
+
 memory B cells in

response to viral infection (Zabel et al., 2014). In contrast, other work in parasitic and 

bacterial infections demonstrated the capacity of IgM
+
 memory B cells to re-enter GCs

during recall responses (Yates et al., 2013; Kenderes et al., 2018). Thus , the available 

information supports the idea that different pathogens might direct IgM
+
 memory B cells

towards various differentiation fates (McHeyzer-Williams et al., 2018). In malaria, previous 

studies using the mild Plasmodium chabaudi murine infection model, detected antigen 

specific IgM
+
 memory B cells that appear to differentiate into plasma cells after re-

stimulation (Krishnamurty et al. 2016). Unlike P. chabaudi, the P. berghei ANKA infection 

used in the current study results in the induction of a highly-inflammatory response to 
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infection, responsible for the development of severe disease symptoms (Hansen, 2012). In 

that context, IgM
+
 memory B cells induced by P. berghei ANKA infection failed to

differentiate into antibody secreting plasma cells upon re-encounter with antigen and adopted 

a GC B cell-like phenotype, raising the possibility that inflammatory responses and the 

cytokine environment induced during infection might also play a role in the differentiation 

fate of IgM
+
 memory B cells upon re-encounter with cognate antigen.

Our findings are consistent with a model in which the IgM
+
 memory B cell

compartment plays an important role in populating secondary GCs after re-infection with 

Plasmodium. Similar to other infection settings (Pape et al., 2011), malaria-specific IgM
+

memory B cells might mediate the rapid re-seeding of secondary GCs for earlier recall 

responses, thereby playing a critical role in the immune response by rapidly initiating the 

induction of B cell clones with enhanced affinity for antigen, at faster rates than naive B cells 

(Good et al. 2009). Further work will be required to confirm whether IgM
+
 memory B cell-

derived GC B cells localise in splenic GCs during re-exposure to malaria and if this process 

is required for the gradual acquisition of protective immunity. Understanding the role of 

IgM
+
 B cells in mediating immunological memory responses to Plasmodium parasites and

the impact that infection has on the functional capacity of this compartment may be highly-

informative for the development of novel therapeutics and vaccines to target malaria. 
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Figure Legends 

Figure 1: P. berghei ANKA infection induces IgM
+
 memory B cells. C57BL/6 mice were

infected with P. berghei ANKA and treated with anti-malarial drugs from day 5 p.i. (A) 

Gating strategy used to identify IgM
+
 memory B cells by flow cytometry, depicting gated

IgD
-
CD19

+
 B cells that were negative for CD21 and CD138 to exclude marginal zone B cells

and plasma cells, respectively. Memory B cells were then identified by high expression of 

CD38 and low levels of Fas, to exclude GC B cells. IgM
+
 memory B cells were identified

among this compartment. (B) Absolute number of IgM
+
 memory B cells in P. berghei ANKA

infected mice on day 24 p.i. and naive controls. Error bars represent the mean of 8-10 mice ± 

SEM, ***p<0.005. 
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Figure 2: IgM
+
 memory B cells adopt a GC B cell phenotype during a secondary P. berghei

ANKA infection. (A) Schematic illustrating the adoptive transfer workflow used to assess the 

functional capacity of IgM
+
 memory B cells. IgM

+
 memory B cells isolated from infected

C57BL/6 Ly5.1
+
 mice were adoptively transferred into Ly5.2

+
 recipient mice. Recipient mice

were then challenged with P. berghei ANKA, followed by analysis of both the Ly5.1
+
 donor

and Ly5.2
+
 endogenous compartments 3 days p.i. by flow cytometry. (B) Congenically

labelled cells were identified among gated CD19
+
 B cells. (C) Percentage of proliferating

cells was calculated by assessing Ki67 expression among gated CD19
+ 

Ly5.1
+
 and Ly5.2

+

cells. (D) Geometric mean fluorescence intensity (gMFI) for Bcl-6 expression in 

CD19
+
Ly5.1

+
 or Ly5.2

+ 
cells. (E) Percentage of CD38

low
GL7

+
 GC B cell-phenotype cells

(top panels) and CD138
+
 plasma cells (bottom panels) was calculated among CD19

+ 
Ly5.2

+

cells from infected mice and CD19
+
Ly51

+
 cells from infected mice and uninfected controls.

Data are representative of 2 experiments. Graphs depict means of 4 mice ± SEM, **p<0.01. 

Representative histograms and dot plots are shown. 
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