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ABSTRACT

Protein phosphorylation is one of the best known post-translational mechanisms
playing a key role in the regulation of cellular processes. Over 100,000 distinct
phosphorylation sites have been discovered through constant improvement of mass
spectrometry based phosphoproteomics in the last decade. However, data saturation
is occurring and the bottleneck of assigning biologically relevant functionality to
phosphosites needs to be addressed. There has been finite success in using
data-driven approaches to reveal phosphosite functionality due to a range of
limitations. The alternate, more suitable approach is making use of prior knowledge
from literature-derived databases. Here, we analysed seven widely used databases to
shed light on their suitability to provide functional insights into phosphoproteomics
data. We first determined the global coverage of each database at both the protein
and phosphosite level. We also determined how consistent each database was in its
phosphorylation annotations compared to a global standard. Finally, we looked in
detail at the coverage of each database over six experimental datasets. Our analysis
highlights the relative strengths and weaknesses of each database, providing a guide
in how each can be best used to identify biological mechanisms in phosphoproteomic
data.

Subjects Bioinformatics, Computational Biology, Molecular Biology, Data Science
Keywords Phosphoproteomics, Databases, Proteomics, Bioinformatics

INTRODUCTION

Phosphorylation is a reversible post-translational modification (PTM) capable of
controlling numerous aspects of a protein’s function. The effects of phosphorylation are
widespread and central to cellular signal transduction, with aberrant protein
phosphorylation known to be both a cause and result of many diseases such as cancer and
diabetes (Cohen, 2001). A network of kinases and phosphatases finely regulate protein
phosphorylation and in turn, cellular signalling. These enzymes offer a great opportunity
for targeted therapies to treat disease. Currently, more than 28 kinase inhibitors have been
approved for clinical use and up to one-third of protein targets being developed in the
pharmaceutical industry are directly related to kinases (Rask-Andersen et al., 2014; Bhullar
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et al., 2018). It has been found over years of targeted cancer therapy that the clinical success
rate of kinase inhibitors exceeded other cancer therapies demonstrating higher selectivity
and lower cytotoxicity (Walker ¢ Newell, 2009). These achievements highlight the
importance of understanding phosphorylation networks in disease and in normal
function.

Continuous advances in mass spectrometry have enabled large-scale identification and
profiling of phosphosites across cell lines, tissues and species. The number of protein
phosphosites is estimated at 230,000 in humans and 156,000 in mice (Viastaridis et al.,
2017). Yet these discoveries are vastly outpacing our understanding of the function and
regulation of these PTMs. Phosphorylating kinases are known for only 5% of phosphosites,
and a negligible number of phosphosites have recorded the implications of the
phosphorylation event (Needham et al., 2019). Disagreement exists over the proportion of
phosphosites predicted to be functionally important based on being evolutionarily
conserved. Studies report anywhere from 35% (Landry, Levy & Michnick, 2009) to 65%
(Gray & Kumar, 2011) of phosphosites are conserved, highlighting the difficulty in
estimating the functional proportion of all known phosphosites. Despite this discrepancy,
these reports agree that the proportion of functional phosphosites is much higher than the
5% that have been annotated to date.

In principle, the abundance of detailed phosphoproteomics data naturally lends itself to
data-driven modelling approaches such as principal component analysis (PCA) or
clustering (Janes ¢ Yaffe, 2006). Drawing functional conclusions from these methods has
not been as simple as anticipated. Many limitations of varying complexity stand in the way
of elucidating phosphosite specific mechanisms. First, a protein phosphorylation can
have a potential activating or inhibiting effect, which cannot be easily captured through
typical high-throughput data alone. Next, operating under the conservative assumption
that approximately 65% of phosphosites are not conserved and therefore have no
functional consequence, there is an increased difficulty in distinguishing which few
remaining phosphosites are functionally relevant (Lienhard, 2008; Levy, Michnick ¢
Landry, 2012). Finally, it was found that 75% of significantly phosphorylated proteins have
at least two phosphosites that are oppositely modulated (Olsen et al., 2006) making the use
of high-throughput data alone largely unsuitable to determine which phosphosite
modulates which function. On the other hand, network-driven methods which make use
of previously established literature-derived knowledge of signalling, offer a more
straightforward approach (Sacco, Perfetto ¢» Cesareni, 2018).

Many databases capable of analysing phosphoproteomics broadly fit into three
categories; Pathway databases, Protein-Protein Interaction (PPI) databases, and
Phosphoproteomics focused databases. These databases were created for differing
purposes and are typically chosen for differing types of analysis. However, each category
holds signalling information pertaining to how a phosphorylation may affect signalling
cascades. Each category has broad strengths and weaknesses in their capacity to analyse
phosphoproteomics data as well as variable information and conclusions that can be
drawn from an analysis. For example, a phosphoproteomics database would be best-suited
to investigating upstream kinases (either experimentally derived or predicted) of a
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phosphosite of interest, while a pathway database can be used to investigate the
phosphosite’s potential functional role in a particular phenotype or cell of interest. A PPI
database captures information on potential interactions that might suggest complexes that
phosphoprotein may be involved in, or potential interactions outside of a pathway context.
These databases, however, can overlap as some PPI and pathway databases hold
kinase-substrate (K-S) information, some pathway databases hold comprehensive complex
information, and some phosphorylation databases hold disease and pathway annotations.
These databases can be used both individually and in conjunction to provide a
comprehensive analysis capable of developing hypotheses around individual
phosphorylation signalling mechanisms.

Literature-derived, pathway-oriented databases such as the Kyoto Encyclopedia of
Genes and Genomics (KEGG) (Kanehisa ¢ Goto, 2000), Reactome (Joshi-Tope et al.,
2005), WikiPathways (Slenter et al., 2018), and the SIGnaling Network Open Resource
(SIGNOR) (Perfetto et al., 2016) have proven to be immensely useful in providing
functional insight for other types of ‘omic data. This has been largely driven through
the development of enrichment methods using pathway-level information (Khatri, Sirota
¢ Butte, 2012). Many tools have been developed to perform such analyses (Yu ef al,
2012; Young et al., 2010; Subramanian et al., 2005; Wu et al., 2010). Another popular
method for analysis and interpretation of ‘omics data is to overlay or map data onto
pathways. This technique has been successful in analysing data from metabolomics
(Chagoyen ¢ Pazos, 2013), genomics (Ramanan et al., 2012), transcriptomics (Wang et al.,
2019) and also has been successful in numerous examples with phosphoproteomics data
(Satpathy et al., 2015; Humphrey et al., 2013; Rudolph et al., 2016). These database
resources are dependent upon curation and are constantly updating molecular interactions
making them an invaluable source of current literature-derived knowledge. However, they
are not without their own limitations as the curation process tends to result in an
overrepresentation of well-studied proteins and a lack of lesser-known proteins, in
particular phosphoproteins. In addition, in a comparison of phosphosite databases Sacco
et al. found that many phosphosites that had been identified and characterized by
low-throughput experiments (approximately 9% of PhosphoSitePlus at the time) could not
be found in a typical phosphoproteomics experiment. They hypothesized that this may be
due to a number of reasons including abundance, large sample complexity and the
stochastic nature of peptide selection (Sacco, Perfetto ¢ Cesareni, 2018).

A recent study comparing PPI databases found 375 resources in their literature search
and observed that PubMed timeline data indicated a steady increase in research articles
on PPIs across the years (Bajpai et al., 2020). Resources such as the Human Protein
Reference Database (HPRD) (Peri et al., 2004; Keshava Prasad et al., 2009), the Biological
General Repository for Interaction Datasets (BioGRID) (Stark et al., 2006), and the Search
Tool for Retrieval of Interacting Genes/Proteins (STRING) (Szklarczyk et al., 2019) are
incredibly useful resources that enable the analysis of interaction data in various contexts.
PPI databases tend to be quite large as a result of their derivation from high-throughput
experimental data. This may be an advantage when looking for novel associations
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highlighted when measurements are mapped onto the data. As with pathway databases,
PPIs are not without their limitations, as they typically represent an oversimplified
depiction of cellular signalling making interpretation of the functional consequences of
molecular perturbations difficult.

Popular phosphorylation focused databases such as PhosphoSitePlus (Hornbeck
et al., 2015), PHOSIDA (Gnad et al., 2007), Phospho.ELM (Diella et al., 2004) and
qPhos (Yu et al., 2019) host many phosphosites and act as repositories for both low and
high-throughput data. Some have tools for motif analysis and phosphosite prediction
but rarely contain information on the function of a phosphosite. qPhos is amongst the
largest such databases and contains quantitative information for almost 200,000
non-redundant phosphorylation sites as well as the cell-type and temporal information.
An extensive review of phosphoproteomics resources can be found here (Savage & Zhang,
2020). Although these databases can be extremely useful in their own right, the lack of
functional annotations makes their use in elucidating phosphosite signalling mechanisms
rather limited. Of those databases listed above, the exception is PhosphoSitePlus, which
also contains a network of experimentally observed kinase-substrate relationships. Moving
away from databases acting as phosphosite repositories, many databases holding signalling
information in the form of a K-S networks exist such as RegPhos (Huang et al., 2014),
PhosphoNet (Safaei et al., 2011) and Phosphonetworks (Hu et al., 2014). Though they are
limited to K-S interactions, they have been proven useful in providing phosphoproteomics
mechanistic insight either on their own or while integrated into other databases (Rohrs
et al., 2018; McGuire et al., 2017; Tong et al., 2019). One method developed by Sacco et al.
(2016b) starts by overlaying their data onto a literature-derived, pathway-oriented
database, followed by filtering the network to an interpretable size based on a set of rules
they developed. This method was successfully implemented in a phosphoproteomics
context by mapping their data onto the K-S network from PhosphoSitePlus to discover
novel mechanistic insights into phosphorylation mediated insulin signalling (Sacco et al,
2016a).

This work aims to systematically investigate the current landscape of resources suitable
for the network-based analysis of phosphoproteomic data (as defined by our selection
criteria, see Methods and Table S1). Specifically, we are interested in how well equipped
each database is to uncover mechanisms of phosphorylation and connect phosphorylation
events to a signalling network or pathway. The pathway databases we compare here are
Reactome, KEGG, WikiPathways and SIGNOR. The PPI databases we compare are
BioGRID and HPRD. PhosphoSitePlus was also included as it contains the largest subset
of phosphoproteomic signalling-related proteins. We first analysed the proteome coverage
of each database followed by the phosphorylation coverage of a subset of the above
databases. Next, we explored the consistency between the database’s phosphorylation
annotations and the amino acid residue found in UniProt’s (Bateman et al., 2017) protein
sequence. Finally, we assessed the capability of each database in mapping experimental
phosphoproteomics datasets of varying backgrounds.

Huckstep et al. (2021), PeerdJ, DOI 10.7717/peerj.11298 4/26


http://dx.doi.org/10.7717/peerj.11298/supp-9
http://dx.doi.org/10.7717/peerj.11298
https://peerj.com/

Peer/

MATERIALS AND METHODS

Systematic literature review of public databases
There is an abundance of pathway databases currently available for public use in
interpreting biological data (Kanehisa ¢» Goto, 2000 Joshi-Tope et al., 2005; Slenter et al.,
2018; Zhou et al., 2012; Wishart et al., 2006; Pratt et al., 2015; Szklarczyk et al., 2019; Cowley
et al., 2012). However, they tend to differ from each other in several properties. To address
this, we systematically compared 29 databases and produced a selection criterion for
inclusion in our analysis (Table S1, Supporting Information).

To be included in this comparison, each database had to fit the following criteria:

e Have phosphorylation information

e Have a connected signalling network component

e Be updated yearly, and if not must have been widely used and be widely cited (1,000
minimum)

o Freely accessible

e Downloadable

The pathway databases which met these criteria were HPRD, BioGRID, SIGNOR,
Reactome, KEGG, PhosphoSitePlus and WikiPathways.

Data retrieval and processing

Since many of these databases were represented in differing formats and some with unique
identifiers, several processing steps were conducted as needed per database to extract
protein UniProt accessions and phosphosites as outlined in Fig. S1, Supporting
Information. Dates of database access are outlined in Table S2, Supporting Information.
For those databases available in a BioPax format, they were first converted into a Neo4;
graph database object (INeo4j, 2020) (Schema described in Fig. S2, Supporting
Information). The Neo4;j graph database implementations were built and used to allow for
quick and easy extraction of relevant information as described in more detail below.

Protein

For IMEX, gqPhos and, UniProt and both Gene Ontology (GO) categories the data was
available in TSV format with UniProt accessions easily extractable. Each database
downloaded in the BioPax format (Reactome and PhosphoSitePlus) was converted into a
Neo4j graph database in Java, where the list of UniProt accessions were extracted.
SIGNOR’s API was used to download the list of UniProt IDs involved in the signalling
network. BioGRID’s PPI file was downloaded in TSV format directly from the website
with RefSeq IDs from the signalling portion of the database being taken. HPRD legacy files
were downloaded from the Integrated Network and Dynamical Reasoning Assembler
(INDRA) python package documentation (Gyori et al., 2017). For HPRD, RefSeq
identifiers were taken, once again only from the signalling portion of the database.

We consider the interaction network portion of HPRD and BioGRID, as a source of
connected proteins with potential signalling function. For both KEGG and WikiPathways
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only the identifiers belonging to a pathway were downloaded as we were only interested in
proteins involved in signalling. The KEGG database contained only KEGG identifiers, and
the WikiPathways download contained only Entrez IDs. All sets of identifiers were
converted to UniProt accessions. No identifier type mapped cleanly to UniProt IDs, so in
cases where more than one UniProt accession was found, only the reviewed UniProt
accession was taken. If there were multiple reviewed UniProt accessions found, the
UniProt accession with the longest protein sequence was selected. If no reviewed UniProt
accession was found, the unreviewed UniProt accession with the longest sequence was
taken. This was done to maintain a one-to-one ratio of alternate identifiers to UniProt
accessions. Because some resources annotate pathways with gene level identifiers, we
remove annotated isoforms from other resources in order to maintain a fair comparison.

Once the list of UniProt accessions were obtained for each resource, each was updated
to the latest version of UniProt (Jan. 2021). In this instance, ‘update’ refers to converting all
secondary accessions to primary accessions, removing all non-human identifiers and
removing identifiers that are classified as obsolete in UniProt.

Phosphosites

In Reactome and PhosphoSitePlus, the phosphosites were extracted from the neo4j
graph databases generated for extracting the UniProt accessions mentioned above.

For qPhos, the set of all phosphosites were extracted from the main data file downloaded.
Phosphosites from HPRD were extracted from the separate PTM file and connected to
UniProt IDs converted from RefSeq IDs with only phosphosites belonging to the signalling
portion of the database taken. BioGRID’s phosphosites were also extracted from a separate
PTM file and connected to UniProt IDs converted from RefSeq IDs only from the
signalling portion of the database. For SIGNOR, the human PTM file was downloaded
directly from the website and processed. Phosphosites from UniProt were extracted
directly from the January 2021 downloaded TSV file. Only phosphosites from reviewed
UniProt accessions were used in this study. Upon further investigation, phosphorylations
listed in KEGG had no specific site annotations. WikiPathways contained multiple
phosphosite annotations in multiple formats, making it impossible to extract them all.
As with above, since each phosphosite was associated with a single UniProt accession, the
UniProt accessions were updated to reflect only human and current UniProt accessions
and isoforms were removed.

Consistency analysis

To perform the consistency analysis the neo4j graph database version of Reactome and
PhosphoSitePlus were used. For SIGNOR, HPRD and BioGRID the list of unique
phosphosites retrieved from each respective database file was used. In each database, all
PTM’s belonging to a unique UniProt id were gathered into a set. A phosphosite in this
manuscript is defined as a single amino acid reported to be phosphorylated and its position
as reported in the database. We do not take into surrounding sequence or attempt to
standardise or harmonize this information across databases beyond what is described in
the methods. Then, for each UniProt ID the canonical sequence and all isoform sequences
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were retrieved from UniProt. Next, for each PTM annotation, if the amino acid at the
annotated position was the same in the canonical UniProt sequence it was called a
match; for example, if Reactome contains an annotation on Protein X that indicates a
phosphorylation on a threonine at location 128 and UniProt has a threonine at position
128 in its sequence this is a match. If, however, the annotated residue and the canonical
residue didn’t match but another phosphorylate-able residue was found there instead,
this was called a mismatch; for example, the Reactome annotation on Protein X indicates a
phosphorylation on a threonine at location 362 whereas UniProt has a tyrosine at position
362. Finally, if the annotated residue was neither a match or a mismatch, the sequence was
searched to find the closest exact match and the offset recorded. Once again using the
example above, in Reactome another annotation on Protein X indicates a phosphorylation
on a serine at position 495, whereas UniProt lists the closest serine to that location is
actually at position 490; this would be counted as an offset of 5. It should be noted that if
there was no match to the canonical residue all isoforms were then searched for the same
criteria (match, mismatch and offset). Annotated modifications where the position is
larger than the canonical sequence length, or where there is no position annotated at all,
are considered to have not matched and no mismatch or offset is searched for.

Experimental data

We used phosphoproteomics data from 191 publications across 484 conditions obtained
downloaded from the qPhos repository to assess the coverage of phosphoproteomics data
by Reactome, PhosphoSitePlus, HPRD, BioGRID and SIGNOR. Data was downloaded
from the qPhos download portal in January 2019. Each modification in qPhos was
associated with a PubMed ID (PMID) and each PMID was tagged with metadata, such as
the ‘sample’ (cell line) or condition the experiments were performed in. We subset the
phosphosites by cell line and tissue type. Only phosphosites (and inherently PMID’s)
tagged with a single ‘sample’ type (such as MCF-7 or HeLa) were analysed (in cases where
there were multiple conditions it was impossible to discern which modification came from
which sample).

Software and data availability

The source code and precompiled binaries are available from github (https://github.com/
DavisLaboratory/Db_Compare). The software is compatible with Linux and MacOS
operating systems and has been tested on both. The software requires Java version 8,
Python 3 and R 3.6. Installation of these and dependencies is managed through the
Anaconda package management system; a full list is available in the github repository
along with installation instructions.

RESULTS

What proportion of the proteome is covered by different pathway
databases?

The full extent of human phosphorylation is unknown and is an active field of research
today. One study focused on profiling a single cell line identified approximately 75% of
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proteins to be phosphorylated (Sharma et al., 2014). Yet, many phosphoproteomics studies
perform pathway level analysis at the protein level. This is due to the fact that many
databases do not offer phosphosite level mapping. This motivated us to first determine the
proteome coverage (and by proxy the coverage of proteins which may potentially be
phosphorylated) by each database. This was done in order to provide context around their
phosphoproteomic coverage as well as to assess their individual and combined potential
for analyzing phosphoproteomic datasets. To do this, Reactome, WikiPathways, KEGG,
HPRD, BioGRID, SIGNOR and PhosphoSitePlus were downloaded and their protein lists
extracted. We normalised all protein UniProt identifiers to the January 2021 version of
UniProt as explained in the methods. Because our focus is on resources that capture
signalling reactions, throughout the analysis we used the subset of PhosphoSitePlus that
contained kinase-substrate pairs (14,159 pairs) (henceforth referred to as PhosphoSitePlus
(K-S) and PSP (K-S) in figures) and did not compare to phosphorylation events with no
known kinase (231,645 events).

To characterize each database’s coverage of the proteome, a collection of reference
knowledgebases and datasets were chosen for comparison (Fig. 1A). This set included
qPhos, IMEx (Orchard et al., 2012), the Gene Ontology Cell Signalling Category
(G0O:0023052), the Gene Ontology Protein Kinase Activity Category (GO:0004672)
(Ashburner et al., 2000) and the subset of UniProt annotated with the term
‘Phosphoprotein’ (KW-0597). The intersections between each reference dataset and
each signalling database were then taken. Intersections with qPhos are expected to
represent each knowledgebase’s coverage of phosphorylate-able proteins, while the
intersections with IMEX are expected to represent each knowledgebase’s coverage of global
interacting proteins, many of which have potential to be phosphorylated. We found
BioGRID to have the highest coverage of each reference dataset and PhosphoSitePlus (K-S)
had the lowest (barring the GO Protein Kinase Activity category where it had the 3rd
highest coverage). Also of interest is the pattern of decreasing coverage of the all reference
datasets across the signalling databases excepting the GO Protein Kinase Activity category.
We see that BioGRID contains the most known human kinases, followed by SIGNOR,
PhosphoSitePlus (K-S), WikiPathways, HPRD, Reactome and finally KEGG. Taken
together these results point to a relative ranking for the analysis of data when mapping on
the protein level, where you can expect BioGRID to have a high coverage of a given dataset,
followed by Reactome, HPRD, KEGG, WikiPathways, SIGNOR and PhosphoSitePlus
(K-S) but a differing coverage of the known human kinome. The same order was found
when looking at each database’s coverage of SwissProt as well at the entirety of UniProt
(Fig. S3, Supporting Information).

To explore the distinctions between each database’s proteome coverage we compared
the database protein sets with each other using an UpSet plot (Conway, Lex ¢ Gehlenborg,
2017). Overlaps of less than 50 were excluded, the entire UpSet plot can be found in
Fig. S4, Supporting information. Examining the proteins common to all databases, we see
the global intersection is just 5% of the total 19,816 unique proteins held across
them (Fig. 1C), indicating a marginal global overlap. Individually, BioGRID consistently
has the highest overlap with all other databases (Fig. 1B). Although the global intersection
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Figure 1 Cross database comparison of proteins. (A) A heatmap of proteins comparing knowledge-
bases with reference datasets, where each cell is a pairwise intersection, the number represents the
number of proteins found in both the reference dataset (vertical axis) and in the signalling database
(horizontal axis); the total number of proteins per database is listed under the database name and the cell
shade represents the proportion of coverage of each reference dataset (vertical axis); the darker the colour
the higher the coverage of that dataset by its paired signalling database. (B) Each pairwise protein level
database intersection displayed where the largest bar represents the total number of proteins in that
respective database and the inset bars capture the number of overlapping entities from each resource.
(C) An UpSet plot depicting intersections of proteins between the databases Reactome, HPRD, KEGG,
WikiPathways, PhosphoSitePlus, BioGRID and SIGNOR; vertical bars indicate the number of UniProt
ids found in the intersection of the databases listed with a black dot underneath. Coloured bars capture
the number of proteins unique to a resource. Full-size 4] DOT: 10.7717/peer;j.11298/fig-1

PSP (K-S)°

is small, the proportion of each database that is unique to itself ranges from only 2.5-20%
(Fig. S4). We see that once again BioGRID consistently has the highest coverage of the
other databases followed by Reactome in every database. WikiPathways and KEGG
appear to have similar coverage of each other database. Finally, SIGNOR consistently

has the 6th highest coverage (in all databases excepting PhosphoSitePlus (K-S)) and
PhosphoSitePlus (K-S) the lowest coverage. The balance of proteins found in other
databases vs. found only in a single database is an indication of potential information
gain and novel insight when choosing which database and type to use. The set differences of
each pair were also investigated to understand the scope of uniqueness of each reference
dataset and signalling knowledgebase (Fig. S5, Supporting Information). Lastly, of note,
PhosphoSitePlus (K-S) always maintains the lowest coverage of the other databases

yet is the highest covered itself. This comparison is important as PhosphoSitePlus contains
the most comprehensive known K-S network and each database’s relative coverage provides
further evidence to its ability to connect phosphorylation signalling to a greater context.
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As a potential consequence of the differing curation practices each database has adhered
to, each database has tended to focus on a different area of biology. Of the number of
proteins unique to each database, BioGRID had the most at 5,158, followed by Reactome
with 393, KEGG and WikiPathways with 86 and 67 respectively, and then SIGNOR,
HPRD and PhosphoSitePlus (K-S) all with less than 25 (Fig. 1C, coloured bars, Fig. 54
coloured bars). This alludes to the potential impact of database choice on conclusions
drawn when performing pathway enrichment analysis. To explore this further, we
performed an over enrichment analysis using the GO Molecular Function category on the
proteins found to be unique to each database (Fig. S6, Supporting Information). We found
that the proteins unique to Reactome were mostly involved in transporter activity. This
could be because it is the only database in our comparison with abundant subcellular
location annotations. BioGRID’s unique proteins were enriched for demethylase activity.
WikiPathways was enriched for receptor activity. HPRD, SIGNOR, PhosphoSitePlus (K-S)
and KEGG’s unique proteins did not produce any enrichment.

What proportion of the phospho-proteome is covered by different
pathway databases?

We sought to address the question of the level of phosphoproteomic coverage of each
database. None of the included databases (excepting PhosphoSitePlus (K-S)) have the
ability to input a list of phosphosites and have them mapped on the phosphoproteomic
level. To do this, all phosphorylation annotations were taken from each database where
possible; neither KEGG nor WikiPathways were included in this section of the analysis as
modification annotations in these databases are inaccessible.

In the first level of database characterization of coverage of the phosphoproteome, the
databases of interest were compared to qPhos’ phosphorylation annotations as well as
UniProt’s. qPhos contains 39,652 less phosphorylation annotations than the entirety of
PhosphoSitePlus. However, qPhos was chosen as the authority on experimentally derived
phosphorylations in this analysis, to avoid the self-comparison that would result from
using a component of PhosphoSitePlus in evaluating its own utility. Pairwise Intersections
were taken between each signalling knowledgebase and each reference dataset (Fig. 2A).
Once again, we see a relatively consistent ranking of the databases, but in a differing order
than the protein level. Here, HPRD has the highest coverage of qPhos’ phosphorylations,
followed by PhosphoSitePlus (K-S), BioGRID, SIGNOR and then Reactome. A slightly
different pattern occurs in the coverage of UniProt phosphorylations where the pattern
follows the number of phosphosites in each database. Although HPRD has the highest
number of phosphorylations annotated in the database category (with 43% of its
phosphosites also recorded in UniProt) its coverage only represents 33% of all
phosphosites recorded in UniProt. qPhos has almost 5x more phosphorylation
annotations than UniProt, and we see that HPRD has the highest overlap with 81% of its
phosphorylation events found in qPhos, but still only representing 13% of qPhos’ total.
Next is PhosphoSitePlus (K-S), SIGNOR and then BioGRID with 52%, 54% and 77% of
their phosphosites respectively in common with qPhos. Yet, each database only covers a
small proportion of qPhos at less than 3% for all three. Reactome has the smallest coverage
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Figure 2 Cross database comparison of phosphorylation annotations. (A) A heatmap where each cell
is a pairwise intersection, the number represents the phosphorylations annotated in both the reference
dataset (vertical axis) and in the signalling database (horizontal axis); total number of phosphorylations
per database is listed under the database name; cell shade represents the proportion of coverage of each
reference dataset, the darker the colour the higher the coverage of that dataset by its paired signalling
database. (B) Each pairwise phosphorylation level database intersection displayed where the largest bar
represents the total number of phosphorylations in that respective database and the inset bars capture the
number of overlapping entities from each resource. (C) An UpSet plot depicting all intersections of
phosphorylations annotated in BioGRID, HPRD, PhosphoSitePlus, SSIGNOR and Reactome; vertical bars
indicate the number of phosphorylation annotations found in the intersection of the databases listed with
a black dot underneath. Coloured bars capture the number of proteins unique to a resource.

Full-size K&l DOT: 10.7717/peerj.11298/fig-2

of qPhos at 0.3% but this accounts for 46% of its own database. This means that
approximately half of each of the latter 4 databases or more appear in global experimental
datasets, but only a tiny proportion of the global experimental data can be interrogated
through these knowledgebases. Taken together, this points to the disproportionate amount
of data available and the need for tools to assign functional annotations. Added to the
knowledge that only 20% of kinases are associated with 87% of currently annotated
phosphosites (Needham et al., 2019), there is clear need to start to explore lesser known
kinases and their contribution to cellular regulation.

Unlike on the proteomic level we see is no clear pattern in the overlap between databases
(Fig. 2B). We see that the levels of uniqueness are much higher. The varying levels of
overlap once more indicate the potential new information to be gained when mapping to a
database. Keeping in mind that the subset of phosphosites used here from PhosphoSitePlus
(K-S) all have a kinase or phosphatase linked to the feature. Though mapping events at the
phosphorylation level is not yet supported by these databases, manual inspection of
proteins identified in a study may reveal the presence of particular phosphorylation events
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of interest and their associated reactions, which may be then further explored. This
analysis (Fig. 2) can be used as a guide to determining relative likelihood of finding a
phosphorylation of interest in each database and the likely level of information that will be
associated with it.

When looking at the inter-database coverage we see that the number of phosphosites
found in all 5 databases is only 42, a mere 0.1% of the total 41,629 unique phosphorylation
annotations across these databases (Fig. 2C) meaning each database covers a very
different portion of the phosphoproteome. HPRD has 84% of its phosphosites unique to
itself while PhosphoSitePlus (K-S) has 46%, followed closely by BioGRID at 63% Reactome
at 37% and lastly SIGNOR at 13%. This is a clear indication of the vastness of the
phosphoproteome and further the importance of database choice when it comes to
analysing phosphoproteomic data. When looking at the number of unique
phosphorylations belonging to each database, HPRD possesses the most at 26,423,
PhosphoSitePlus (K-S) at 3,980, followed by BioGRID at 3,059, SIGNOR with 638 and
Reactome with 599. The large number of unique phosphosites found in HPRD indicate
its dedication to the curation of novel phosphosites (Goel et al., 2012). The set differences
of each pair were also investigated on the phosphorylation level to understand the scope of
uniqueness of each reference dataset and signalling knowledgebase (Fig. S7, Supporting
Information).

Exploring the consistency between annotated phosphorylated
residues and UniProt sequences
A major issue often found in phosphoproteomics is the incorrect assignment of
substrates to kinases. This phenomenon is detailed by Humphrey et al. where they
described that the correction of low-quality annotations is more difficult than an initial
assignment due to the amount of evidence needed to refute prior knowledge. A major
compounding factor to this problem is the lack of consistency in substrate phosphorylation
annotations across databases. These mis-annotations can often be propagated by both
human curators as well as text mining systems if left unchecked, contributing to the
incorrect kinase assignments (Bachman, Gyori ¢ Sorger, 2019). To explore this aspect of
the problem we decided to test the consistency, or accuracy of the identity of annotated
phosphorylated residues against canonical protein sequences found in UniProt.
For example, if a database recorded a protein to have a phosphorylation of a serine on
residue 456, we wanted to know if a serine would actually be found in the canonical
(or isoform) protein sequence at position 456 (described in more detail in methods).
Only phosphorylation sites annotated on the canonical protein sequence of a gene were
included in Table 1. A match in an isoform was only searched for if a match was not found
in the canonical sequence. Further, although a number of phosphorylations have been
found on Histidine (Fuhs ¢ Hunter, 2017), here we limited phosphorylate-able residues to
Serine, Tyrosine and Threonine.

Mismatched sites can typically occur because their positions were annotated on
post-translationally cleaved proteins, non-canonical isoforms, or on non-human
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Table 1 Comparing annotated modification position consistency. Statistics of the modified residues annotated in each resource. Number of
Modified residues corresponds to the number of unique phosphorylated residues in a protein sequence (only a representative protein per gene is
analysed). Percent of consistent residues indicates the percent of annotated modified residues that were consistent with the amino acid residue listed
in UniProt at that location. Isoform matches refer to the number of modified residues where the annotated residue was consistent with a protein
isoform sequence rather than the canonical protein sequence. Mismatch residue count contains the number of phosphorylated sites where a different
phosphorylate-able residue was found in the UniProt sequence rather than the one listed in the named database. The closest exact match offset is the
number of modified amino acids found at an offset to the originally annotated modified position.

qPhos PSP (K-S) PSP-full HPRD BioGRID Reactome SIGNOR
Number of modified Residues 191,813 8,688 231,465 31,385 4,833 1,608 4,923
Percent of consistent residues™ 189,928 8,656 230,694 30,885 4,272 1,250 4,840
(99.0%) (99.6%) (99.7%) (98.4%) (89.5%) (77.7%) (98.5%)
Isoform matches 657 3 260 202 151 37 33
Mismatch residue count 192 2 64 43 47 44 7
Closest exact match offset 1 424 1 26 1 186 1 144 1 97 1 36 1 14
2 248 2 2 2 102 2 81 2 64 2 23 2 13
3 129 3 1 3 63 3 36 3 42 3 14 3 2
+ 792 + 1 + 336 + 152 + 240 + 134 + 36

Note:

Note the percent of consistent residues does not include isoform matches.

orthologues (Bachman, Gyori ¢» Sorger, 2019). It is likely that an offset of —1 is due to initial
methionine cleavage. Offsets of larger size and differing direction are likely to be caused by
other issues. The closest matching residue may not be the modified residue. In general,
resolving inconsistencies like these will require individual investigation, however
automated approaches have been developed that may address the most common sources
(Bachman, Gyori & Sorger, 2019). Alternatively, allowing for small offsets (<2) may
improve mapping by accounting for slight inconsistencies in annotations (Babur et al.,
2018). We report all offsets here for completeness.

We found that the entirety of the PhosphoSitePlus database had the highest sequence
consistency with UniProt canonical sequences at 99.7%. We found 260 cases where a
match was found in an isoform rather than the canonical sequence, mostly owing to
discrepancies with UniProt nomenclature (Table 1). In addition, we found 64 cases where
the wrong phosphorylate-able residue was found, labelled a mismatch. Further, looking at
PhosphoSitePlus” K-S subnetwork, we see that it is almost the same at 99.6% consistent.
We discovered only three phosphosites were found in isoforms as well as only 26 cases
where the annotated residue was found next to the annotated location (i.e. offset by one
residue). Next looking at qPhos we see a 99% percent consistency followed by SIGNOR
with 98.5% consistency. So far each of these databases has shown exceptional curation
practices in gathering phosphoproteomic data. Turning to HPRD we found overall
phosphosite consistency to be 98.4% in relation to UniProt canonical sequences, followed
by BioGRID with a phosphosite consistency of only 89.5%. Finally, we see Reactome which
is 77.7% consistent. This lower consistency may be attributed to the manual curation
practices of Reactome, or imprecise recording of isoforms in the literature curated for the
database.
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Figure 3 Heatmap of proteomic coverage by databases. A heatmap where each cell represents the
pairwise intersection of proteins between the pathway databases being analysed (listed on the horizontal
axis), and all proteins found in qPhos that had been tagged with the corresponding cell line (listed on the
vertical axis); total number of proteins per database are listed under the database name; shade of each cell
refers to the proportion of proteins per cell line that intersect with each pathway knowledgebase.
Full-size K&] DOTI: 10.7717/peerj.11298/fig-3

How well do databases cover experimental phosphoproteomic data?
Using phosphoproteomics to interrogate how cells sense and respond to their environment
can lead to important insights into biological mechanisms behind these changes. Searching
‘phosphoproteomics’ in PubMed reveals over 3,500 results as well as depicting a steady
rise in publications related to the search term over the last 20 years with 456 new
publications in 2019 alone (Fig. S8, Supporting Information). As a result of the rise in
interest and potential of phosphoproteomics, a number of databases have attempted to
assemble the vast amounts of phosphoproteomic data being generated. As seen above,
qPhos is one such database that provides curated phosphoproteomics datasets across 191
publications under a wide range of conditions. In this analysis we compared data from
these cells with each knowledgebase to establish what proportion of the measurements
from each cell type would map onto the knowledge contained in pathway databases.
To pose the question another way, we sought to establish the coverage of pathway
databases over phosphoproteomics experiments. Here we present results for the top six cell
lines, ranked by the number of publications archived in qPhos (Table S3, Supporting
Information). The full results are presented in Tables S4 and S5, Supporting Information.
Consistent with the coverage analysis we performed against the full proteome and the
phosphoproteome, we see the same relative ordering in the databases in terms of coverage
over experimental data. When compared at the protein level BioGRID has the highest
coverage, followed by Reactome, HPRD, KEGG, WikiPathways, SIGNOR and lastly
PhosphoSitePlus (K-S) (Fig. 3). Noting the order in which the cell lines are covered by
each database, we see that coverage is highest for HELA cells across all databases, followed
by HEK293, HelLa S3, Jurkat, MCF-7 and finally MCF-10. This order follows the number
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Figure 4 Heatmap of phosphosite coverage by databases. A heatmap where each cell is a pairwise
intersection, the number represents the phosphorylations between the pathway databases being analysed
(listed on the horizontal axis), and all phosphorylations found in qPhos that had been tagged with the
corresponding cell line (listed on the vertical axis); total number of phosphorylations per database is listed
under the database name; the shade of each cell refers to the proportion of phosphorylations per cell line
that intersects with each pathway knowledgebases annotated phosphorylation.

Full-size k&l DOT: 10.7717/peer;.11298/fig-4

of proteins identified in each cell line in a decreasing order, which likely explains the
pattern.

When comparing coverage of individual phosphorylation events, we see that HPRD has
the highest coverage, followed by, BioGRID, PhosphoSitePlus (K-S), SIGNOR and finally
Reactome (Fig. 4). In contrast to findings on the proteomic level, when looking at the
phosphorylation level data we see a different pattern emerging in the cell line coverage by
each database, where once again HeLa is the highest covered but Jurkat, HeLa S3, HEK293
and MCF-7 do not remain consistent and MCF-10 is the lowest covered (Fig. 4).
Interestingly this pattern does not follow the number of phosphorylations per cell line.
This may be due to the curation practices of each database, potentially highlighting
underlying biases towards different common cell lines in experimental data from which
pathway knowledge is drawn. These results also demonstrate that the proportion of
measured phosphosites for which reaction level information is available is relatively small.
For the most commonly measured cell line, HeLa, less than 1% of phosphosites map to
annotations in Reactome and attach to known signalling pathways. This small number
none-the-less corresponds to 22% of the phosphosites in Reactome. While HeLa
phosphosite mapping to PhosphoSitePlus (K-S) is higher at around 4%, this knowledge
doesn’t present the same level of mechanistic insight as is captured in Reactome, with
functional information limited to K-S interactions. These results (Fig. 4) demonstrate that
the vast majority of measured phosphosites lack pathway level annotation.

The contrast in coverage on these two levels by the same databases depict the
consequences of generalizing phosphoproteomic level data to the protein level. Global
coverage of qPhos can be compared in Figs. 1A and 2A and is reiterated in Figs. 3 and 4’s
side-by-side comparison. Through this comparison we see that HPRD has a good coverage
of phosphorylate-able proteins and a high coverage of phosphorylations with 56% of its
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proteins possessing a phosphorylation annotation. Conversely, BioGRID has a high
coverage of phosphorylate-able proteins but many fewer phosphorylations when
comparing a PPI of similar size (HPRD) with only 19% of its proteins recording a
phosphorylation annotation. Reactome has a high level of phosphorylate-able proteins but
a low number of phosphorylations translating to 5% of its proteins holding a
phosphorylation annotation, while in PhosphoSitePlus (K-S) we see a low number of
phosphorylate-able proteins but a high number of phosphorylations (96% of proteins with
a phosphorylation annotation). SIGNOR, finally, appears to be on the lower end of
proteins but possess a good number of phosphorylation annotations and has 33% of its
proteins holding a phosphorylation annotation. This variation in the typical concentration
of phosphorylations per protein emphasises the importance of database choice. It also
highlights the different strengths of each database should for analyse phosphoproteomics
data, as well as the biases that might result from database choice.

DISCUSSION

We conducted a comprehensive analysis to systematically compare seven widely used
knowledgebases, comparing the extent of their coverage over proteome, phosphoproteome
and experimental phosphoproteomic data. Recent studies have highlighted the disparity
between the amount of phosphosites discovered and the number with known functionality
and their impact on cellular signalling (Needham et al., 2019). Here we have attempted to
provide novel insights into the relative strengths and weakness of popular literature
derived signalling knowledgebases and their comparative suitability for the analysis of
phosphoproteomic data.

We found that even though HPRD has not been updated since 2010, it maintains a good
coverage of proteins and phosphosites identified in proteomics experiments, as well as a
high level of accuracy in the annotated sequence positions of the residues on which
phosphorylations are observed. However, as this database is no longer updated it will likely
continue to decline in relevance as phosphoproteomic data improves and is disseminated
across public databases such as UniProt. The downloadable Protein-Protein Interaction
network from HPRD, has a high quantity of proteins and potential interactions, but due
to the high-throughput nature of PPI’s, the quality of each datapoint is much lower,
making the task of functionally annotating phosphorylations much more difficult.
However, the HPRD website contains many phosphosite specific upstream kinases,
isoforms as well as many validated low-throughput interactions making it a highly valuable
resource still today. HPRD is a great candidate to be used in phosphoproteomic data
analysis as a means of hypotheses generation that can be explored further using a
more-detailed signalling knowledgebase. However, as previously stated it is no longer
actively maintained, and its usefulness is expected to decline over time.

BioGRID had the highest proteomic coverage of the databases assessed but has relatively
low phosphoproteome coverage. It also features the second lowest level of consistency
of phosphosites with UniProt. BioGRID is actively maintained and being expanded, but in
its current form these issues limit its utility in analysing phosphoproteomics data
compared to HPRD.
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Reactome on the other hand is highly curated with a good coverage of proteomic data,
but a much lower coverage of phosphorylation level data especially when combined with a
lower consistency between PTM locations and UniProt sequences. Reactome’s high
coverage of proteomic data indicates a high mapping potential of phosphorylate-able
proteins and although this does not translate to a high mapping potential of
phosphorylation sites, it is an important starting point. The few phosphorylation events
recorded in Reactome are rich with information. Reactome is the only database in this
study to represent proteins in specific phosphorylation states as different entities with
differing behaviours, functions and interactions as a direct result of the number and
combination of phosphorylations attached. This level of information is critical in gaining
functional insights as we know that proteins can be multiply phosphorylated and these
phosphorylations can in fact have contradicting or additive effects on a protein’s function
(Olsen et al., 2006). However, due to Reactome’s low level of phosphorylation annotations
it is not yet comprehensive enough to provide insights to a global phosphoproteomics
dataset for more than a very small proportion of the measurements collected in an
experiment (see Figs. 2 and 4).

SIGNOR is a database that stores pairwise relationships between biological entities,
describing the behaviour of proteins in response to each other (Perfetto et al., 2016).
Relationships describe up- or down-regulation with information about the magnitude and
mechanism of change. SIGNOR describes 5,297 proteins and 4,923 human
phosphorylation annotations, intermediate between a typical PPI database and Reactome.
SIGNOR has the highest coverage of phosphosites in PhosphoSitePlus (K-S), indicative of
its utility for exploring K-S information in the context of interactions. Consistency with
UniProt is high, and the associated information regarding regulators of each individual
phosphosite is particularly valuable.

PhosphoSitePlus has a vast amount of information directly relating to
phosphoproteomics across species, with most data from human and mouse. It also clearly
demonstrates the overload of phosphosites known, in comparison to the amount of
phosphosites we biologically understand. Only a subset of this database has the ability to
provide mechanistic insights with respect to the kinases likely to be responsible for
phosphorylation events. However, the phosphorylations belonging to those proteins were
well characterized and very consistent. Like Reactome these phosphosites have a wealth of
information attached to them such as regulatory roles and associations with diseases
making PhosphoSitePlus the best available resource for inferring kinase activity. However,
as this is a specialist database, there is a clear lack of functional information outside of
protein modifications, making PhosphoSitePlus a useful tool for database mining but less
useful in untangling signalling transduction implications outside of the phosphorylation
context.

KEGG and WikiPathways were both found to have a moderate coverage of the
proteome but could not be investigated in depth for their use in phosphoproteomics data
analysis due to the absence of accessible phosphosite-specific annotation. Nonetheless,
today both databases continue to be used in pathway analysis of phosphoproteomic data,
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largely as a source of gene sets for enrichment type studies (Abe et al., 2020; Park et al.,
2015; Kwon et al., 2015; Kawata et al., 2019).

It can be seen in Figs. 3 and 4 that the successful mapping of a phosphoprotein does not
necessarily translate to the successful mapping of a phosphosite. In some cases, the protein
maps to the knowledgebase, but the knowledgebase has no recorded phosphorylations on
that protein, or potentially only a single phosphorylation when a different phosphorylation
or even multiple were found on that protein experimentally. The implications of
generalizing a phosphoprotein to any unphosphorylated version should be carefully
considered. An unphosphorylated protein and protein phosphorylated in a specific
manner will most likely behave differently.

When it comes to analysing phosphoproteomic data using general signalling
knowledgebases, other factors should also be considered. Firstly, how well does the
database cover other types of PTM? PTM:s such as ubiquitination and acetylation can have
strong cooperative or contradictory effects. For example, an association was found between
phosphorylation and acetylation in a genome-reduced Mycoplasma pneumoniae (Van
Noort et al., 2012) demonstrating that the presence of one modification might facilitate or
hinder modification of a closely positioned residue. Another important consideration is
the coverage of protein complexes, as they play crucial roles in signal transduction and
their formation is often regulated by phosphorylation (Day, Sosale ¢» Lazzara, 2016).
Finally, isoforms, which expand the complexity of the proteome, but also present
problems for annotation, need to be considered. As shown in Table 1 many modifications
are found on non-canonical (alternatively spliced) protein sequences. Isoform specific
phosphorylation should be recorded, and the resulting modified isoforms treated as
separate entities to their canonical form as they can have a large impact on molecular
functions. For example, one study found that Connexin isoform 30 closed upon Protein
Kinase C phosphorylation but not connexin isoform 43, completely altering its molecular
function (Alstrom et al., 2015). Of the databases characterized above, Reactome has
demonstrated all of these properties making it a valuable starting point for
phosphoproteomics functional analysis. While PhosphoSitePlus treats isoforms
independently and maintains a repository of PTM’s other than phosphorylation, its
kinase-substrate network treats each phosphosite independently, and does not hold any
information for multiply phosphorylated proteins nor complexes. HPRD does hold
isoforms as well as alternate modifications but in most cases annotates protein—protein
interactions as common to all isoforms and modified proteins (Keshava Prasad et al.,
2009). Similarly, BioGRID also holds alternate modifications as well as isoforms but does
not treat them as separate entities. KEGG holds complexes, and some isoform information
(but does not seem to treat them separately), as well as alternate modifications but does not
provide the modified residue. Finally, at the time of publication WikiPathways did not
have a downloadable BioPax (Demir et al., 2010) file and was unable to be investigated,
however it does contain many Reactome pathways which do possess all of the above
qualities.

Data saturation is occurring and there is a huge need for bioinformatic analysis to
aid in the characterisation of phosphosite function. The use of general signalling
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knowledgebases has great potential to aid in this endeavour through data browsing, mining
and hypothesis generation. No single database analysed in this study emerged as a ‘best’
option, as each had clear strengths and weaknesses. Instead for now these databases should
be used in conjunction with each-other to build on the assets that each maintains and
makes up for in the others.

CONCLUSION

We have used global phosphoproteomics datasets to provide insights into the relative
strengths and weaknesses across databases and highlighted general concerns in current
phosphoproteomics analysis practices. We found that phosphorylation events in
Reactome are rare, but typically come with a subcellular location, as well as interpretable
functional annotations for a protein in a specific phosphorylation state (whether that be
singly or multi-phosphorylated) leading to potential mechanistic insights. In HPRD
phosphorylation events are much more abundant but the downloadable PPI has little
information associated with phosphosites. BioGRID possessed few annotated
phosphorylation events, meaning it is unlikely that mapping phosphoproteomics data
onto this database will yield a high level of successful matches and ultimately helpful
insights into phosphoproteomic signalling. SIGNOR on the other hand possessed less
phosphorylation annotations but each is highly consistent and holds many other
valuable annotations. Many known phosphorylation events can be found in the
PhosphoSitePlus database, but most of these do not have K-S annotation. Further,
PhosphoSitePlus lacks information on cellular signalling outside the K-S context resulting
in limited potential for specific mechanistic insights. The coverage, consistency,

number of proteins and number of phosphorylations, as well as the level of detail in each
database’s annotations differ greatly. All aspects are important to characterize in order to
get a holistic understanding of how each database is capable of characterizing
phosphoproteomics data.
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