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Background
Metagenomics studies the genome content of populations of microorganisms. Advances 
in high throughput parallel sequencing now allow researchers to simultaneously 
sequence thousands of genomes. Methods to analyse such large and complex datasets 
are being continuously developed, attempting to keep pace with ever-growing data. Cur-
rently, there are two general approaches to metagenome analysis [1]. First, classification, 
which aims to identify sequence reads and assign them to a known species or taxa. This 
is achieved by alignment or mapping of reads or read fragments (k-mers) to databases of 
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reference genes or genomes along with algorithms to select the best matches and decide 
the appropriate taxonomic level of assignment. Classified reads can then be counted 
in order to build up an abundance profile of the entire population under study. Sec-
ond, assembly, which may also be used to classify and quantify genomes, but primarily 
aims to obtain discrete and complete genomes. These two approaches are usually used 
together to maximise information from metagenome data sets.

The gut microbiome is an important determinant of human health and is altered in 
response to diet and other environmental conditions, life events and disease states [2, 
3]. However, almost all knowledge of the gut microbiome relates to its bacterial com-
ponent, which comprises the majority of its genomic mass [4], although emerging evi-
dence suggests that viruses, including bacteriophages [5], and fungi [6] also contribute 
to the functions of the gut microbiome. In addition to whole metagenome sequencing, 
methods that specifically target and enrich the virome have been developed [7]. The fun-
gal component of the gut microbiome (the mycobiome) has been more widely studied 
using rRNA ITS amplicon sequencing [8], due largely to the computational problems 
presented by large eukaryotic genomes which tend to contain larger proportions of 
repetitive sequence compared to bacteria and viruses and may contain viral and bacte-
rial sequences, by integration or contamination.

Metagenomic sequencing covers all DNA and therefore includes a small proportion of 
viral and eukaryotic (fungi, parasites and undigested food DNA) sequences that are often 
discarded or overlooked in analyses. The majority of viral sequence is expected to be 
retrovirus RNA (both host and bacteriophage), together with DNA viruses. The repre-
sentation of the RNA virome can be improved with reverse-transcription prior to DNA 
metagenomic sequencing. Viral genomes are small and therefore can be represented in 
existing sequence classification databases. The large size of eukaryote genomes, how-
ever, means they are usually excluded from classifier databases. Recently, two classifier 
programs have been developed specifically for eukaryote classification in metagenomes. 
EukRep [9] requires genome assembly for eukaryote classification and is not applicable 
to fecal metagenomes because we expect the abundance of eukaryotic reads to be too 
low to allow assembly. CCMetagen [10] uses read-mapping to purportedly improve clas-
sification of eukaryotes and therefore may be applicable to low-abundance genomes. 
However, given optimised bacterial, viral and eukaryote databases it should also be pos-
sible to apply previously developed and more widely used metagenome classifiers to the 
total taxonomic content of metagenomes.

In this study, we aimed to identify the optimal program(s) and approaches for classify-
ing the wider taxonomy of the fecal metagenome, but our findings could be extended 
to any mixed populations of bacteria, viruses and eukaryotes. We examined the perfor-
mance of five metagenome classifiers for their ability to correctly classify metagenomes 
with abundance distributions of organisms expected in human fecal samples. Classifi-
ers were chosen for differences in methodology, and all were expected to have adequate 
speed for processing large numbers of samples and acceptable memory requirements. 
We also examined the effect of order of analysis between bacteria, viruses and eukar-
yotes, with the aim of improving classification by excluding confounding sequences. 
Finally, the effect of sequencing depth on classification precision and probability of a 
species’ detection was examined.
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Results
Practical application considerations

The time taken for the programs being compared to classify 10 million 150  bp simu-
lated reads is shown in Table  1. Classification was carried out in three separate steps 
for bacteria, viruses and eukaryotes. Speed was, as expected, proportional to database 
size; viruses were classified faster than bacteria and eukaryotes, except in the case of 
Centrifuge which took 44 s longer to classify viruses than bacteria. In total time taken, 
Centrifuge was the fastest classifier (19:29) followed by Kraken2 (20:24), BURST (28:20), 
CCMetagen (55:44) and UBLAST (30:23:09). Although not directly comparable to the 
other metagenome classifiers, MetaPhlAn2 (5:12) was the second fastest for bacteria. 
Classifiers differed in their speed by taxonomic group, Centrifuge being the fastest to 
classify bacteria and Kraken2 the fastest to classify viruses and eukaryotes.

Database size, shown in Table 2, varied up to 86-fold between classifiers. Virus data-
bases were small and inconsequential with respect to modern RAM availability. Bacte-
rial databases and especially eukaryotic databases would usually exceed available RAM 
for desktop computers. Centrifuge consistently built the smallest databases: 6.3, 0.057 
and 115 GB for bacteria, viruses and eukaryotes, respectively. BURST required the larg-
est bacterial database (48.2 GB) and Kraken2 required the largest eukaryotic database 
(218  GB). Eukaryotic databases were more consistent in size between programs than 
those for bacteria or viruses (less than two-fold difference in size between smallest and 
largest compared to > seven-fold difference for bacterial databases).

In addition to these considerations, different complexities of scripting steps were 
required for each program. In particular, when processing sequence files by taxo-
nomic group order, BURST and CCMetagen presented the most difficulties, requir-
ing sequences not classified at each step to be programmatically extracted from the 

Table 1 Time required by each program to classify 10 million 150 bp reads into each taxonomic 
group (hours:minutes:seconds)

24 CPUs (Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz)

Program Bacteria Viruses Eukaryotes Total

BURST 0:08:54 0:02:28 0:16:58 0:28:20

Kraken2 0:09:56 0:00:24 0:10:04 0:20:24

Centrifuge 0:02:01 0:02:45 0:14:43 0:19:29

Ublast 10:33:50 1:47:55 18:01:24 30:23:09

CCMetagen 0:04:47 0:00:28 0:50:29 0:55:44

MetaPhlAn2 0:05:12 – – –

Table 2 Database size (GB) required for each program and taxonomic group

Program Bacteria Viruses Eukaryotes

BURST 48.2 4.9 119

Kraken2 22 0.17 218

Centrifuge 6.3 0.057 115

Ublast 15 0.1 200

CCMetagen 17.3 0.19 163

MetaPhlAn2 0.65 – –
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initial sequence file in order to be processed at the next step. This added time that is 
not included in Table 1. Kraken2 and Centrifuge provided the built-in option to output 
unclassified reads from each step which could then be used for the next step, greatly 
simplifying their pipelines. BURST also required the use of a separate, customised script 
to extract the LCA from the alignment output, unlike other programs which included 
this function within their main classifier code.

Comparison of classifiers using an unordered approach

Recall and precision measurements for each program are shown in Figs.  1 and 
2, respectively, using the unordered approach (bacteria, viruses and eukaryotes 

Fig. 1 Recall determined by classifier programs using an unordered analysis approach

Fig. 2 Precision determined by classifier programs using an unordered analysis approach
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classified with the full set of reads for each). Unordered results are also summa-
rised in Tables  3 and 4. Both measures showed large variation between programs 
and between taxonomic groups. Although not the primary focus of this study, bac-
terial classification was included for the purpose of comparison. The highest mean 
recall for bacteria was achieved similarly by BURST (0.860) and Kraken2 (0.852), 
followed by Centrifuge (0.571), MetaPhlAn2 (0.396) and CCMetagen (0.347), with 
P-values = 0.26, < 2 ×  10−16, 2 ×  10−10 and 0.003, respectively. For virus recall, BURST 
(0.664), Kraken2 (0.697) and Centrifuge (0.626) performed similarly and better than 
CCMetagen (0.566) or Metaphlan (0.237), with P-values = 0.171, 0.007, 0.007 and 
1 ×  10−12, respectively. For eukaryote recall, Kraken2 performed best (0.748), fol-
lowed by Centrifuge (0.69), BURST (0.514) and CCMetagen (0.007), with P-val-
ues = 7 ×  10−10, 6 ×  10−10, 0.007 and < 2 ×  10−16, respectively. It should be noted that 
compared to the other programs CCMetagen and Metaphlan often reported spe-
cies as ’unclassified’ (although their genus classification was correct) accounting for 
their very low species recall. MetaPhlAn2 was unable to correctly classify any of the 
expected eukaryotes and therefore recall and precision could not be calculated.

For bacteria, the highest mean values for precision (with overestimation of spe-
cies number being penalised) were achieved similarly with CCMetagen (0.692) and 
BURST (0.684) followed by Kraken2 (0.586), Centrifuge (0.467) and MetaPhlAn2 
(0.369), with P-values = 0.64, 1.24 ×  10−6, 1.7 ×  10−7 and 4.3 ×  10−12, respectively. 
For virus precision, Kraken2 performed best (0.698), followed by Centrifuge (0.673), 
CCMetagen (0.638), BURST (0.623) and MetaPhlAn2 (0.536), with corresponding 
P-values = 0.09, 0.08, 0.45 and 0.005, respectively. For eukaryote precision, BURST 
(0.716) performed best followed by Kraken2 (0.589), Centrifuge (0.452) and CCMeta-
gen (0.328), with corresponding P-values = 4 ×  10−6, 2 ×  10−9 and 0.001, respectively.

Table 3 Mean (standard deviation) of recall of each classifier for bacteria, viruses and eukaryotes 
using the unordered approach

Classifier Bacteria Virus Eukaryotes

BURST 0.86 (0.017) 0.664 (0.045) 0.514 (0.04)

Kraken2 0.852 (0.015) 0.697 (0.057) 0.748 (0.049)

Centrifuge 0.571 (0.02) 0.626 (0.045) 0.69 (0.026)

CCMetagen 0.347 (0.022) 0.566 (0.043) 0.07 (0.022)

MetaPhlAn2 0.396 (0.039) 0.237 (0.042) –

Table 4 Mean (standard deviation) of precision of each classifier for bacteria, viruses and eukaryotes 
using the unordered approach

Classifier Bacteria Virus Eukaryotes

BURST 0.684 (0.029) 0.623 (0.038) 0.716 (0.05)

Kraken2 0.586 (0.033) 0.698 (0.036) 0.589 (0.035)

Centrifuge 0.467 (0.032) 0.673 (0.029) 0.452 (0.019)

CCMetagen 0.692 (0.038) 0.638 (0.05) 0.328 (0.098)

MetaPhlAn2 0.372 (0.04) 0.536 (0.076) –
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Effect of taxonomic order of analysis

BURST performed consistently well compared to other programs in unordered analy-
sis and therefore was chosen to examine the effect of ordering the analysis in six dif-
ferent ways compared to unordered analysis. Figure 3 shows box plots of precision for 
each ordered method, a–f, and unordered method, g. For bacteria, changing the order of 
analysis had no significant effect (P = 0.992). For viruses, orders c, d and e significantly 
improved precision (c, d, e > a, b, f, g; P = 0.001). For eukaryotes, orders a, c, and d signif-
icantly improved precision (a, c, d > b, e, f, g; P < 2 ×  10−16). All orders of analysis which 
improved precision placed bacterial classification and removal of bacterial classified 
reads before the classification of viruses (c, d and e) or eukaryotes (a, c and d).

Figure  4 shows a comparison of ordering analysis by method ‘d’ (bacte-
ria > viruses > eukaryotes) for each classifier and each taxonomic group. Order ‘d’ had 
no effect on bacterial classification (P = 1.000). For virus classification, order ‘d’ signifi-
cantly improved precision for Centrifuge (P = 4 ×  10−6) but not for BURST, CCMeta-
gen or Kraken2 (P = 0.145, 0.888, 0.143, respectively). For eukaryote classification, order 
’d’ significantly improved precision for BURST, Centrifuge and Kraken2 (P = 3 ×  10−5, 
7 ×  10−14 and 5 ×  10−10, respectively) but not for CCMetagen (P = 0.072). Precision 
means (standard deviation) for each classifier with order ‘d’ analysis are summarised in 
Table 5.

Effect of sequencing depth

The effect of sequencing depth (number of simulated reads classified per replicate) is 
shown in Fig.  5 for the BURST program, using ordered analysis method ‘d’. Bacterial 
precision decreased significantly with increasing depth  (R2 = 0.745, P < 2 ×  10−16), as did 
eukaryotic precision to a lesser extent  (R2 = 0.187, P = 5.5 ×  10−4). Increasing sequenc-
ing depth had no effect on virus classification precision  (R2 = 1.3 ×  10−5, P = 0.976). 

Fig. 3 Precision determined with BURST classifier for each taxonomic group, using seven 
different orders of analysis: a = viruses > bacteria > eukaryotes; b = viruses > eukaryotes > bacteria; 
c = bacteria > eukaryotes > viruses; d = bacteria > viruses > eukaryotes; e = eukaryotes > bacteria > viruses; 
f = eukaryotes > viruses > bacteria; g = unordered
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Fig. 4 Precision determined by each classifier program after ordered analysis ‘d’ 
(bacteria > viruses > eukaryotes) and unordered analysis

Table 5 Precision mean (standard deviation) determined with each classifier program after ordered 
analysis ‘d’ (bacteria > viruses > eukaryotes)

Classifier Bacteria Viruses Eukaryotes

BURST 0.684 (0.029) 0.65 (0.041) 0.854 (0.06)

Kraken2 0.586 (0.033) 0.667 (0.053) 0.828 (0.052)

Centrifuge 0.467 (0.032) 0.767 (0.035) 0.696 (0.033)

CCmetagen 0.692 (0.038) 0.642 (0.051) 0.413 (0.1)

Fig. 5 Effect of sequencing depth on precision determined by BURST classifier for each taxonomic group, 
ordered using method ‘d’ (bacteria > viruses > eukaryotes)
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Sequencing depth had no effect on the probability of correctly classifying species 
(any species within the expected abundance bins shown) at an expected abundance of 
1 ×  10−5 or above  (R2 = 0.02, P = 0.227) (Fig. 6). Note that error bars for ≥ 0.01 relative 
abundance are large due to few species being within this abundance bin (approximately 
five per simulation).

Discussion
Our findings lead us to conclude overall that existing programs designed for the taxo-
nomic classification of metagenomic data can classify non-bacterial sequences in fecal 
DNA, although precision varies considerably between programs. Moreover, when 
classifying eukaryotes, without considering the order of analysis, some programs per-
formed unsatisfactorily. Ordering the analysis, so that bacterial reads were classified 
first and removed from subsequent classification of viruses and eukaryotes, significantly 
increased precision for eukaryotes. All the classifier programs evaluated suffered from 
over-classification, that is, they identified more species than expected in the sample, and 
this was only accentuated when sequencing depth was increased.

The speed of classifier programs is an important consideration when analysing large 
numbers of samples. Even small differences in speed will be amplified and speed may 
therefore be a deciding factor in choice of program. We found that Centrifuge was the 
fastest classifier, although at the cost of some precision as discussed below. Despite 
using a smaller, marker gene-based database, MetaPhlAn2 was the third fastest classifier. 
In addition to speed, database size and the RAM required is also an important factor 
in choice of classifier. The eukaryote databases used were very large and the different 
indexing and compression methods of each program resulted in sizes ranging from 115 
to 218 GB, well beyond the RAM capacity of most desktop computers. Eukaryote classi-
fication is therefore currently not possible with whole genome classifiers unless access to 

Fig. 6 Effect of increasing sequencing depth (grouped on x‑axis) on the probability of detecting and 
classifying species within six expected relative abundance bins (key denotes lower limit of bin)
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high-performance computing or cloud-computing is available, except where a marker-
gene program such as MetaPhlAn2 is used or databases are constrained to particular 
genomes, e.g. mitochondria or chloroplasts.

The difference between the commonly used metrics for metagenomic benchmarking, 
recall and precision, is crucial when comparing programs. For example, a more conserv-
ative program such as CCMetagen gave comparatively poor recall (for bacteria) but with 
greatly improved precision because it didn’t over-classify species. Conversely, Kraken2, 
had a relatively high recall, but suffered in precision due to over-classification. We 
consider that precision is a preferable measure to recall, because in the absence of any 
known estimate of the number of expected species in a sample, over-classification could 
yield misleading results. The problem of over-classification is usually addressed by bio-
informaticians by excluding or filtering taxa that are low abundance, e.g. at an arbitrary 
value of 100. While this improves precision, it is not usually possible to define the cor-
rect level of filtering a priori and, as shown, this may be influenced by sequencing depth.

When analyses were unordered, the BURST program gave the best performance over-
all across bacteria, viruses and eukaryotes. Unlike the other classifiers, BURST uses full-
length alignment of reads for classification, and not k-mers. Although this approach is 
thought to be too slow for classification of large read numbers BURST achieved com-
parable speeds to k-mer aligners. Kraken2 performed equally well to BURST in terms 
of recall and significantly better than BURST for eukaryote classification, but in terms 
of precision suffered from over-classification, reducing its relative performance. This 
effect could be mitigated by filtering lower abundance species from Kraken2, as outlined 
below. The absolute levels of recall and precision observed serve to highlight that even 
in ideal conditions, the classifiers tested will give approximately 27% misclassification 
at the species level (based on BURST ordered analysis average precision over all taxo-
nomic groups). Accordingly, the identity of assigned species should be manually checked 
if they are considered to be important, for example with respect to differential abun-
dance among samples. However, the species classification obtained (tens to hundreds of 
species) greatly reduces the number of such checks required compared to the numbers 
of original sequence reads, making manual checks with, e.g. BLAST, against complete 
online nucleotide databases feasible. The comparison of classification programs in this 
study used an ’ideal case’ of simulated reads taken from the same sets of genomes as 
used to construct their databases. In real studies of naturally occurring metagenomes, 
where species will have sequence differences to those in the databases and will contain 
unknown species, we would therefore expect that recall and precision would be worse 
than shown here. However, at higher taxonomic levels this would be less of a problem. 
In this study we elected to compare only species to keep comparisons between programs 
and approaches simpler.

Eukaryote genomes are known to contain viral and bacterial sequences, due to physical 
contamination during sequencing and through actual genomic integrations. Similarly, 
bacterial genomes contain many phage and other virus-like sequences. It is therefore 
possible that these could cause erroneous read classifications, particularly in the case 
of eukaryotes in fecal samples, expected to be in low abundance compared to bacteria. 
For this reason, we examined the effect of changing the order of analysis to sequentially 
remove potentially ‘false’ reads. As expected, this did not affect bacterial classification, 
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but the effect on viral and eukaryotic classification was significant. Virus precision was 
consistently increased when bacterial reads were classified first and removed prior to 
viral classification. Similarly, eukaryotic classification was increased to an even greater 
extent when bacterial reads were classified first and removed. We therefore recommend 
that future virus and eukaryote classification methods adopt a similar approach. The 
effect of ordering the analysis with bacterial classification first, followed by viruses and 
then eukaryotes, was greatest with the Kraken2 program, making it the most precise for 
eukaryote classification.

Sequencing depth had an unexpected effect on classification. With the BURST pro-
gram, which performed consistently well in benchmarking, increasing the sequencing 
depth, from 1 ×  105 to 5 ×  107 reads led to a significant decrease in the precision of bac-
terial and, to a lesser extent, eukaryotic classification. Thus, while theoretically increas-
ing the probability of detecting rarer species, increasing sequencing depth leads to an 
increase in classification of reads into species not present in the sample. Furthermore, 
increasing sequencing depth did not significantly increase the probability of detecting 
and classifying rarer species. The probability fell below 0.95 at an approximate abun-
dance of 1 ×  10−4, regardless of sequencing depth. We therefore conclude that increasing 
sequencing depth beyond approximately one million reads per sample has little advan-
tage and may result in increased misclassification and over-classification at the species 
level.

Conclusions
At the species level, the choice of metagenome classifier program had a marked effect on 
the precision of species assignment in different taxonomic groups. We found that over-
all, BURST, a program that uses full-length read alignment, was most precise across bac-
teria, viruses and eukaryotes. Kraken2 (a k-mer aligner) performed similarly well, and 
was programmatically more straightforward to use than BURST, but tended to over-clas-
sify reads more than BURST. This tendency could be remedied by filtering of low abun-
dance species. The order in which taxonomic classification was performed markedly 
improved precision. There was a significant improvement when bacterial classified reads 
were filtered and removed from subsequent virus and eukaryote classification. Increased 
sequencing depth was found to decrease classification precision because it caused the 
programs studied to over-classify species. Furthermore, increased sequencing depth 
did not give a significant improvement in the probability of detection of a species below 
1 ×  10−4 relative species abundance, and therefore we conclude that sequencing depth 
for fecal metagenomes beyond five million reads per sample is not advisable for applica-
tions where the goal is to obtain microbiome, virome, or eukaryome population profiles.

Methods
Classifier programs

Five metagenome taxonomy classifier programs were selected for this study: BURST 
(v1.0) [11]; Kraken2 (v2.0.7) [12]; Centrifuge (v1.0.4) [13]; CCMetagen (v1.2.3) [10]; 
and MetaPhlAn2 (v2.9) [14]. A sixth classification pipeline using UBLAST [15] was also 
tested but proved too slow for practical use and was not examined further. While we 
refer to the programs collectively as ’classifiers’ they may encapsulate several methods 
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in order to achieve taxonomic classification of sample DNA reads, e.g. sequence align-
ment, database compression and indexing, and taxon filtering and selection such as low-
est common ancestor (LCA) algorithms. BURST is a recently developed classifier which, 
unlike others available, uses a full-length alignment method (similar to BLAST) while 
achieving speed comparable to k-mer aligners. Kraken2, a k-mer based aligner, is the 
second generation of the very widely cited Kraken software for metagenomic classifi-
cation. Centrifuge, another widely cited classifier, is meant to require less memory for 
its databases than Kraken2. CCMetagen is a recent classifier which uses a rapid k-mer 
mapping tool, KMA [16] to align and assign confidence to classified reads. CCMetagen’s 
authors report that it is particularly suited to classification of eukaryotes. MetaPhlAn2 
is very widely used and regarded as the benchmark for bacterial metagenome classifica-
tion. Unlike the other classifiers in this study, MetaPhlAn2 uses a curated database of 
marker genes, rather than user-supplied sequences or genomes. Although MetaPhlAn2 
is focussed on bacterial classification it also contains viruses and eukaryotes in its data-
base. All programs were used with default settings where possible (see Additional file 1). 
The output of BURST consisted of all read alignments above the specified threshold but 
did not include a best-classification algorithm or read counts per taxon. A Python-based 
LCA and counting script was therefore written for this purpose (included in Additional 
file 1). Separate databases were built for each program for each taxonomic group: bacte-
ria (and archaea), viruses, and eukaryotes. For the purposes of comparison, we examined 
classification performance to the species level.

Databases and metagenome simulations

With the exception of MetaPhlAn2, all classifiers were provided with an identical set of 
genomes for building bacterial, viral, and eukaryotic databases, using the default instruc-
tions in their respective manuals. Genomes were downloaded from the NCBI RefSeq data-
base (November 2019) using only representative genomes. These comprised 3,456 bacteria 
(and archaea), 3,939 viruses and 379 eukaryotes, with total lengths of 13.9, 0.104, and 32 
Gbp, respectively. In order to simulate metagenomic sequence reads containing realistic 
numbers of representatives from bacteria, viruses and eukaryotes, existing simulation soft-
ware e.g. MetaSim [17], could not be used because it is designed only for bacterial genomes. 
Large eukaryotic genomes cannot be accommodated because the software requires the 
frequency of whole genomes in simulations to be specified and total observed read abun-
dances of eukaryotes would constitute only fractions of genomes. We therefore wrote new 
Python- based scripts (see Additional file 1) which simulated bacterial, viral and eukaryote 
abundance on a per read basis from distributions observed in our experimental observa-
tions of the abundances of such reads in fecal metagenomes in our laboratory [18]. Loga-
rithmic and exponential decay models were manually evaluated for best-fit to the observed 
metagenome species abundances. The best fitting simple model was found to be an expo-
nential decay relationship of abundance to species rank: species abundance = (1.5 × rank) −2 
 (R2 = 0.948). See supplementary data file "Abundance_model_fit.xlsx". It should be noted that 
we do not expect this distribution to apply generally to metagenomes, but it showed a good 
fit to our observed data. The purpose of this fitted distribution was only to generate realistic 
simulations of metagenome species abundance for the purposes of this study. The simulated 
reads incorporated a recently described error rate for Illumina sequencing [19]. Ten replicate 
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simulations were performed for each program/condition studied. With the exception of the 
sequencing depth analysis described below, all simulations were performed with a target 
number of 10 million single-ended reads from 300 bacteria, 100 viruses and 100 eukaryotes. 
In order to simulate the expected distribution curve for each taxon, exact numbers for total 
reads and numbers of taxa could not be used. Numbers achieved were ± 10% of the target. 
For statistical calculations, the actual simulated numbers were used, not the targets. Single 
ended reads were used because Burst could not use paired-read information. We also found 
in initial studies that paired-read classifications were not more accurate when using Kraken2 
alone, but increased processing times (results not shown).

Classifier program runs

All scripts and pipelines are provided in the Additional file  1. Analyses were car-
ried out on the Walter and Eliza Hall Institute High Performance Computing Clus-
ter, using 24 × Intel(R) Xeon(R) Gold 6130 CPUs @ 2.10  GHz. The same compute 
resource of 24 CPUs, and available RAM of 256 GB, was used for all programs / con-
ditions. For each program, seven different orders of taxonomic group analysis were 
tested: a = viruses > bacteria > eukaryotes; b = viruses > eukaryotes > bacteria; c = bac-
teria > eukaryotes > viruses; d = bacteria > viruses > eukaryotes; e = eukaryotes > bacte-
ria > viruses; f = eukaryotes > viruses > bacteria; g = unordered (all reads classified against 
all databases). It was expected that ordering analyses in this way could help to reduce 
misclassification of viruses and eukaryotes when reads arise from exogenous sources 
(integrated virus or bacterial sequence) or from homologues within eukaryotes. This 
approach was used because preliminary analyses showed that mis-classified eukaryotic 
reads could originate from ‘bacterial’ sequences that resulted from either contamination 
or integration events known to be present in the RefSeq genomes [20]. At the second 
and third step of ordered analysis, reads classified by the previous steps were excluded; 
however, this was not possible with MetaPhlAn2 which therefore was only used in the 
unordered mode. It should be noted that using the above methodology, the comparisons 
drawn below are biased against MetaPhlAn2 because its marker gene database was not 
specifically designed for, or drawn from the RefSeq genomes used in this study (as was 
the case for all other classifiers studied). MetaPhlAn2 was included because it is very 
widely used, e.g. in the Human Microbiome Project [21]. Additionally, MetaPhlAn3, 
which was not available at the time of these analyses, may provide improvements.

The effect of sequencing depth (total number of simulated reads) was examined with 
BURST, using the analysis order bacteria > viruses > eukaryotes, with 50, 20, 10, 5, 1, 0.5 
and 0.1 million reads. In this analysis, we also examined the probability of correct species 
classification (any taxonomic group) at six relative abundance bin ranges: > 0.01, 0.01–
0.002, 0.02–4 ×  10−4, 4 ×  10−4–1 ×  10−4, 1 ×  10−4–5 ×  10−5 and < 1 ×  10−5. BURST was 
chosen because in preliminary work its performance was consistently better than other 
classifiers. We expect trends observed using BURST to be similar for other classifiers.

The performance of classifier runs was assessed using two previously described and 
widely used statistics: recall and precision [22].1 Recall is defined as the number of 

1 In this paper we conform to the previous benchmarking use of the term ’precision’ for the statistic. However, we recog-
nise that the term is a measure of accuracy.
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correctly identified taxa divided by the total expected number. Precision is defined as 
the number of correctly identified taxa divided by the total number classified. Recall can 
therefore be biased to methods that classify more species, and false positives (over-clas-
sification) because it does not take the total number classified into account. Precision 
will penalise methods which over-classify but in real use situations rare taxa are usu-
ally filtered from results, for which precision does not account. However, in this study 
we were interested specifically in differences between programs in the rarer components 
of metagenomes, while minimising over-classification. Therefore, for our purposes, pre-
cision may be considered the more useful statistic. We only considered classification 
to the species level in this study in order to simplify analyses, and with respect to the 
classification of eukaryotes, e.g. foods and parasites, we consider species level classifi-
cation the most useful classifier result and we have therefore only considered the spe-
cies level in this work. It may be the case that the relative differences observed between 
programs and conditions could vary when higher taxonomic levels are used. Differences 
and trends in results were assessed with ANOVA and linear models using the R package 
(v3.6.1).

Abbreviations
ANOVA: Analysis of variance; Bp: Base pairs; CPU: Central processing unit; DNA: Deoxyribonucleic acid; GB: Gigabytes; 
Gbp: Giga‑basepairs; GHz: Gigahertz; LCA: Lowest common ancestor; NCBI: National Center for Biotechnology Informa‑
tion; RAM: Random access memory; RNA: Ribonucleic acid; rRNA ITS: Ribosomal ribonucleic acid intergenic transcribed 
spacer.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859‑ 021‑ 04212‑6.

Additional file 1. File containing all scripts and information for benchmarking simulations. This information is also 
available at the link: https:// github. com/ theo‑ allnu tt‑ bioin forma tics/ Allnu tt_ etal_ 2020_ expan ding_ the_ taxon omic.

Acknowledgements
Not applicable.

Authors’ contributions
TRA designed, performed and analysed experiments and wrote computational code. LCH assisted in writing. AJRS 
assisted in initial ideas. All authors read and approved the final manuscript.

Funding
This work was undertaken within the Environmental Determinants of Islet Autoimmunity (ENDIA) pregnancy‑birth 
cohort study supported by a grant from the Juvenile Diabetes Research Foundation Australia (JDRFA) and Leona M. and 
Harry B. Helmsley Charitable Trust (3‑SRA‑2019‑899‑M‑N), a NHMRC Program Grant (LCH 1037321) and a NHMRC Investi‑
gator Grant (LCH 1173945). Additional support was provided by the Victorian State Government Operational Infrastruc‑
ture Support and the NHMRC Research Institute Infrastructure Support Scheme. Funding bodies did not contribute to 
the design of the study, collection, analysis, interpretation of data, or in writing the manuscript.

Availability of data and materials
All data generated or analysed during this study are included in this published article and its supplementary informa‑
tion files, which are available in the repository: https:// github. com/ theo‑ allnu tt‑ bioin forma tics/ Allnu tt_ etal_ 2020_ expan 
ding_ the_ taxon omic

Disclosures

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

https://doi.org/10.1186/s12859-021-04212-6
https://github.com/theo-allnutt-bioinformatics/Allnutt_etal_2020_expanding_the_taxonomic
https://github.com/theo-allnutt-bioinformatics/Allnutt_etal_2020_expanding_the_taxonomic
https://github.com/theo-allnutt-bioinformatics/Allnutt_etal_2020_expanding_the_taxonomic


Page 14 of 14Allnutt et al. BMC Bioinformatics          (2021) 22:312 

Author details
1 Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia. 2 Depart‑
ment of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia. 

Received: 3 November 2020   Accepted: 20 May 2021

References
 1. Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic classification and assembly. 

Brief Bioinform. 2019;20(4):1125–36.
 2. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375(24):2369–79.
 3. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. 

Cell. 2012;148(6):1258–70.
 4. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 

2016;14(8):e1002533.
 5. Garmaeva S, Sinha T, Kurilshikov A, Fu J, Wijmenga C, Zhernakova A. Studying the gut virome in the metagenomic 

era: challenges and perspectives. BMC Biol. 2019;17(1):84.
 6. Hallen‑Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence. 2017;8(3):352–8.
 7. Briese T, Kapoor A, Mishra N, Jain K, Kumar A, Jabado OJ, Lipkin WI. Virome capture sequencing enables sensitive 

viral diagnosis and comprehensive virome analysis. MBio. 2015;6(5):e01491‑e11415.
 8. Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, Stewart CJ, Metcalf GA, Muzny DM, Gibbs RA, et al. 

The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. 2017;5(1):153.
 9. West PT, Probst AJ, Grigoriev IV, Thomas BC, Banfield JF. Genome‑reconstruction for eukaryotes from complex natu‑

ral microbial communities. Genome Res. 2018;28(4):569–80.
 10. Marcelino VR, Clausen PTLC, Buchmann JP, Wille M, Iredell JR, Meyer W, Lund O, Sorrell TC, Holmes EC. CCMetagen: 

comprehensive and accurate identification of eukaryotes and prokaryotes in metagenomic data. Genome Biol. 
2020;21(1):103.

 11. Al‑Ghalith G, Knights D. BURST enables optimal exhaustive DNA alignment. 2017
 12. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20(1):257.
 13. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences. 

Genome Res. 2016.
 14. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community 

profiling using unique clade‑specific marker genes. Nat Methods. 2012;9(8):811–4.
 15. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1.
 16. Clausen PTLC, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against redundant databases with 

KMA. BMC Bioinform. 2018;19(1):307.
 17. Richter DC, Ott F, Auch AF, Schmid R, Huson DH. MetaSim—a sequencing simulator for genomics and metagenom‑

ics. PLoS ONE. 2008;3(10):e3373.
 18. Roth‑Schulze AJ, Penno MAS, Ngui KM, Oakey H, Thomson RL, Vuillermin PJ, Craig ME, Rawlinson WD, Harrison L. 

Changes in the composition and function of the gutmicrobiome accompany type 1 diabetes in pregnancy. 2018. 
https:// doi. org/ 10. 21203/ rs.3. rs‑ 18520/ v1.

 19. Pfeiffer F, Gröber C, Blank M, Händler K, Beyer M, Schultze JL, Mayer G. Systematic evaluation of error rates and 
causes in short samples in next‑generation sequencing. Sci Rep. 2018;8(1):10950.

 20. Steinegger M, Salzberg SL. Terminating contamination: large‑scale search identifies more than 2,000,000 contami‑
nated entries in GenBank. Genome Biol. 2020;21(1):115.

 21. Mathe BA, et al. A framework for human microbiome research. Nature. 2012;486(7402):215–21.
 22. Ye SH, Siddle KJ, Park DJ, Sabeti PC. Benchmarking metagenomics tools for taxonomic classification. Cell. 

2019;178(4):779–94.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.21203/rs.3.rs-18520/v1

	Expanding the taxonomic range in the fecal metagenome
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Practical application considerations
	Comparison of classifiers using an unordered approach
	Effect of taxonomic order of analysis
	Effect of sequencing depth

	Discussion
	Conclusions
	Methods
	Classifier programs
	Databases and metagenome simulations
	Classifier program runs

	Acknowledgements
	References


