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Figure 5. TF scCapture-seq improves analysis of cell differentiation trajectories. Diffusion maps of pre-capture (A, C,E) and post-capture (B,D,F) cells built
using the destiny package (Angerer et al. 2016) with pseudotime direction determined using Slingshot (Street et al. 2018). The cells are colored by clusters
(A,B) or pseudotime (C,D). (E,F) Log, expression of representative genes for each cell group on pseudotime space for pre-capture (E) and post-capture (F).

TCF7L2, PBX1, TCF21, and FOXO3 (Chawla et al. 2013; Kim et al.
2017; Crow and Gillis 2018), were differentially expressed be-
tween the two clusters post-capture, but not pre-capture (Supple-
mental Table S4; Supplemental Fig. S8E,F). Overall, using an
independent scRNA-seq data set we confirmed that scCapture-

seq greatly improved the identification of the targeted TFs, poten-
tially facilitating the discovery of important regulatory TFs under-
lying the differences between cellular populations. These results
also establish that scCapture-seq works robustly on both whole-
transcript plate-based and 3’-end microfluidics-based sample
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Figure 6. TF scCapture-seq reveals differentially expressed genes underlying inter-laboratory variability. (A) Volcano plot of all pre-capture DEGs between
N1 and N2 neurons (based on pre-capture gene expression in cells of cluster 1 vs. cells of clusters 3 and 4). (B) Volcano plot of all post-capture DEGs be-
tween N1 and N2 neurons (based on post-capture gene expression in cells of clusters N1 vs. N2). Significant DEGs are labeled (FDR < 0.05, natural log fold
changes >0.5). (C,D) Heat maps of post-capture expression of the key TF DEGs with different temporal kinetics between the laboratories. Each heatmap
includes only cells from the respective laboratory: Lab D (C) or Lab E (D). The cells are ordered by pseudotime (based on all cells, as in Fig. 5A,B), including

cells of the earlier G cluster. Expression is log,-normalized and centered.

libraries, although further optimization for non-Smart-seq library
types would be possible (see Discussion).

Validation of scCapture-seq with a separate target gene panel

We next validated the scCapture-seq approach with the
NeuroGWAS (NG) panel (Curion et al. 2020), whose target genes
include markers for neuronal development and identity and candi-
date risk genes for schizophrenia and Parkinson’s disease. We an-
alyzed 359 out of 376 captured iPSC-derived cells from cortical

neuron cultures (Volpato et al. 2018), which passed quality con-
trol. Eighty-seven out of 101 NG genes were expressed post-cap-
ture. Similar to TF capture, there was a linear correlation between
pre- and post-capture expression: >10-fold enrichment of NG
genes and a 3.8-fold increase in the number of captured NG genes
per cell (Supplemental Fig. S9A-C). Moreover, clustering identified
five similar cellular communities in pre- and post-capture data
(Supplemental Fig. S9D), confirming the validity of using post-
capture for cell type identification. Using the cell type markers
we confirmed that, similar to TF capture cultures, NG capture
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cultures were represented by neuronal cells from Lab D (clusters 1
and 2) and Lab E (clusters 3 and 4), as well as glial-type cells (cluster
5) (Supplemental Fig. S10). Differential expression of NG genes re-
vealed that most of the candidate disease genes, for example,
BAG3, RAB29, STX4, and FAM126A, potentially associated with
Parkinson’s disease; and CACNB2, EMX1, and AKT3 (potentially
associated with schizophrenia) had higher expression in Lab E
neurons and/or glial cells, with only HIP1R having higher expres-
sion in Lab D neurons (Supplemental Fig. SOE,F). One partial rea-
son for these observations could be the less mature, more
developing state of Lab E neurons. These results show that
scCapture-seq can also be successfully applied to other sets of cap-
ture pools, including NG genes, to facilitate the identification of
the disease genes in different cell types.

Discussion

We applied targeted sequencing to a large set of biologically critical
genes that are typically poorly represented in single-cell data to in-
vestigate if this method can enhance the biological information
discoverable using scRNA-seq. As a proof of principle, we targeted
most known human TFs (approximately 1000) and applied our ap-
proach to iPSC-derived neurons. We found that capture was highly
effective at recovering TF single-cell gene expression. Compared to
pre-capture data, we observed a 36-fold enrichment for TF reads,
increasing the total number of TFs detected in the sample, and
each cell was shown to express a broader range of TFs. The high
correlation between post-capture and pre-capture expression sug-
gested there was little bias in relative TF expression levels attributed
to capture. Many of the key TFs were poorly represented pre-cap-
ture, precluding the downstream analysis of the neuronal fate
specification based on pre-capture data alone. Our results show
that performing TF scCapture-seq greatly improved our under-
standing of the underlying biology in the system, and when com-
bined with standard full transcriptome scRNA-seq, allowed at low
additional cost the construction of a comprehensive gene regulato-
ry network and additional insights into the processes driving neu-
ronal differentiation. We also validated our approach on a
different scCRNA-seq data set of intestinal stromal cells prepared us-
ing the Fluidigm C1 microfluidics and Smarter-seq approach and
on a different panel targeting neurological disease genes. In both
cases we confirmed the enrichment of the targeted genes and
the potential for scCapture-seq to uncover new biological insights.

Previous application of RNA Capture to bulk and low input
samples has shown that this method improves sequencing sensi-
tivity, allowing the detection and quantification of transcripts
that are poorly represented in standard libraries (Mercer et al.
2014; Clark et al. 2015; Curion et al. 2020). Here, we show capture
has similar advantages when applied to single cells, which are well
known to have low sensitivity and a high noise threshold.
Therefore, the benefit sequence capture provides to biological
analyses of single cells may be greater than for bulk samples.
Previous targeted single-cell methods have shown the enrichment
of individual cells of interest by PCR for specific cell barcodes
(Ranu et al. 2019) or immune receptor genes using LNA or DNA
capture probes (Riemondy et al. 2019; Singh et al. 2019).
Although these studies showed that an improved biological under-
standing could be obtained through targeted single-cell sequenc-
ing, the number of targeted cells or genes was very limited. PCR
and LNA-probe-based methods have practical and cost limitations
for scaling to a large number of targets, whereas targeting highly
expressed immune receptor genes left the applicability of single-

cell capture to lowly expressed target unresolved. Our results
now show the utility of applying single-cell capture to a large num-
bers of genes, including those with low expression levels.

ScCapture-seq was primarily designed for Smart-seq2 librar-
ies. We have demonstrated that scCapture-seq is compatible with
libraries generated by Fluidigm C1 microfluidics and Smarter-
seq. We have not yet evaluated scCapture-seq on droplet-based
single cell libraries but believe our method can be adapted to these
types of libraries. In this case, we recommend utilizing adaptor
blocking oligonucleotides specifically designed for compatibility
with the barcode and index features of each methodology.
Additionally, for those single-cell techniques that produce tran-
script counting (e.g., 10x Genomics, MARS-seq, etc.) rather than
whole-transcript libraries, capture probe designs could be opti-
mized to cover only those 3’ or 5 regions likely to be sequenced
(Supplemental Fig. S11). One important difference between
scCapture-seq and 10x Genomics Targeted Gene Expression is
that our method can be applied to a range of single-cell methodol-
ogies and library types. It can provide similar advantages to the 10x
targeted gene expression approach but is also compatible with
methods like Smart-seq that preserve information across the full-
length of transcripts and so potentially can be used for the identi-
fication of splice isoforms in a way that is not possible using 3’ or &’
10x Genomics Targeted Gene Expression measurements. Thus, TF
capture resulted in a median threefold increase in detected splice
junctions in our data set, similar to what was previously reported
(Curion et al. 2020). scCapture-seq can be used as a cost-effective
substitution for standard scRNA-seq, especially for larger projects,
or multiple projects for which the same capture design can be used.
Although cost savings depend on many variables, including local
costs and the number of additional samples able to be combined in
a sequencing lane, we find Capture-Seq enables 5-10 times less se-
quencing to be performed and saves money once five lanes of se-
quencing have been avoided. One important limitation to all
single-cell enrichment methods is that they can only enrich for
genes present in the sequencing library and cannot overcome
the inefficiencies of single-cell library generation. As single-cell li-
brary method efficiencies continue to improve (Hagemann-Jensen
et al. 2020), the sensitivity of single-cell capture will progressively
increase.

The differentiation of iPSCs into defined neuronal popula-
tions provides an excellent opportunity to understand develop-
mental processes, because these cultures typically contain a
diversity of cell subtypes and different stages of maturation.
Protocols developed to produce forebrain cortical excitatory neu-
rons are now well established and widely used. Typically, they in-
volve dual SMAD inhibition to induce a neural ectoderm fate
followed by maturation into a default forebrain cortical neuronal
specification (Picelli et al. 2013). scRNA-seq has proved to be an
excellent tool to characterize the heterogeneity of cultures, but
without access to critical sets of genes, namely TFs, the potential
to reveal mechanistic processes is significantly hampered. The
data obtained from our TF capture highlights the importance of
TF data in understanding cell biology and revealed unexpected
differences in developmental programs arising from an identical
differentiation protocol conducted on the same donor iPSC lines
in two different laboratories. We found that Lab E neurons ex-
pressed TFs involved in the development of cortical excitatory
neurons, whereas Lab D neurons expressed inhibitory interneu-
ron TFs. This was unexpected, because the protocol used does
not include any factors to direct cells to an interneuron fate.
We found that Lab D culture differentiate into a particular type
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of immature interneurons, expressing DLX (DLX2, DLX6, DLX1)
and SP (SP8, SP9, SP4) TFs (Lim et al. 2018). Our results are in
agreement with recent findings that cortical neuron specification
from iPSCs is strongly modified by the fluctuations of factors af-
fecting regional patterning of the brain, including RA levels and
the activity of Wnt signaling pathway (Strano et al. 2020). For ex-
ample, it was shown that insufficiency of Wnt signaling is capa-
ble of switching the culture from the formation of dorsal
excitatory neurons to ventral inhibitory interneurons, particular-
ly to the highly ventralized NKX2-1 type of interneurons (Strano
et al. 2020). We found that Lab D culture differentiations includ-
ed DLX/SP expressing interneurons, which are distinct from
NKX2-1-dependent interneurons (Lim et al. 2018), and may be
less influenced by Wnt signaling (Strano et al. 2020). Other RA-
mediated effects may therefore be more relevant for cell fate
choices in our experiment.

To investigate the potential mechanism underlying the dif-
ferent development trajectories of neurons from different labora-
tories, we used the post-capture-inferred coexpression networks.
We found that the interneuron subnetwork was significantly en-
riched in genes of retinoic acid (RA) signaling (e.g., RORA,
NR1H2, and ZNF423). The RA genes were mainly down-regulated
in these neurons, but highly connected and anti-correlated to the
interneuronal genes (e.g., DLX2 and GAD1), suggesting that in-
terneuronal specialization is related to the suppression of the
RA pathway in Lab D cultures. Reduction in RA signaling was pre-
viously reported to up-regulate key interneuronal TFs of the DLX
family (Wahl et al. 2018). RA is also known to be an important
factor in neuronal differentiation, having complex and concen-
tration-dependent effects (Crandall et al. 2011). A potential ex-
planation for the reduced RA signaling in Lab D compared to
Lab E is differences in culture growth. Our previous work showed
that passage number before differentiation, media volume chang-
es, and other factors contributed to the variability between labo-
ratories, potentially affecting culture growth and differentiation
rates (Volpato et al. 2018). In addition, our pseudotime analysis
suggests that Lab E cells are actively developing, but Lab D cells
are more stable. Therefore, it is possible that faster initial growth
and development of Lab D neurons caused the depletion of RA
and altered cell fates. Overall, our analysis suggests that careful
control of RA concentration during iPSC differentiation into cor-
tical neurons might improve the reproducibility of the differenti-
ation protocol.

To conclude, we showed that targeted TF sequencing,
scCapture-seq, greatly improves the resolution of biological infor-
mation derived from scRNA-seq. scCapture-seq alone can be used
as a cost-effective substitution for standard scRNA-seq, improving
cell type characterization and the analysis of developmental tra-
jectories. We applied scCapture-seq to previously published
data on iPSC-derived neurons and showed that, because of great-
ly improved TF detection, scCapture-seq enabled the identifica-
tion of key developmental TFs driving cellular heterogeneity.
We subsequently showed that combining TF scCapture-seq
with standard, whole-transcriptome scRNA-seq recovered more
comprehensive gene regulatory networks than scRNA-seq alone,
in this case implicating retinoic acid signaling as a key factor in
cellular heterogeneity. Our approach has widespread application,
because correct detection of TF expression in single cells will en-
able improved identification of cell types, trajectories, and GRNs
present during development, physiological or pathological states,
or in response to drug perturbations. ScCapture-seq could also be
adapted to capture other potentially interesting genes using

bespoke oligonucleotide probes. Our approach could be immedi-
ately applied to any existing Smart-seq2 single-cell RNA-seq
library to cost-effectively enhance the biological insights avail-
able with scRNA-seq.

Methods

We resequenced our previous scRNA-seq libraries (Volpato et al.
2018), using targeted sequencing (scCapture-seq) for 972 known
human TFs, as previously described (Curion et al. 2020). Briefly,
the cell cultures were differentiated from human iPSCs derived
from dermal fibroblasts using the dual SMAD inhibition protocol
and collected on day 55 after plating. A potential source of vita-
min A for endogenous RA synthesis in the cells of these cultures
was a media B27 supplement (Volpato et al. 2018). Libraries were
prepared from 376 day 55 neurons (and eight “mini-bulk” sam-
ples) using the Smart-seq2 protocol (Picelli et al. 2013) and
then used for both pre- and post-capture sequencing. Each sam-
ple was spiked with the equivalent of 1 uL of a 1:10,000,000 dilu-
tion of the ERCC RNA Spike-In Mix 1 (Thermo Fisher Scientific).
Libraries were pooled at 384-plex, and each pool was sequenced
on one lane of a HiSeq 4000 (75-base paired end reads). The av-
erage size of post-capture libraries were four times larger than the
size of pre-capture libraries. The cells were from two different lab-
oratories (named D and E in Volpato et al. 2018), and our analysis
confirmed the previous observation of the differences between
the cell populations originating from different laboratories
(batches). Because the cells from different laboratories showed
substantial differences, we did not correct for the batch effect
in our analysis.

TF capture

The oligonucleotide capture probes were designed to target 972
human DNA-binding TF genes (Curion et al. 2020). These
high-confidence TFs were previously chosen based on the Tfcheck-
point database (Chawla et al. 2013; http://tfcheckpoint.org), using
a manually curated list of sequence-specific DNA-binding tran-
scription factors (DbTF). Although the TF capture design could
be extended to include additional recently identified TFs, it is im-
portant to be mindful of the proportion of the transcriptome cap-
tured, because this affects the enrichment. Our previous modeling
of the effect of the capture pool size on enrichment suggested that
the chosen set of approximately 1000 TFs enables successful en-
richment, while targeting a large number of TFs that represents
the biological diversity in human cells (Curion et al. 2020). Probes
were also present for 42 abundant TFs, targeted in part, and 221
control brain-specific genes, which were not used in the present
analysis, as well as sets of synthetic control genes including SIRVs,
Sequins, and a partial set of the ERCC spikes-in, comprising 56 of
the 92 ERCCs. Target regions were trimmed to remove any poten-
tial unwanted overlap with non-target genes, highly expressed
RNA repeats, or pseudogenes. The probe design was previously ful-
ly described (Mercer et al. 2014; Curion et al. 2020). Probe synthe-
sis was performed by Roche NimbleGen. Target capture was
performed as previously described (Curion et al. 2020) using the
protocol from Mercer et al. (2014) with slight modifications.
Briefly, 850 ng of pooled Smart-seq2 libraries were used for capture
hybridization along with Cotl and blocking oligos (xGen NXT
Universal Blockers, IDT). Hybridization was performed for 3
d. Post-capture LMPCR was performed for 12 cycles per the SeqCap
RNA Enrichment System User’s Guide V1.0 (Roche) with KAPA Taq
and Roche post-cap LMPCR primers, except that PCR input was 17
pL of resuspended capture beads. QC of captured libraries was per-
formed by Qubit (Thermo Fisher Scientific) and TapeStation
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(Agilent) to measure post-capture library concentration, yield, and
size distribution. Successful capture enrichment was confirmed by
gPCR (QuantStudio 6, Thermo Fisher Scientific). Libraries were se-
quenced at the Wellcome Trust Centre for Human Genetics
(WTCHG).

scRNA-seq analysis

The scRNA-seq libraries were analyzed similarly to Volpato et al.
(2018), except that we used more recent reference annotations:
hg38.p10 with GENCODE Release 26 annotation. The average
size of pre-capture libraries was 1.5 million read pairs. The contam-
ination with ribosomal rRNA was removed with the Sortmerna
package (Kopylova et al. 2012). The reads were mapped to the
hg38 genome using the STAR aligner (Dobin et al. 2013) as before.
The average proportion of uniquely mapped reads was 59%. Gene
counts for the mapped reads were obtained using the Feature-
Counts function of the Subread package (Liao et al. 2013). For
the analysis we retained only genes expressed with mean counts
>1 and filtered out the low-quality cells, based on pre-capture li-
braries, as before (Volpato et al. 2018). Briefly, we filtered out the
cells expressing fewer than 2000 genes, with an initial library
size less than 0.5 million of mapped read pairs, having low com-
plexity (200 most expressed genes representing more than 50%
of all counts), and cells with low endogenous RNA (ERCC spikes-
in representing more than 14% of all counts). Two hundred seven-
ty-nine cells passed quality control and were used in the analysis.
The proportion of reads assigned to the capture TFs was calculated
as the sum of TF-mapped counts divided by library size. Increasing
the expression threshold for gene expression (e.g., to mean counts
4) preserves the post-capture TF enrichment. Post-capture gene-
wise enrichment was calculated using CPM normalized counts.
For each gene, the enrichment was a ratio between the average
CPMs in the post- and pre-capture libraries, plotted in log, scale
by adding a pseudocount of 1.

Fluidigm ClI microfluidics library capture

To validate scCapture-seq using a different data set, we also cap-
tured our TF panel in 126 out of 191 intestinal stromal cells from
UC patients, which passed the quality control. The scRNA-seq
was made using the Fluidigm C1 microfluidics and Smarter-seq
protocol (Kinchen et al. 2018). TF capture was performed, and
the libraries processed as described above. Post-capture libraries
were sequenced on one lane of a HiSeq 4000 (75-base paired end
reads). The total number of the targeted TFs, which were expressed
with non-zero mean counts, was increased post-capture from 530
to 631 TFs.

NeuroGWAS capture

To validate scCapture-seq on a different capture panel, we per-
formed capture using the previously designed NeuroGWAS (NG)
panel targeting transcripts implicated in neurological diseases
and traits (Curion et al. 2020). The NG capture was performed
on Smart-seq2 libraries from a separate pool of 376 iPSC-derived
cortical neurons compared to the TF capture. Capture hybridiza-
tion and sequencing was performed per the TF cortical neuron cap-
ture. Out of 376 cells, 359 passed the quality control and libraries
were processed as described above. Out of 101 NG genes, 71 genes
were expressed pre-capture, and 87 genes were expressed post-
capture.

Clustering and differential expression analysis

Most of the initial steps of the analysis, including clustering and
differential expression were done in the Seurat version 3 package
(Stuart et al. 2019). Heat maps were based on differential expres-
sion (FDR<0.05) in each cluster against all other cells. Volcano
plots were based on differential expression between the N1 and
N2 neurons or between G cells from Lab D and Lab E. Pre-capture
N1 and N2 neurons were defined as cells of clusters 3 and 4 (N1
group) or cells of cluster 1 (N2 group).

Using unsupervised hierarchical clustering on the expression
profiles, we identified several clusters of cells within the pre- and
post-capture data. To classify these cell clusters accordingly to
cell types, we further compared the cluster DEGs with the cell-
type markers known from the reference data sets. As the reference
data sets, we used three sets of RNA-seq data containing purified
cortical neurons, astrocytes, microglia, endothelial cells, and oligo-
dendrocytes (van de Leemput et al. 2014; Darmanis et al. 2015;
Song et al. 2017). The cell type markers in the Darmanis et al.
(2015) and Song et al. (2017) data sets were determined by
Seurat as being differentially expressed between the cell types in
each data set (FDR <0.05). We also extended the set of neuronal
markers by adding the markers from van de Leemput et al.
(2014) (reported with FDR <0.05), after the removal of genes high-
ly expressed in other cell types, based on Zhang et al. (2014) ex-
pression data (using a twofold cutoff). We combined all targeted
TF markers and used only unique markers for each cell type.
There were in total 131 targeted TF markers present in the reference
data sets, with 53 of them being present among 155 post-capture
DEGs (Supplemental Fig. S2B,E) and 34 of the marker TFs being
present among 129 pre-capture TF DEGs (Supplemental Fig.
S3D). The significance of the identified TF markers in pre- and
post-capture data sets was assessed by comparing the sets of TF
markers in each data set to the sets of the referenced TF markers us-
ing a hypergeometric test (Supplemental Table S3).

Gene regulatory network analysis

The coexpression GRNs were constructed with the bigScale package
using default parameters by retaining only significant correlations
with absolute value of Pearson coefficient > 0.8 (Iacono et al. 2019).
The pre-capture, whole-transcriptome GRN consisted of 4286
nodes (genes) and 18,851 edges/connections between coexpressed
genes. We also built the post-capture imputed GRN by extending
the pre-capture libraries by the expression of 731 capture TFs re-
scaled for the differences in the sizes of pre- and post-capture librar-
ies. The imputed GRN had 6365 nodes and 39,101 edges. For the
plotting, we used only the cluster-specific GRNs, including DEGs
that are up-regulated in >50% of the cluster cells (FDR<0.05).
These were defined as genes differentially expressed among the
pre-capture or imputed GRN genes either against all other clusters
or against another single cluster. In case of differential expression
in several comparisons between different clusters, DEGs were as-
signed to the cluster with the highest fold change. We defined clus-
ter-specific TFs as those that were differentially expressed among
the capture TFs in > 50% of cluster cells. We retained only subnet-
works with three or more nodes. To assess the significance of
GRN enrichment in capture TFs, we used the network enrichment
analysis (NEA) (Alexeyenko et al. 2012), which estimates the level
of connectivity of a gene set (TFs) to the rest of the GRN by gener-
ating permuted networks with preserved degree distribution.

Further GRN analysis (TF PPl and TF targets)

To explore the enrichment of the cluster subnetworks with TF PPIs,
we used the “Transcription factor PP1” database of the Enrichr web
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server (Kuleshov et al. 2016). For this analysis, the cluster subnet-
works were defined as those including the cluster-associated genes
on the plotted GRNs: DEGs and captured TFs with >20% of their
neighbors being the cluster DEGs. We plotted the top TF PPI terms
of targeted TFs, having false discovery rate (FDR)<0.05 for the
imputed GRN (and respective terms in pre-capture GRN). The sig-
nificance of the difference between the number of genes in the
reported pre- and post-capture TF PPIs was assessed with
exact Wilcoxon-signed-rank test. The lists of potential TF targets
were combined from two sources. First, we collected TFs and
their targets from neuron and astrocyte networks (https://github
.com/marbach/genecircuits) (Marbach et al. 2016), in which the
tissue-specific gene regulatory networks had been inferred by com-
bining transcription factor sequence motifs with activity data for
promoters and enhancers from the FANTOMS project. To reduce
the number of potentially false positive targets, we used the inter-
actions with high evidence scores with edge weights>0.1
(Misselbeck et al. 2019). Second, we predicted TF-target links
specific to early stages in neuronal maturation from postmortem
human brains (Colantuoni et al. 2011). We downloaded processed
BrainCloud gene expression data from the NCBI Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) (GSE30272)
and selected 70 samples from fetal to early postnatal stages (<1 yr
old). On these we built coexpression networks with TFs as hub
nodes by using ARACNE (Lachmann et al. 2016) with default pa-
rameters and selected significant TF-target links at P-value<107".
The significance of the enrichment of post-capture GRN in TF tar-
gets was assessed with the Fisher’s exact test using the 2 x 2 contin-
gency table.

Pseudotime analysis

The pseudotime trajectories were estimated with the destiny pack-
age (Angerer et al. 2016) on log,-transformed counts after adding
one count and scaling for the size factor for each library. Cells
were ordered by pseudotime using the Slingshot package, specify-
ing the initial cluster through inspection of TFs differentially ex-
pressed in each cluster with relation to known maturation stages
(Street et al. 2018).

Immunocytochemistry

iPSC-derived cultures were grown on coverslips and fixed in 4%
paraformaldehyde/4% sucrose (w/v) in phosphate-buffered saline
(PBS) solution. Cells were permeabilized in PBS with 0.4% v/v Tri-
ton X-100 for 2 x 7 min at room temperature (RT), then blocked in
PBS with 10% v/v goat serum for 2 h at RT. GAD2 mouse monoclo-
nal primary antibody (Chemicon, MAB351), diluted in PBS with
5% v/v goat serum (1:250), was applied for 2 h at RT. Goat anti-
mouse Alexa Fluor 488 secondary antibody (Life Technologies
A21131), diluted in PBS with 5% v/v goat serum (1:1000), was ap-
plied for 1 h at RT. Coverslips were washed three times for 5 min
with PBS after each antibody application. Coverslips were then in-
cubated with DAPI (Thermo Fisher Scientific; 1:5000 in PBS) for 5
min before being washed in PBS and briefly in dH,O, then mount-
ed using Prolong Diamond Anti-Fade Mounting Solution (Thermo
Fisher Scientific). Images were acquired on an Olympus BX40 Epi-
fluorescence microscope using HCImage imaging software and
processed using ImageJ.

Patch clamp electrophysiology

To record spontaneous synaptic currents, iPSC-derived cultures
grown on coverslips were bathed in a Tyrode’s solution (140 mM
NaCl, 5 mM KCl, 2 mM CaCl, 2 mM MgCl, 10 mM HEPES, 10
mM glucose; pH 7.36, osmolarity 290 mOsm and maintained at

30°C), visualized under an upright microscope (Olympus
BX51WI), and targeted for whole-cell patch clamp recording
with glass pipettes (tip resistance 5-10 MQ) that had been pulled
from standard wall borosilicate capillaries (OD 1.2 mm, ID 0.69
mm with filament; Warner Instruments). Pipettes were filled
with a cesium gluconate solution (140 mM CsGlu, 6 mM NacCl, 1
mM EGTA, 10 mM HEPES, 4 mM MgATP, 0.4 mM NazGTP).
Signals were recorded at 10 kHz using a CVB-7 headstage and
Multiclamp 700B amplifier controlled via Clampex (Molecular
Devices), and subsequently analyzed using Clampfit (Molecular
Devices). Each cell was voltage clamped at the reversal potential
for glutamatergic currents (0 mV) and GABA A receptor-mediated
spontaneous currents were recorded over a period of 4 min.

Data access

All raw and processed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession numbers
GSE157835, GSE168590, and GSE168626 combined into the refer-
ence Series GSE168634.
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