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Abstract: Methodology to access fluorescent 3-amido-1,8-naphthalimides using direct Buchwald–
Hartwig amidation is described. The protocol was successfully used to couple a number of substrates
(including an alkylamide, an arylamide, a lactam and a carbamate) to 3-bromo-1,8-naphthalimide in
good yield. To further exemplify the approach, a set of scriptaid analogues with amide substituents
at the 3-position were prepared. The new compounds were more potent than scriptaid at a number
of histone deacetylase (HDAC) isoforms including HDAC6. Activity was further confirmed in a
whole cell tubulin deacetylation assay where the inhibitors were more active than the established
HDAC6 selective inhibitor Tubastatin. The optical properties of these new, highly active, compounds
make them amenable to cellular imaging studies and theranostic applications.

Keywords: Buchwald–Hartwig; scriptaid; histone deacetylase; HDAC; 1,8-naphthalimide; fluores-
cence; imaging; tubulin deacetylase

1. Introduction

Interest in functionalised 1,8-naphthalimides has primarily focussed on substitution at
the 4-position to generate fluorophores suitable for sensing and imaging applications [1–4].
Examples where sensors have been modified in the 3-position are less common, with
notable examples including those reported by Zhang et al., Guo et al. and Elmes et al.
for the detection of CO2, ClO− and reductive stress, respectively [5–7]. Examples that
incorporate a 3-amido substituent are particularly rare [5,8–10], likely due to the multistep
nature of the synthetic protocols required to access them. We have recently demonstrated
that in the synthesis of 4-amido-1,8-naphthalimides, the usual three-step approach can be
avoided using a Buchwald–Hartwig cross-coupling protocol in which a range of amides as
well as lactams, carbamates and urea can be introduced in a single step [11]. Nicotinamides
were also successfully coupled and the resultant probes shown to act as reversible indicators
of the cellular redox state [12]. This direct coupling approach has not yet been evaluated
for introducing substituents at the 3-position.

The 1,8-naphthalimide core has also been employed in medicinal chemistry [13,14].
Relevant examples (Figure 1) include (i) scriptaid [15] (an inhibitor of histone deacetylases
(HDAC)) and amonafide [16–19] (a DNA intercalator and topoisomerase II inhibitor).
Amonafide is converted in vivo into the bioactive N-acetyl-amonafide.

The HDAC family has become well-studied due to their roles in a number of disease
states [20–22]. Indeed, a number of HDAC inhibitors are FDA-approved for clinical use as
treatments for T-cell lymphoma or myeloma [23–27]. In an effort to mitigate side effects, the
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next generation of HDAC inhibitors have been developed to be selective for specific HDAC
classes or isoforms [28–30]. In this context, HDAC6 (Class IIb) has emerged as a valuable
target as it has a clear role in the progression of a number of cancer types, and, unlike other
isoforms, mouse models in which this isoform has been deleted are viable [31,32].
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Figure 1. Examples of 1,8-naphthalimides in medicinal chemistry.

The entrance to the HDAC6 active site is slightly larger [33,34] than that of the other
isoforms, and therefore a successful strategy for enhancing selectivity for this isoform is
the modification of the pharmacophoric capping group. Amides offer not just a means to
introduce additional size; they present both an H-bond donor and acceptor to maximise
potential interactions with residues at the active site periphery [35–37].

There are currently only three published examples of scriptaid analogues with substi-
tution at the 3-position, and only compound 3 has full HDAC IC50 activity data recorded
(Figure 2) [38–40]. There are no scriptaid analogues with 3-amido substituents described
in the literature. As such, the generation of a small set of 3-amido-substituted scriptaid
analogues presents the opportunity to (i) test the Buchwald–Hartwig amidation method-
ology beyond the 4-position and to (ii) further explore the structure-activity relationship
of functionalised scriptaid analogues. Our own recent work (CF010 and CF011, Figure 2)
has identified that, for the 4-position, relatively small substituents can dramatically influ-
ence isoform selectivity and fluorescence properties [41]. While our efforts have focussed
on modifying scriptaid to develop highly fluorescent anticancer agents, related recent
examples exist for identifying biofilms and detecting influenza [42,43].
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Figure 2. Top: All published examples of 3-substituted scriptaid analogues [38–40], and Bottom:
selected examples of 4-substituted scriptaid analogues from our recent work [41]. No activity data
for 1 and 2 has been published. Selectivity factor (SF) = HDAC1 IC50/HDAC6 IC50.
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Herein we outline the methodology for the direct synthesis of 3-amido-1,8-naphthalimides
and the use of this approach to construct a set of scriptaid analogues. The results of the photo-
physical and biological assessment (IC50 and in cell tubulin acetylation) are also presented.

2. Results and Discussion
2.1. Methodology

To trial the Buchwald–Hartwig amidation methodology, 3-bromo-1,8-naphthalimide 4 was
first required. The treatment of 1,8-naphthalic anhydride with 1.1 equiv. N-bromosuccinimide in
H2SO4 provided the desired brominated compound 4 in >90% purity after trituration with
EtOH [44]. The bromoanhydride was then converted to the corresponding methoxyethyl
imide 5 using microwave irradiation (Scheme 1, see supplementary material for full details).
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Using the reported conditions to introduce amides to the 4-position as a guide [11],
a test reaction was performed in which 3-bromo-1,8-naphthalimide 5 was reacted with
benzamide, Cs2CO3 and G3-xantphos at 100 ◦C (Scheme 1). Monitoring the reaction
progress using thin layer chromatography (TLC) indicated the consumption of the starting
material and the appearance of a new blue spot (using UV visualisation) within 2.5 h,
whereupon the reaction mixture was poured over H2O to provide a yellow solid. The
analysis of the solid using 1H NMR spectroscopy revealed new aryl resonances centred at
8.08 and 7.60 ppm and a new broad singlet at 10.81 ppm that was assigned to the amide
N-H proton. Evaluation using HRMS further confirmed that the desired 3-benzamido-
1,8-naphthalimide 6 had been synthesised. The product was obtained in good yield (84%)
and as such several other substrates—an aliphatic amide (propionamide), a lactam (pyrro-
lidinone) and a carbamate (tert-butyl carbamate)—were also trialled as reaction partners.
These additional reactions also provided the desired 3-substituted 1,8-naphthalimide in
under 3 h and in good yields (61–81%, Scheme 1). The substrates were well tolerated with
yields and reaction times comparable to those observed for the coupling reactions that
used 4-bromo-1,8-naphthalimide [11]. In terms of reactivity, 3-bromo-1,8-naphthalimides
are an excellent, readily accessible substrate for palladium-mediated amidation reactions.

The new compounds showed an absorption maximum and a secondary maximum
(~340 and ~380 nm, respectively, Table 1 and Figure 3) and a single emission (~440 nm,
Table 1 and Figure 3). Consistent with the decreased extent of intramolecular charge
transfer (as compared to the amino substituted examples), the quantum yields for the new
compounds ranged from 0.02 to 0.06 (Table 1). For comparison, the 4-benzamido isomer of
6 has Φf = 0.33 and for the 4-fluorobenzamido Φf = 0.05 [11]. It is our experience that even
with low values the compounds are amenable to imaging applications [45].
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Table 1. Photophysical properties of 3-amido-1,8-naphthalimides in DMSO.

Compound λabs (nm) λem (nm) Stokes Shift (nm) Φf
†

6 344, 385 ‡ 435 91, 50 0.02
7 341, 383 ‡ 439 98, 56 0.04
8 343, 383 ‡ 441 98, 58 0.02
9 345, 367 ‡ 442 97, 75 0.06

† Average of two independent samples. ‡ Secondary absorption maxima.
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2.2. Scriptaid Analogues

The most potent of the previously synthesised 4-amino series were CF010 and CF011
(Figure 2) possessing propyl and benzyl substituents, respectively [41]. As such, two
aromatic and one aliphatic amide were chosen as suitable substituents for the new 3-amido
analogues (KNH019, 020 and 021, respectively, Figure 4).
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Figure 4. Target 3-amido scriptaid analogues.

The strategy reported by Fleming et al. for the construction of 4-substituted scriptaid
analogues was followed here for the synthesis of the 3-substituted relatives [41]. First,
3-bromo-1,8-naphthalic anhydride 4 was transformed into imide 11 in an excellent yield
(96% over two steps, see supplementary material for details). Next, the key Buchwald–
Hartwig reaction was used to introduce the amido-substituent (Scheme 2). For example, in
the synthesis of KNH019 a solution of 3-bromo-1,8-naphthalimide 11, benzamide, Cs2CO3
and G3-xantphos in 1,4-dioxane were heated at 100 ◦C with the reaction progress being
monitored using TLC. Following reaction completion (3.5 h), the desired product 12 was
isolated as a light brown solid (63% yield). The methyl ester was carefully removed
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(1.7 equiv. of LiOH in THF/H2O), and the resultant carboxylic acid 13 was converted to
the desired hydroxamic acid via the mixed anhydride (formed using ethyl chloroformate
and an in-situ treatment with a solution of freshly prepared NH2OH in MeOH). After
24 h, the solvent was removed and the residue was triturated with H2O to provide the
desired hydroxamic acid KNH019 in a good yield (76% over two steps). In the 1H NMR
spectrum, two broad singlets at 10.34 and 8.68 ppm (each integrating for one proton) were
characteristic of the newly installed hydroxamic acid N-H and O-H protons, respectively.
The singlet corresponding to the benzamide N-H proton at 10.85 ppm was also present,
indicating the successful formation of the 3-amido scriptaid analogue.
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Scheme 2. Synthesis of 3-benzamido scriptaid analogue KNH019.

The remaining scriptaid analogues KNH020 and KNH021 were accessed in a good
yield using the same reaction sequence (see supplementary material for full details). As
with the 3-amido-1,8-naphthalimides synthesised at the outset (6–9), the quantum yield of
the new inhibitors ranged from 0.03 to 0.05 (Table 2) with emission at λem ~437 nm.

Table 2. Photophysical properties of 3-amido scriptaid analogues in DMSO.

Compound λabs (nm) λem (nm) Stokes Shift (nm) Φf
†

KNH019 343, 386 ‡ 437 94, 51 0.03
KNH020 343, 374 ‡ 437 94, 63 0.05
KNH021 341, 383 ‡ 435 94, 54 0.04

† Average of two independent samples. ‡ Secondary absorption maxima.

2.3. HDAC Inhibition

The new scriptaid analogues were initially assessed using a single point assay where
enzyme activity is reported as a percentage of full enzyme activity (Table 3). For HDAC
isoforms 1, 3, 8 and 11, a concentration of 10 µM of the inhibitor was used. Against
HDAC6, inhibition was determined using 0.01 µM of the inhibitor. All 3-amido-1,8-
naphthalimide analogues were significantly more effective inhibitors of HDAC6 than the
control compound scriptaid. However, no substantial difference in HDAC6 enzyme activity
was observed between the benzamide, p-methoxybenzamide and propionamide analogues.
Furthermore, when the 3-amido scriptaid analogues were evaluated at the “off-target”
HDAC isoforms (Table 3), considerable activity was noted; again, they were more effective
than scriptaid.
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Table 3. HDAC activity (percentage of full enzyme activity) for 3-amido scriptaid analogues.

Average Enzyme Isoform Activity (%) †

HDAC6: 0.01 µM; HDAC1 3, 8, 11: 1.0 µM

Compound HDAC1 HDAC3 HDAC6 HDAC8 HDAC11

scriptaid 43.2% 43.8% 39.8% 60.3% 78.6%
KNH019 36.3% 24.1% 20.4% 69.3% 67.5%
KNH020 38.7% 17.2% 19.7% 93.4% 58.7%
KNH021 29.8% 20.1% 20.3% 50.4% 90.7%

† Average of two independent measurements, margin of error ±2% (see supplementary material for details).

The IC50 for the three compounds against the same isoform panel was then measured
(Table 4). In agreement with the results of the single point assay, all compounds were
potent inhibitors of HDAC6, with similar IC50 values (ranging from 0.58 nM to 1.0 nM).
Compared to our previously reported 4-amino analogues CF010 and CF011 [41], the new
compounds were more effective inhibitors of HDAC6 (by an order of magnitude) and
compared favourably with the 3-methoxy analogue 3 reported by Ho [39]. Based on
the inhibition of other isoforms, the selectivity of the new compounds was considered
fair to good (ranging from 38 to 150 for HDAC6 over HDAC1); however, when the 3-
substituted series were compared to the previous 4-amino analogues CF010 and CF011 (up
to 566-fold selectivity for HDAC6, Table 4), they were universally less selective. While the
set of compounds produced for this study was not extensive, it would appear that amido
substitution at the 3-position of the 1,8-naphthalimide core leads to a slightly enhanced
activity at all HDAC isoforms to ultimately provide highly potent but only moderately
selective HDAC6 inhibitors.

Table 4. HDAC activity (IC50) and isoform selectivity factor for 3-amido scriptaid analogues.

Isoform IC50 (µM) † and Selectivity Factor (SF) against HDAC6

Compound HDAC1 HDAC3 HDAC6 HDAC8 HDAC11

scriptaid 1.74 ± 0.04
(145)

0.37 ± 0.04
(31) 0.012 ± 0.002 1.52 ± 0.007

(127)
0.36 ± 0.02

(30)

CF010 0.59 ± 0.02
(123)

0.11 ± 0.004
(23) 0.0048 ± 0.0002 1.52 ± 0.08

(317)
0.08 ± 0.03

(16)

CF011 1.98 ± 0.04
(566)

0.36 ± 0.0007
(103) 0.0035 ± 0.0002 2.46 ± 0.11

(703)
0.15 ± 0.02

(43)

KNH019 0.091 ± 0.006
(91)

0.064 ± 0.0002
(64) 0.0010 ± 0.000005 2.95 ± 0.46

(2950)
0.29 ± 0.035

(290)

KNH020 0.087 ± 0.007
(150)

0.027 ± 0.003
(47) 0.00058 ± 0.000002 4.33 ± 0.39

(7466)
0.24 ± 0.011

(413)

KNH021 0.037 ± 0.002
(38)

0.032 ± 0.001
(332) 0.00097 ± 0.00005 0.95 ± 0.05

(981)
2.16 ± 0.14

(2234)
† Average of two independent measurements (see supplementary material for details).

To confirm the observed activities of the selected test compounds against HDAC6,
the acetylation status of tubulin in the human lung cancer cell line A549 was investigated
by immunostaining combined with automated high content image analysis (see supple-
mentary material for full details). In addition to the previously published 4-benzylamino
scriptaid analogue CF011 (HDAC6 IC50 = 3.5 nM, SF = 566, Table 4), the structurally related
3-benzamido scriptaid KNH019 (HDAC 6 IC50 = 1.0 nM, SF = 91) was tested with regards
to dose response and time dependency, where both acetylated tubulin and acetylated his-
tone were detected (Figure 5A–E). Compared to untreated cells, both CF011 and KNH019
rapidly increased tubulin acetylation in a dose-dependent manner by up to ∼1.5-fold from
10−9 mM and 10−6 mM, respectively. In contrast, the reference compound tubastatin only
demonstrated a significantly increased tubulin acetylation from 10−3 mM in the same
test system (Figure 5A). When acetylated histone was detected for both test compounds,
CF011 showed a significant increase from 10−6 mM, while KNH019 only demonstrated
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a significant activity at 10−2 mM. Surprisingly, the reference compound tubastatin in-
creased histone acetylation from 10−3 mM, similar to its activity against tubulin acetylation
(Figure 5A,B). The apparent drop in histone acetylation by both compounds above 10 µM
is indicative of a potential cytotoxicity at higher concentrations (data not shown). Why this
effect did not also manifest as reduced tubulin acetylation is unclear at this point.
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Figure 5. Cell-based assessment of HDAC activity and selectivity. Dose and time-dependency of
tubulin and histone acetylation by test compounds. A549 cells were treated with (A,B) different
concentrations (0–50 µM) of CF011, KNH019 and tubastatin for 24 h or with (C,D) 1 µM over different
time intervals before (A,C) tubulin acetylation or (B,D) histone acetylation were automatically quan-
tified using high content imaging. Data represent the average of four independent experiments with
four replicate wells/experiments. The statistical significances of effects compared to the untreated
control were analysed using Brown–Forsythe and Welch one-way ANOVA analyses using Graph
Pad Prism. The significance was set as * 0.05 > p ≥ 0.01, ** 0.01 > p ≥ 0.002. Error bars represent
the Standard Error of Mean (SEM). (E) Representative fluorescence images show tubulin acetylation
(yellow), histone acetylation (red) and nuclear counterstain (DAPI, blue) after 24 h of exposure to test
compounds. Secondary antibodies were detected using excitation/emission filters for CY3 (excitation:
542/27 nm, emission: 597/45 nm), CY5 (excitation: 632/22 nm, emission: 684/25 nm) and DAPI
(excitation: 390/18 nm, emission: 435/48 nm), respectively.
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In A549 cells, all test and reference compounds rapidly increased tubulin and histone
acetylation within only a few hours (Figure 5C,D). After 4 h, the increases in tubulin acety-
lation reached a plateau that was sustained for up to 24 h (data not shown) (Figure 5C,D).
Representative immunostaining images also demonstrate that both CF011 and KNH019
at 10 µM strongly induce tubulin and histone acetylation. This illustrates that the anti-
bodies used can differentiate between nuclear and cytoplasmic targets and that at this
concentration both compounds therefore do not seem to be HDAC6 selective, which pre-
dominantly resides in the cytoplasm (Figure 5E). Similar results have been generated in
the hepatocarcinoma cell line HepG2 (See supplementary material Figure S24 for details),
which highlights that the observed effects are not cell line-specific but are likely relevant
for other cells and tissues.

Overall, the data clearly indicate that the new compounds retain HDAC6 activity in
cells with a significantly higher potency compared to the reference compound tubastatin.
A broader HDAC activity was confirmed for the test and reference compounds when
measuring both tubulin and histone acetylation, which reflected the residual activity of
isoforms other than HDAC6. The discrepancy between the cell-free and cellular activity
observed in this study was reported for tubastatin before and should be considered when
using tubastatin as a reference compound [46].

3. Conclusions

In summary, the direct amidation of 3-bromo-1,8-naphthalimides was readily achieved
using the Buchwald–Hartwig methodology to give amido, lactam and carbamato products.
The method was used to produce a set of novel fluorescent scriptaid analogues, and, as
identified using direct IC50 measurements and whole cell tubulin deacetylation assays,
the analogues were potent (but less selective) inhibitors of histone deacetylase enzymes.
The fluorescent nature of these compounds makes them well-suited as tools for additional
cell-based studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10061505/s1, Pages S2–S11: Experimental procedures, Figures S1–S16: 1H and 13C
NMR of synthesised compounds, Table S1: Photophysical properties, Figures S17–S24: UV/Vis and
fluorescence data, Figure S24: Cell-based assessment of HDAC activity and selectivity in HepG2 cells.

Author Contributions: Conceptualisation, T.D.A. and F.M.P.; methodology, K.N.H., T.D.A., N.G. and
F.M.P.; investigation, K.N.H., R.A., Z.F. and N.G.; writing—original draft preparation, K.N.H., N.G.
and F.M.P.; writing—review and editing, K.N.H., T.D.A., N.G. and F.M.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data has been presented in this article or associated supplemen-
tary material.

Acknowledgments: The authors would like to acknowledge the assistance of Shane Hickey (University
of South Australia) in the characterisation of new compounds using high-resolution mass spectrometry.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Duke, R.M.; Veale, E.B.; Pfeffer, F.M.; Kruger, P.E.; Gunnlaugsson, T. Colorimetric and Fluorescent Anion Sensors: An Overview

of Recent Developments in the Use of 1,8-Naphthalimide-Based Chemosensors. Chem. Soc. Rev. 2010, 39, 3936–3953. [CrossRef]
2. Ashton, T.D.; Jolliffe, K.A.; Pfeffer, F.M. Luminescent Probes for the Bioimaging of Small Anionic Species in Vitro and in Vivo.

Chem. Soc. Rev. 2015, 44, 4547–4595. [CrossRef] [PubMed]
3. Fleming, C.L.; Nalder, T.D.; Doeven, E.H.; Barrow, C.J.; Pfeffer, F.M.; Ashton, T.D. Synthesis of N-Substituted 4-

Hydroxynaphthalimides Using Palladium-Catalysed Hydroxylation. Dye Pigment. 2016, 126, 118–120. [CrossRef]

https://www.mdpi.com/article/10.3390/cells10061505/s1
https://www.mdpi.com/article/10.3390/cells10061505/s1
http://doi.org/10.1039/b910560n
http://doi.org/10.1039/C4CS00372A
http://www.ncbi.nlm.nih.gov/pubmed/25673509
http://doi.org/10.1016/j.dyepig.2015.11.007


Cells 2021, 10, 1505 9 of 10

4. Nalder, T.D.; Ashton, T.D.; Pfeffer, F.M.; Marshall, S.N.; Barrow, C.J. 4-Hydroxy-N-Propyl-1,8-Naphthalimide Esters: New
Fluorescence-Based Assay for Analysing Lipase and Esterase Activity. Biochimie 2016, 128–129, 127–132. [CrossRef] [PubMed]

5. Zhang, X.; Song, Y.; Liu, M.; Li, H.; Sun, H.; Sun, M.; Yu, H. Visual Sensing of CO2 in Air with a 3-Position Modified Naphthalimide-
Derived Organogelator Based on a Fluoride Ion-Induced Strategy. Dye Pigment. 2019, 160, 799–805. [CrossRef]

6. Guo, T.; Cui, L.; Shen, J.; Wang, R.; Zhu, W.; Xu, Y.; Qian, X. A Dual-Emission and Large Stokes Shift Fluorescence Probe for
Real-Time Discrimination of ROS/RNS and Imaging in Live Cells. Chem. Commun. 2013, 49, 1862–1864. [CrossRef] [PubMed]

7. Ao, X.; Bright, S.A.; Taylor, N.C.; Elmes, R.B.P. 2-Nitroimidazole Based Fluorescent Probes for Nitroreductase; Monitoring
Reductive Stress: In Cellulo. Org. Biomol. Chem. 2017, 15, 6104–6108. [CrossRef]

8. Wang, K.R.; Qian, F.; Wang, X.M.; Tan, G.H.; Rong, R.X.; Cao, Z.R.; Chen, H.; Zhang, P.Z.; Li, X.L. Cytotoxic Activity and DNA
Binding of Naphthalimide Derivatives with Amino Acid and Dichloroacetamide Functionalizations. Chin. Chem. Lett. 2014, 25,
1087–1093. [CrossRef]

9. Xie, L.; Xu, Y.; Wang, F.; Liu, J.; Qian, X.; Cui, J. Synthesis of New Amonafide Analogues via Coupling Reaction and Their
Cytotoxic Evaluation and DNA-Binding Studies. Bioorg. Med. Chem. 2009, 17, 804–810. [CrossRef]

10. Van Quaquebeke, E.; Mahieu, T.; Dumont, P.; Dewelle, J.; Ribaucour, F.; Simon, G.; Sauvage, S.; Gaussin, J.F.; Tuti, J.;
El Yazidi, M.; et al. 2,2,2-Trichloro-N-({2-[2-(Dimethylamino)Ethyl]-1,3-Dioxo-2, 3-Dihydro-1H-Benzo[de]Isoquinolin-5-
Yl}carbamoyl)Acetamide (UNBS3157), a Novel Nonhematotoxic Naphthalimide Derivative with Potent Antitumor Activity. J.
Med. Chem. 2007, 50, 4122–4134. [CrossRef]

11. Hearn, K.N.; Nalder, T.D.; Cox, R.P.; Maynard, H.D.; Bell, T.D.M.; Pfeffer, F.M.; Ashton, T.D. Modular Synthesis of 4-
Aminocarbonyl Substituted 1,8-Naphthalimides and Application in Single Molecule Fluorescence Detection. Chem. Commun.
2017, 53, 12298–12301. [CrossRef] [PubMed]

12. Sharma, H.; Tan, N.K.; Trinh, N.; Yeo, J.H.; New, E.J.; Pfeffer, F.M. A Fluorescent Naphthalimide NADH Mimic for Continuous
and Reversible Sensing of Cellular Redox State. Chem. Commun. 2020, 56, 2240–2243. [CrossRef] [PubMed]

13. Kamal, A.; Bolla, N.R.; Srikanth, P.S.; Srivastava, A.K. Naphthalimide Derivatives with Therapeutic Characteristics: A Patent
Review. Expert Opin. Ther. Pat. 2013, 23, 299–317. [CrossRef] [PubMed]

14. Banerjee, S.; Veale, E.B.; Phelan, C.M.; Murphy, S.A.; Tocci, G.M.; Gillespie, L.J.; Frimannsson, D.O.; Kelly, J.M.; Gunnlaugsson, T.
Recent Advances in the Development of 1,8-Naphthalimide Based DNA Targeting Binders, Anticancer and Fluorescent Cellular
Imaging Agents. Chem. Soc. Rev. 2013, 42, 1601–1618. [CrossRef]

15. Kern, S.E.; Su, G.H.; Sohn, T.A.; Ryu, B. A Novel Histone Deacetylase Inhibitor Identified by High-Throughput Transcriptional
Screening of a Compound Library. Cancer Res. 2000, 60, 3137–3142.

16. Zee-Cheng, R.K.Y.; Cheng, C.C. N-(Aminoalkyl)Imide Antineoplastic Agents. Synthesis and Biological Activity. J. Med. Chem.
1985, 28, 1216–1222. [CrossRef]

17. Tomczyk, M.D.; Walczak, K.Z. 1,8-Naphthalimide Based DNA Intercalators and Anticancer Agents. A Systematic Review from
2007 to 2017. Eur. J. Med. Chem. 2018, 159, 393–422. [CrossRef]

18. Brider, T.; Redko, B.; Grynszpan, F.; Gellerman, G. Three Overlooked Chemical Approaches toward 3-Naphthalimide Amonafide
N-Derivatives. Tetrahedron Lett. 2014, 55, 6675–6679. [CrossRef]

19. Gellerman, G. Recent Developments in the Synthesis and Applications of Anticancer Amonafide Derivatives. A Mini Review.
Lett. Drug Des. Discov. 2016, 13, 47–63. [CrossRef]

20. Bassett, S.A.; Barnett, M.P.G. The Role of Dietary Histone Deacetylases (HDACs) Inhibitors in Health and Disease. Nutrients 2014,
6, 4273–4301. [CrossRef]

21. Kim, H.; Bae, S. Histone Deacetylase Inhibitors: Molecular Mechanisms of Action and Clinical Trials as Anti-Cancer Drugs. Am. J.
Transl. Res. 2011, 3, 166–179.

22. Dokmanovic, M.; Clarke, C.; Marks, P.A. Histone Deacetylase Inhibitors: Overview and Perspectives. Mol. Cancer Res. 2007, 5,
981–989. [CrossRef] [PubMed]

23. Marks, P.A.; Breslow, R. Dimethyl Sulfoxide to Vorinostat: Development of This Histone Deacetylase Inhibitor as an Anticancer
Drug. Nat. Biotechnol. 2007, 25, 84–90. [CrossRef] [PubMed]

24. Ramalingam, S.S.; Belani, C.P.; Ruel, C.; Frankel, P.; Gitlitz, B.; Koczywas, M.; Espinoza-Delgado, I.; Gandara, D. Phase II Study of
Belinostat (PXD101), a Histone Deacetylase Inhibitor, for Second Line Therapy of Advanced Malignant Pleural Mesothelioma. J.
Thorac. Oncol. 2009, 4, 97–101. [CrossRef] [PubMed]

25. Ellis, L.; Pan, Y.; Smyth, G.K.; George, D.J.; McCormack, C.; Williams-Truax, R.; Mita, M.; Beck, J.; Burris, H.; Ryan, G.; et al.
Histone Deacetylase Inhibitor Panobinostat Induces Clinical Responses with Associated Alterations in Gene Expression Profiles
in Cutaneous T-Cell Lymphoma. Clin. Cancer Res. 2008, 14, 4500–4510. [CrossRef] [PubMed]

26. Prince, H.M.; Dickinson, M.; Khot, A. Romidepsin for Cutaneous T-Cell Lymphoma. Future Oncol. 2013, 9, 1819–1827. [CrossRef]
27. Manal, M.; Chandrasekar, M.J.N.; Gomathi Priya, J.; Nanjan, M.J. Inhibitors of Histone Deacetylase as Antitumor Agents: A

Critical Review. Bioorg. Chem. 2016, 67, 18–42. [CrossRef]
28. Bertrand, P.; Roche, J. Inside HDACs with More Selective HDAC Inhibitors. Eur. J. Med. Chem. 2016, 121, 451–483. [CrossRef]
29. Thaler, F.; Mercurio, C. Towards Selective Inhibition of Histone Deacetylase Isoforms: What Has Been Achieved, Where We Are

and What Will Be Next. ChemMedChem 2014, 9, 523–536. [CrossRef]
30. Yang, F.; Zhao, N.; Ge, D.; Chen, Y. Next-Generation of Selective Histone Deacetylase Inhibitors. RSC Adv. 2019, 9, 19571–19583.

[CrossRef]

http://doi.org/10.1016/j.biochi.2016.07.016
http://www.ncbi.nlm.nih.gov/pubmed/27478942
http://doi.org/10.1016/j.dyepig.2018.09.010
http://doi.org/10.1039/c3cc38471c
http://www.ncbi.nlm.nih.gov/pubmed/23361498
http://doi.org/10.1039/C7OB01406F
http://doi.org/10.1016/j.cclet.2014.04.020
http://doi.org/10.1016/j.bmc.2008.11.053
http://doi.org/10.1021/jm070315q
http://doi.org/10.1039/C7CC07922B
http://www.ncbi.nlm.nih.gov/pubmed/29094133
http://doi.org/10.1039/C9CC09748A
http://www.ncbi.nlm.nih.gov/pubmed/31998902
http://doi.org/10.1517/13543776.2013.746313
http://www.ncbi.nlm.nih.gov/pubmed/23369185
http://doi.org/10.1039/c2cs35467e
http://doi.org/10.1021/jm00147a016
http://doi.org/10.1016/j.ejmech.2018.09.055
http://doi.org/10.1016/j.tetlet.2014.10.059
http://doi.org/10.2174/1570180812666150529205049
http://doi.org/10.3390/nu6104273
http://doi.org/10.1158/1541-7786.MCR-07-0324
http://www.ncbi.nlm.nih.gov/pubmed/17951399
http://doi.org/10.1038/nbt1272
http://www.ncbi.nlm.nih.gov/pubmed/17211407
http://doi.org/10.1097/JTO.0b013e318191520c
http://www.ncbi.nlm.nih.gov/pubmed/19096314
http://doi.org/10.1158/1078-0432.CCR-07-4262
http://www.ncbi.nlm.nih.gov/pubmed/18628465
http://doi.org/10.2217/fon.13.220
http://doi.org/10.1016/j.bioorg.2016.05.005
http://doi.org/10.1016/j.ejmech.2016.05.047
http://doi.org/10.1002/cmdc.201300413
http://doi.org/10.1039/C9RA02985K


Cells 2021, 10, 1505 10 of 10

31. Wang, X.X.; Wan, R.Z.; Liu, Z.P. Recent Advances in the Discovery of Potent and Selective HDAC6 Inhibitors. Eur. J. Med. Chem.
2018, 143, 1406–1418. [CrossRef]

32. Witt, O.; Deubzer, H.E.; Milde, T.; Oehme, I. HDAC Family: What Are the Cancer Relevant Targets? Cancer Lett. 2009, 277, 8–21.
[CrossRef]

33. Hai, Y.; Christianson, D.W. Histone Deacetylase 6 Structure and Molecular Basis of Catalysis and Inhibition. Nat. Chem. Biol. 2016,
12, 741–747. [CrossRef] [PubMed]

34. Liu, Y.; Li, L.; Min, J. Structural Biology: HDAC6 Finally Crystal Clear. Nat. Chem. Biol. 2016, 12, 660–661. [CrossRef] [PubMed]
35. Haggarty, S.J.; Koeller, K.M.; Wong, J.C.; Grozinger, C.M.; Schreiber, S.L. Domain-Selective Small-Molecule Inhibitor of Histone

Deacetylase 6 (HDAC6)-Mediated Tubulin Deacetylation. Proc. Natl. Acad. Sci. USA 2003, 100, 4389–4394. [CrossRef]
36. Santo, L.; Hideshima, T.; Kung, A.L.; Tseng, J.C.; Tamang, D.; Yang, M.; Jarpe, M.; Van Duzer, J.H.; Mazitschek, R.; Ogier, W.C.;

et al. Preclinical Activity, Pharmacodynamic, and Pharmacokinetic Properties of a Selective HDAC6 Inhibitor, ACY-1215, in
Combination with Bortezomib in Multiple Myeloma. Blood 2012, 119, 2579–2589. [CrossRef]

37. Kalin, J.H.; Butler, K.V.; Kozikowski, A.P. Creating Zinc Monkey Wrenches in the Treatment of Epigenetic Disorders. Curr. Opin.
Chem. Biol. 2009, 13, 263–271. [CrossRef]

38. Gillet, N.; Vandermeers, F.; de Brogniez, A.; Florins, A.; Nigro, A.; François, C.; Bouzar, A.-B.; Verlaeten, O.; Stern, E.; Lambert,
D.M.; et al. Chemoresistance to Valproate Treatment of Bovine Leukemia Virus-Infected Sheep; Identification of Improved HDAC
Inhibitors. Pathogens 2012, 1, 65–82. [CrossRef]

39. Ho, Y.H.; Wang, K.J.; Hung, P.Y.; Cheng, Y.S.; Liu, J.R.; Fung, S.T.; Liang, P.H.; Chern, J.W.; Yu, C.W. A Highly HDAC6-Selective
Inhibitor Acts as a Fluorescent Probe. Org. Biomol. Chem. 2018, 16, 7820–7832. [CrossRef]

40. Rudebeck, E.E.; Cox, R.P.; Bell, T.D.M.; Acharya, R.; Feng, Z.; Gueven, N.; Ashton, T.D.; Pfeffer, F.M. Mixed Alkoxy/Hydroxy
1,8-Naphthalimides: Expanded Fluorescence Colour Palette and in Vitro Bioactivity. Chem. Commun. 2020, 56, 6866–6869.
[CrossRef] [PubMed]

41. Fleming, C.L.; Natoli, A.; Schreuders, J.; Devlin, M.; Yoganantharajah, P.; Gibert, Y.; Leslie, K.G.; New, E.J.; Ashton, T.D.; Pfeffer,
F.M. Highly Fluorescent and HDAC6 Selective Scriptaid Analogues. Eur. J. Med. Chem. 2019, 162, 321–333. [CrossRef]

42. Dou, W.-T.; Qin, Z.-Y.; Li, J.; Zhou, D.-M.; He, X.-P. Self-Assembled Sialyllactosyl Probes with Aggregation-Enhanced Properties
for Ratiometric Detection and Blocking of Influenza Viruses. Sci. Bull. 2019, 64, 1902–1909. [CrossRef]

43. Sedgwick, A.C.; Yan, K.-C.; Mangel, D.N.; Shang, Y.; Steinbrueck, A.; Han, H.-H.; Brewster, J.T.; Hu, X.-L.; Snelson, D.W.; Lynch,
V.M.; et al. Deferasirox (ExJade): An FDA-Approved AIEgen Platform with Unique Photophysical Properties. J. Am. Chem. Soc.
2021, 143, 1278–1283. [CrossRef] [PubMed]

44. Moseley, J.D.; Moss, W.O.; Welham, M.J.; Ancell, C.L.; Banister, J.; Bowden, S.A.; Norton, G.; Young, M.J. A New Approach to
Rapid Parallel Development of Four Neurokinin Antagonists. Part 2. Synthesis of ZD6021 Cyano Acid. Org. Process Res. Dev.
2003, 7, 58–66. [CrossRef]

45. Fleming, C.L.; Ashton, T.D.; Nowell, C.; Devlin, M.; Natoli, A.; Schreuders, J.; Pfeffer, F.M. A Fluorescent Histone Deacetylase
(HDAC) Inhibitor for Cellular Imaging. Chem. Commun. 2015, 51, 7827–7830. [CrossRef] [PubMed]

46. Choi, Y.J.; Kang, M.H.; Hong, K.; Kim, J.H. Tubastatin A Inhibits HDAC and Sirtuin Activity Rather than Being a HDAC6-Specific
Inhibitor in Mouse Oocytes. Aging 2019, 11, 1759–1777. [CrossRef]

http://doi.org/10.1016/j.ejmech.2017.10.040
http://doi.org/10.1016/j.canlet.2008.08.016
http://doi.org/10.1038/nchembio.2134
http://www.ncbi.nlm.nih.gov/pubmed/27454933
http://doi.org/10.1038/nchembio.2158
http://www.ncbi.nlm.nih.gov/pubmed/27538024
http://doi.org/10.1073/pnas.0430973100
http://doi.org/10.1182/blood-2011-10-387365
http://doi.org/10.1016/j.cbpa.2009.05.007
http://doi.org/10.3390/pathogens1020065
http://doi.org/10.1039/C8OB00966J
http://doi.org/10.1039/D0CC01251C
http://www.ncbi.nlm.nih.gov/pubmed/32432616
http://doi.org/10.1016/j.ejmech.2018.11.020
http://doi.org/10.1016/j.scib.2019.08.020
http://doi.org/10.1021/jacs.0c11641
http://www.ncbi.nlm.nih.gov/pubmed/33428381
http://doi.org/10.1021/op020065h
http://doi.org/10.1039/C5CC02059J
http://www.ncbi.nlm.nih.gov/pubmed/25853994
http://doi.org/10.18632/aging.101867

	Introduction 
	Results and Discussion 
	Methodology 
	Scriptaid Analogues 
	HDAC Inhibition 

	Conclusions 
	References

