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Abstract

Background: Why we sleep is still one of the most perplexing mysteries in biology. Strong evidence indicates
that sleep is necessary for normal brain function and that sleep need is a tightly regulated process. Surprisingly,
molecular mechanisms that determine sleep need are incompletely described. Moreover, very little is known about
transcriptional changes that specifically accompany the accumulation and discharge of sleep need. Several studies
have characterized differential gene expression changes following sleep deprivation. Much less is known, however,
about changes in gene expression during the compensatory response to sleep deprivation (i.e. recovery sleep).

Results: In this study we present a comprehensive analysis of the effects of sleep deprivation and subsequent recovery
sleep on gene expression in the mouse cortex. We used a non-traditional analytical method for normalization of
genome-wide gene expression data, Removal of Unwanted Variation (RUV). RUV improves detection of differential gene
expression following sleep deprivation. We also show that RUV normalization is crucial to the discovery of differentially
expressed genes associated with recovery sleep. Our analysis indicates that the majority of transcripts upregulated by
sleep deprivation require 6 h of recovery sleep to return to baseline levels, while the majority of downregulated
transcripts return to baseline levels within 1–3 h. We also find that transcripts that change rapidly during recovery (i.e.
within 3 h) do so on average with a time constant that is similar to the time constant for the discharge of sleep need.

Conclusions: We demonstrate that proper data normalization is essential to identify changes in gene expression that
are specifically linked to sleep deprivation and recovery sleep. Our results provide the first evidence that recovery sleep
is comprised of two waves of transcriptional regulation that occur at different times and affect functionally distinct
classes of genes.

Keywords: Sleep, Sleep deprivation, Circadian, Microarray, Gene, mRNA, Transcriptomics

* Correspondence: marcos.frank@wsu.edu; lucia.peixoto@wsu.edu
1Washington State University, Elson S. Floyd College of Medicine, Spokane,
WA 99202, USA
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The Author(s) BMC Genomics 2016, 17(Suppl 8):727
DOI 10.1186/s12864-016-3065-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-3065-8&domain=pdf
mailto:marcos.frank@wsu.edu
mailto:lucia.peixoto@wsu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Sleep is thought to be controlled by two processes, 1) a
homeostatic process that determines sleep need (or pres-
sure), and 2) a circadian process that determines the
timing of sleep and wakefulness. A robust index for
sleep need is known as delta power, which refers to
“delta” (1–4 Hz) oscillations in the electroencephalo-
gram (EEG) of non-rapid eye movement (NREM) sleep.
Delta power increases with increased sleep pressure, and
declines following sleep. Therefore, sleep deprivation in-
creases delta power, which then naturally decreases dur-
ing recovery sleep. Previous studies have shown that
EEG delta power is under genetic control [1], suggesting
that specific genes contribute to sleep homeostasis.
Nevertheless, the molecular mechanisms that regulate
sleep need remain incompletely described.
Genome-wide technologies have been used to interro-

gate gene expression changes that follow sleep deprivation
in the mouse brain [2, 3], but there is little agreement be-
tween studies. There are also no genome-wide studies that
characterize transcriptional changes that occur during
subsequent recovery sleep. A major challenge when
analyzing genome-wide data in the brain in response to
behavior is isolating the signal of interest from other fac-
tors (batch effects) that simultaneously influence gene ex-
pression. We have previously shown that batch effects are
widespread in genome-wide studies of gene expression in
experimental neuroscience [4]. Several data normalization
strategies are available to correct these batch effects,
including Removal of Unwanted Variation (RUV). RUV
adjusts for batch effects by performing factor analysis on
control genes or replicate samples [5–7]. We have also
shown that RUV normalization leads to increased power
and reproducibility of results [4]. We now employ RUV to
generate an integrated cross-laboratory analysis of differ-
ential gene expression following sleep deprivation in the
mouse brain. We also provide the first comprehensive
genome-wide assessment of transcripts from mouse
cortex during recovery sleep. Our analysis improves detec-
tion of differentially expressed genes following sleep
deprivation and shows that recovery sleep reverses the
transcriptional changes it causes. This latter process oc-
curs in waves that happen at different times during recov-
ery sleep and affect functionally distinct classes of genes.

Results
We first wanted to obtain a reliable estimate of the
differential gene expression changes caused by sleep
deprivation. To do this, we subjected mice to 5–6 h of
sleep deprivation and different amounts of recovery
sleep. Control mice (left undisturbed in home cages)
were sacrificed at matching circadian times and cortical
mRNA was isolated from experimental and control
groups for microarray analysis (see methods for more

details). We then integrated our data with that from
three other studies performed in mouse cortex, whole
brain and hippocampus [2, 3, 8]. We began with a trad-
itional method of normalization, Robust multi-array
average (RMA) plus quantile normalization [9], to inte-
grate the data. The resulting principal component (PC)
analysis showed that 64 % of the variability was due to
platform (PC 1) while 16 % was due to different labora-
tories (PC 2; Fig. 1a). These results show that traditional
normalization methods are not well suited to integrate
data across laboratories or array platforms. Following
RUV normalization, however, samples group according
to treatment (sleep deprivation versus controls) and not
laboratories, platform (Fig. 1a) or tissue type. We then
evaluated the impact of normalization method in differ-
ential expression analysis. RUV restored the p-value
histogram of differential expression to its expected dis-
tribution (Fig. 1b), increased detection of differentially
expressed genes, and recovered 100 % of positive control
genes known to respond to sleep deprivation (Fig. 1c).
Positive control genes used in our study (see Methods)
are listed in Additional file 1. The list of differentially
expressed genes in response to sleep deprivation regard-
less of tissue for the integrated study is available in
Additional file 2. Our results show that a method as ef-
fective as RUV normalization is required for the proper
characterization of differentially expressed genes across
labs and platforms in meta-analysis studies, as we have
shown for RNA-seq data [4].
We were also interested in determining the effects of re-

covery sleep on sleep deprivation-induced gene expression,
as this has been minimally explored. Separate groups of
mice were sleep-deprived and allowed to recover for 1, 2,
3, and 6 h (RS1, RS2, RS3, and RS6, respectively) to iden-
tify changes in genome-wide expression during recovery
sleep. We again compared the effect of using traditional
normalization (RMA) versus RUV on the characterization
of differential gene expression after sleep deprivation or
varying lengths of recovery sleep. The PC scatterplots re-
vealed a lack of grouping of biological replicates with
RMA, indicative of the presence of confounding factors or
“batch effects” in the data (Fig. 2a). Unlike our previous
analysis (Fig. 1), no obvious grouping attributable to tech-
nical factors was found. Following RUV normalization, the
PCA plots showed the expected segregation of groups
according to treatment (Fig. 2a). The effect of data
normalization is also evident in the analysis of differential
expression. RUV analysis improved the detection of differ-
entially expressed genes following one hour of recovery
sleep (RS1, Fig. 2b), and recovered 86 % of the positive
controls (Fig. 2). Improvement was also seen at all other
time-points (RS2, RS3 and RS6, Additional file 3). These
results show that RUV normalization, or similar method-
ology geared to address batch effects, is necessary for
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accurate detection of differential expression not only across
but also within studies. Genes differentially expressed at all
time points in this study relative to controls can be found
in Additional file 4. It is also known that time of day by it-
self can profoundly impact brain gene expression in the
brain. To address the possible confound of circadian time
in the fold changes observed following RS, we compared
three controls samples to each other, CC0, CC6 and CC11,
which correspond to circadian time ZT= 0, ZT = 6 and
ZT= 11 respectively. The results are available in Additional
file 5 and were taken into account on the interpretation of
gene expression changes brought on by RS.
The discharge of sleep need in mammals is a gradual

process, including events that normalize within the first
3 h (e.g. NREM EEG delta power) and others that may

take 6–12 h to appear (e.g. changes in sleep time) [1, 10].
We therefore plotted the number of significant probesets
altered by sleep deprivation and recovery sleep relative to
their respective circadian time-point controls following
both RMA and RUV normalization (Fig. 3a). Compared to
RMA, RUV analysis greatly improved the detection of sig-
nificant genes for all groups examined. Its impact is more
pronounced on the detection of differential expression
during recovery sleep. Overall, the number of genes up-
regulated outnumbered those that are downregulated at
all time-points.
We then generated a heatmap of differentially expressed

genes detected using RUV normalization relative to circa-
dian time-matched controls (Fig. 3b). The heatmap and
subsequent clustering of gene expression across time-

A B C

Fig. 1 Integrated analysis of the effect of 6 h of sleep deprivation in the murine cortex. a Scatterplots of first two principal components (PC,
log-scaled, centered intensities) following RMA and RUV normalization. Percent variance explained by each PC in parenthesis. Triangles denote
samples from the Maret et al. 2007 study [2] (whole brain), square samples from the Mackiewicz et al. 2007 study [3] (cortex), rhombus the
samples from Vecsey, Peixoto et al. 2012 [8] (hippocampus), and circles are samples from this study (cortex). In green, samples following 6 h of
sleep deprivation (SD); in orange, time of day matched controls (CC). Samples cluster according to array platform (PC1) and lab (PC2) following
Quantile normalization. After applying RUV, samples cluster according to treatment (PC2). b Distribution of unadjusted p-values for tests of
differential expression between SD and CC samples following Quantile and RUV normalization. The distribution of p-values following Quantile
normalization is not uniform and biased towards 1. RUV returns uniformity to the p-value distribution and increases discovery of differentially expressed
genes (genes that have a low p-value). c Volcano plot of differential expression (−log10 p-value vs log fold change) of Quantile and RUV normalized
samples. Genes with an FDR <0.01 are highlighted in blue. Positive controls are circled in red; RUV increases the detection of known differentially
expressed genes from 0 to 100 %. PCA plots were performed using the R/Bioconductor package EDASeq (v. 2.0.0). RUVs normalization was performed
using the R/Bioconductor package RUVSeq (v. 1.0.0). Differential expression analysis was performed using R/Bioconductor package limma
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points revealed different patterns of gene expression rela-
tive to the amount of recovery sleep. We identified seven
clusters of genes based on their expression pattern across
recovery sleep (Additional file 6). These seven clusters can
be grouped into three categories: genes that recover
within 1–3 h (“fast responders”), genes that recover by 6 h
of recovery sleep (“slow responders”), and genes un-
affected by sleep deprivation, but upregulated by the 6th

hour of recovery. Examples of genes belonging to each
category can be found in Fig. 4 and Additional file 6.
The majority of genes upregulated by sleep deprivation

were slow responders, while the majority of genes down-
regulated by sleep deprivation were fast responders (the
exception is a small cluster of 16 genes that includes Cirbp
and Dbp), supporting the pattern observed in Fig. 3a.
Interestingly, a more fine-grained analysis of these results
showed that transcripts known to be upregulated by sleep

deprivation (such as Arc and Homer1) [2, 3] include both
‘slow’ and ‘fast’ responders. Transcripts that recover by 1–
3 h included Arc, Per1, Per2, Egr1, and Egr2, while tran-
scripts that recovered by 6 h included Homer1, BDNF,
Fosb, Hspa5, and Npas2 (Fig. 4). Many of these transcripts
also followed a normal circadian expression pattern, which
are shown independently (Additional file 5). The smaller
set of 46 transcripts upregulated by the 6th hour of recov-
ery sleep (pink cluster, Fig. 3b, Additional file 6) included
transcripts with less clearly defined functions, including
micro RNA and non-coding RNA and transcripts involved
in RNA-binding protein sequestration (Neat1) [11].
The identification of functional properties of differen-

tially expressed genes associated with changes in sleep
need is crucial for understanding mechanisms that regu-
late sleep and sleep function. In order to identify func-
tional classes and pathways that respond to different

A B C

Fig. 2 Analysis of the effect of sleep deprivation and subsequent recovery sleep in the murine cortex. a Scatterplots of first two principal components
(log-scaled, centered counts) following RMA and RUV normalization. Percent variance explained by each PC in parenthesis. Triangles denote samples
collected following sleep deprivation (SD), circles control samples matched by time of day (CC, number indicates ZT time) and squares samples
collected after recovery sleep (RS). Samples only cluster according to treatment after RUV normalization. b Distribution of unadjusted p-values for tests
of differential expression between one hour of recovery sleep (RS1) and control samples following RMA and RUV normalization. RUV increases discovery
of differentially expressed genes (genes that have a low p-value). c Volcano plot of differential expression (−log10 p-value vs log fold change) of RMA
and RUV normalized samples. Genes with an FDR <0.01 are highlighted in blue. Positive controls are circled in red; RUV increases the detection of
known differentially expressed genes following recovery sleep. PCA plots were performed using the R/Bioconductor package EDASeq (v. 2.0.0). RUVs
normalization was performed using the R/Bioconductor package RUVSeq (v. 1.0.0). Differential expression analysis was performed using R/Bioconductor
package limma. The analysis was based only on samples were collected from current laboratory
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amounts of recovery sleep, we performed functional an-
notation analysis of genes upregulated or downregulated
by sleep deprivation within “fast” and “slow” responder
groups. Figure 5 represents clusters of enriched func-
tional terms among the different classes of genes (see
Additional file 7 for details on clustered terms). Genes
downregulated by sleep deprivation were mostly “fast”
responders (N = 310) and were enriched in the following
functional clusters: cell adhesion, protein catabolic
process, Ras GTPase binding, GTP signaling and cell
cycle. In addition the following terms were enriched, al-
though they did not cluster with other similar terms:
transcriptional corepression, alternative splicing, and
neurogenesis (Additional file 7). For genes upregulated
by sleep deprivation, “fast” responders (N = 52) were
enriched in the following functional classes: MAPK
signaling and regulation, GTPase signaling, and tran-
scriptional regulation. The “slow” responders (N = 375)
represented nine different enriched clusters, generally
with lower enrichment scores than the upregulated fast
responders despite the fact that there were substantially
more genes in this group.
We also computed the decay time constant (τd) for

the changes in slow and fast responding transcripts to
see if they approximated the τd for the discharge of sleep
need [10]. As shown in Fig. 4, these varied across func-
tional classes. Interestingly, when we averaged τd across
the different clusters of fast-responder genes the value

was identical to that reported for the discharge of
sleep need in this mouse strain (average τd fast re-
sponder genes: 1.3; τd for discharge of sleep need in
c57/bl6: 1.3 [10]).

Discussion
The molecular determinants of sleep homeostasis are
not well known. Furthermore, transcriptional changes
that track both the accumulation and discharge of sleep
need have not been well characterized. Here, we present
a fully integrated meta-analysis of the effects of sleep
deprivation on mouse brain gene expression, by combin-
ing our data with three other previous studies [2, 3, 8].
We also provide additional evidence for genome-wide
changes in cortical gene expression following various
lengths of subsequent recovery sleep. We report that dis-
covery of gene expression changes linked to either sleep
deprivation or recovery sleep, and not batch effects, re-
quires a non-traditional method of data normalization
(RUV). Therefore, our study more accurately reflects
true biological variance due to changes in sleep need,
and vastly improves both single laboratory and meta-
analysis studies of gene expression previously con-
ducted in the absence of RUV [12].
Our results represent the first genome-wide examin-

ation of differentially expressed cortical genes that in-
cludes the response to sleep deprivation and subsequent
changes across the recovery sleep period. The majority

A B

Fig. 3 The effect of data normalization in differential expression following recovery sleep. a Bar graph displaying the number of up and downregulated
probesets detected at each time point relative to time-of-day matched controls following RMA (light grey) or RUV (dark grey) normalization. RUV
normalization profoundly affects the detection of differentially expressed genes following various lengths of recovery sleep. Positive controls for genes
differentially expressed following 1 h of recovery sleep after were obtained as detailed in Methods. b Heatmap of differentially expressed probesets
detected using RUV normalization relative to circadian time-matched controls. In red, upregulated genes. In green, downregulated genes. Clustering based
on patterns of gene expression is represented by the dendrogram and color coded. Genes responding within 1–3 h to recovery sleep are indicated by
black bars (fast responders), while genes that respond at 6 h are indicated by grey bars (slow responders, grey bar). Genes upregulated by sleep deprivation
show two different patterns of response within the first three hours (red and pink clusters, black bar) and two different patterns of recovery at 6 h (green
and orange clusters, grey bar). The majority of genes upregulated by sleep deprivation respond slowly with recovery sleep. The majority of genes
downregulated are fast responders (mint green, black bar), while a very small proportion recovers within 6 h (lilac, grey bar). SD, sleep deprivation; RS1, sleep
deprivation followed by 1 h of recovery sleep; RS2, sleep deprivation followed by 2 h of recovery sleep; RS3, sleep deprivation followed by 3 h of recovery
sleep; RS6, sleep deprivation followed by 6 h of recovery sleep
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of genes fall into two general classes of transcriptional
changes: transcripts that return to baseline values
quickly (i.e., within the first 3 h: ‘fast responders’) and
transcripts that return to baseline values slowly (by 6 h
of recovery: ‘slow responders’). There was also a small
subset of transcripts not affected by sleep deprivation,
but upregulated in the 6th hour of the recovery period.
Genes that respond “fast” to recovery sleep may consti-
tute the molecular signature underlying the discharge of
sleep need based on electrophysiological studies. This is
because these molecular changes parallel the discharge
of sleep need as measured by changes in NREM EEG
delta power. In mice, 6 h of sleep deprivation produces a
large increase in delta power which then rapidly declines
over the next 3 h of recovery sleep [13, 10]. This pattern
is strikingly similar to the time course we find for the
‘fast’ responder genes.
The majority of fast-responders are transcripts initially

downregulated by sleep deprivation and then upregulated
with recovery sleep. Interestingly we find that these
specific transcripts do not show time-of-day differences
(Additional file 5) suggesting that the biological functions

they serve are more closely tied to sleep homeostasis.
These include genes involved in synthesis and degrad-
ation of proteins. Examples include ubiquitin-specific-
proteases (Usps) and elongation initiation factors (Eifs)
(Fig. 4). These results are consistent with previous stud-
ies [3, 14–16], supporting the idea that one of the im-
mediate effects of recovery sleep is to influence protein
synthesis or turnover. A second class of ‘fast’ responder
genes downregulated by sleep deprivation is involved in
transcriptional repression linked to histone modification.
Histone acetylation and deacetylation modify the structure
of chromosomes and influence access of transcription fac-
tors to DNA. We find that histone deacetylase 9 (Hdac9)
and associated co-repressor Sin3A, together with the GO
term “transcriptional co-repression” are downregulated by
sleep deprivation (Fig. 4, Additional file 7), as previously
shown in the hippocampus [8]. This suggests that part of
the compensatory response is a reactivation of transcrip-
tional repression. This may be part of the restorative
function of sleep; that it re-establishes a basal level of tran-
scription required for normal neural function. While
speculative, it is possible that the cognitive deficits

Fig. 4 Patterns of gene expression regulation during recovery sleep. Plots of log-fold change (logFC) of differential expression relative to controls
versus time since sleep deprivation. Color coding corresponds to clusters on Fig. 3b. Plots for genes representative of different expression patterns
are shown as dashed lines. The ordering of the gene names within genes of the same cluster (same color) reflects the ordering of the plots. The
average and standard deviation for each cluster is shown as solid lines and shaded area. Patterns of expression are divided in two classes: ‘fast’
responders (genes that reach basal values within to 1–3 h of RS) and ‘slow’ responders (genes that reach basal values >3 h). Time constants for
the change during recovery sleep for average of each cluster are shown
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associated with sleep deprivation result from an un-
checked expression of certain transcripts; a situation re-
versed during recovery sleep.
Fast responder genes upregulated by SD include im-

mediate early genes previously identified as ‘induced
by sleep deprivation’ (e.g. Arc, Egr1, Egr2 and Nr4a1
[2, 3, 14, 15, 17] (Fig. 4 and Additional file 5). The
function of immediate early genes is primarily the regula-
tion of transcription, a functional category that is also
enriched in this group. We also find that several of the fast-
responder genes are traditional ‘circadian’ genes (e.g. Arntl,
Dbp, Per1, and Per2 [2]) and show time of day differences
in their expression (Additional file 5). The precise role of
these immediate early and clock genes in sleep homeostasis
is unclear. Deletion of Arntl (BMAL1) in mice alters base-
line sleep architecture, increases NREM EEG delta-power

baseline conditions, and attenuates the homeostatic re-
sponse to sleep deprivation [18]. In addition, Per1 and Per2
brain expression in various inbred mouse strains correlates
with changes in NREM EEG delta-power [19–21], suggest-
ing these genes are tied to the sleep homeostat. However,
Per mutants have a normal response to sleep deprivation as
measured by NREM delta power [22, 23], indicating they
play no central role in sleep homeostasis. Similarly, the ex-
pression of the immediate early gene Homer1A also tracks
sleep need [2], but Homer1A null mice have normal sleep
homeostasis [24]. Therefore it is possible that the regulation
of these particular clock and immediate early genes may
not be as closely linked to sleep homeostasis, as appears to
be the case for other clock genes [18, 20]. Instead, circadian
rhythms or neural activity may play more influential roles
in their expression. This interpretation is consistent with

A

B

Fig. 5 Enriched functional clusters regulated by recovery sleep. a Functional clusters regulated by 1–3 h of recovery sleep. b Functional clusters regulated
by 6 h of recovery sleep. Functional annotation terms from the following databases: Gene Ontology (GO) biological process and molecular function, KEGG
pathways and protein information resource keywords, were clustered based on similarity using the Database for Annotation Visualization and Integrated
Discovery (see Methods). Clusters of functional terms enriched in down- or upregulated gene lists following SD as compared with the genome as a whole
(P value <0.05) are represented as bars. Height of bars represents the enrichment score of each cluster, with the scores of downregulated clusters shown
as negative numbers for visualization purposes. Enrichment score was calculated as− log(10) of the geometric mean p-value among all clustered terms.
Only clusters with enrichment score >1.5 (average p-value of functional terms within the cluster <0.05) were considered. For details of the functional terms
included in these clusters, as well as enriched functional terms that did not cluster with other terms, see Additional file 7
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earlier studies. It has been shown that several immediate
early genes, such as Per1 and Arc, are also upregulated fol-
lowing contextual fear conditioning or object location
memory for example [15, 25, 26].
The slow responding transcripts represented the majority

of all transcripts upregulated by sleep deprivation (Fig. 4).
These included genes previously linked to sleep homeosta-
sis including Homer1, Bdnf and Npas2 [27, 28, 19]. There
appears to be functional overlap between these slow
responding transcripts and fast responding transcripts
downregulated by sleep. GO terms or functional clusters
that overlap include: cell adhesion, neurogenesis, GTP sig-
nalling and splicing (Fig. 5, Additional file 7). Adhesion
molecules (such as Neuroligin 1; Fig. 4, Additional file 3)
are particularly interesting because they may link early
responses to SD (e.g.. clock gene expression) with slower
responses. This is because sleep deprivation induced
changes in Neuroligin1 are dependent on clock transcrip-
tion factors [29]. A much smaller subset (16 genes) was
downregulated by sleep deprivation. The functions of these
genes are not well understood.
Lastly, we identified a small number of genes that were

unaffected by sleep deprivation but were upregulated in
the 6th hour of recovery sleep (pink cluster, Fig. 3b).
The function of many of these genes is also obscure.
One example is the long non-coding RNA Neat1. Neat1
is retained in the nucleus where it forms the core struc-
tural component of the paraspeckle sub-organelle lo-
cated within the eukaryotic nucleus [11]. Neat1 has been
shown to regulate transcription via protein sequestration
within paraspeckles [30]. Paraspeckles are believed to
function as a reservoir of mRNA that are released into
the cytoplasm under certain conditions (e.g. cellular
stress) and/or provide a means of RNA sequestration.
The reason for this delayed expression of transcripts is
unclear. In mice, 6 h SD not only increases NREM delta
power in the first three hours of recovery sleep, but also
leads to a delayed ‘rebound’ in REM sleep time that can
occur at or after 6 h [1]. Therefore, it is possible that the
expression of this small subset of transcripts is driven by
REM sleep [1, 30, 31].
While our study represents a significant improvement

over previous studies that set out to identify transcripts
associated with sleep homeostasis, there are some limita-
tions. For example, our current methods do not allow
for the identification of spatial resolution of specific cor-
tical layers, or regional differences between frontal and
parietal cortices. Further, the cell-type specificity for the
changes in expression identified in our study is not char-
acterized. In addition, it is difficult to differentiate which
gene expression changes are responding to sleep pres-
sure from those that are responding to stress hormones
[32]. Future studies using improved techniques, such as
the use of TRAP technology [33, 34] will be necessary to

identify cell-type specific changes in transcripts associ-
ated with sleep homeostasis.

Conclusions
This is the first study where RUV normalization has
been used to compare multiple genome-wide data sets
following sleep deprivation. We also used this approach
to examine transcriptional changes during the recovery
sleep period. We show that RUV vastly improves the
meta-analysis of data generated in different laboratories
and reveal novel changes in transcription during recov-
ery sleep. We find that sleep produces two waves of
transcription during recovery sleep. Some changes occur
rapidly, others more slowly across six hours of sleep.
The fast responding transcripts may represent the mo-
lecular components of sleep homeostasis as they change
with a time constant that is remarkably similar to the
time constant for the discharge of sleep need. Further
characterization of these genes may reveal sleep function
and the biological basis for sleep need.

Methods
Subjects
C57BL/6 J adult male mice (2 months of age) were ob-
tained from Jackson laboratories and housed individually
for a week in an experimental room on a 12 h./12 h.
light/dark schedule with lights on at 7:30 am (Zeitgeber
time (ZT) 0). Food and water were available ad libitum
throughout the experiment. All experiments were
approved by the Institution of Animal Care and Use
Committee of the University of Pennsylvania and were
carried out in accordance with all National Institutes of
Health guidelines.
To examine gene expression in the mouse brain cortex

after 5–6 h of sleep deprivation and subsequent recovery
sleep we generated a dataset of 96 microarrays (see
below). Groups of mice were either sleep deprived or
sleep deprived and allowed recovery sleep for 1, 2, 3, or
6 h. Matching control (CC) animals were left undis-
turbed but sacrificed at the same time of day. Sleep
deprivation was achieved by brushing the mice with a
soft brush to keep them active. We did not surgically
implant EEG electrodes to quantitatively measure sleep.
This was done, as true for earlier studies [2, 3], to pre-
vent changes in gene expression that might occur as a
result of the surgery. However, analyses of animals im-
planted with EEG electrodes undergoing the same pro-
cedures shows that sleep deprivation procedures similar
to ours is effective at maintaining wakefulness in a var-
iety of mouse strains (including c57/bl6) [10, 35]. In
addition, when given an opportunity to sleep, mice
spend most of the subsequent 6 h period in sleep [10].
The experimental protocol was repeated daily, to obtain
one animal per time point per experimental day, to
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gather 6–7 mice per experimental group. We also per-
formed a meta-analysis using data from three previously
published studies that tested the effect of 6 h of sleep
deprivation in the mouse cortex, hippocampus and
whole brain [2, 3, 8].

Microarrays
Cortical dissections were performed by a single experi-
menter, and tissue was rapidly dissected and immersed
in chilled RNAlater (Qiagen), kept overnight at 4 °C,
then frozen at −80 °C. RNA extraction was performed
using the miRNeasy kit (Qiagen). Biotinylated sense-
strand cDNA were prepared from 300 ng total RNA at
the UPENN molecular profiling core using the Affyme-
trix WT Plus Kit. Single stranded cDNA was hybridized
to a Mouse Gene 2.1 ST 96-Array Plate using GeneTitan
Hybridization, Wash and Stain Kit for WT Array Plates.
The array plate was washed and stained in the GeneTi-
tan multi-channel instrument. Gene 1.1 ST Array Plates
were scanned using the GeneTitan® Multi-channel
Instrument.

Cross-study data integration
Data from GSE9444 [2], GSE6514 [3] and GSE50423 [8]
were obtained using the R/Bioconductor package GEO-
query (v. 2.36.0). Data generated in this study are pub-
licly available through GEO (GSE78215). To allow for
cross-platform comparison, Affymetrix probeset IDs
were mapped to ENSEMBL gene Ids using the R/Bio-
conductor package biomaRt (v. 2.26.1). Probesets or
ENSEMBL genes that showed multiple mappings were
excluded from the cross-platform analysis only. Probe-
sets that showed a log expression value > 4 in >50 % of
the samples were included.

Normalization and statistical analysis
We have previously shown that Removal of Unwanted
Variation (RUV) [5] is a normalization method that is
able to properly correct for batch effects in experimental
neuroscience data obtained through RNA sequencing
[4]. Any difference between biological replicates can be
attributed to unwanted effects. The RUV method ex-
ploits the fact that genes that should not be changing in
a biological system (negative controls) or differences be-
tween replicates, carry in their observed levels patterns
of unwanted variation that can be used to adjust for un-
wanted effects. In this study, we used log-transformed
RMA normalized data as input to RUVSeq, a Biocon-
ductor package originally designed to perform RUV ana-
lysis on RNA sequencing data [5]. The advantage of
doing so is the ease of integration with future or cur-
rently available RNA-seq studies, since RNA-seq is now
the standard for the quantification of genome-wide gene
expression. We compared the results of differential

expression analysis of data normalized using RUV based
on replicate samples with data normalized using RMA
with Quantile normalization [9], the most commonly
used method for microarray data. RUV using negative
control samples was used to remove k factors of un-
wanted variation before statistical testing was performed.
The choice of a proper k was determined as previously
described [4], resulting in k = 5 for the meta-analysis of
sleep deprivation (Fig. 1) and k = 6 for the recovery sleep
analysis (Fig. 2). Differential expression analysis was per-
formed using R/Bioconductor package limma (v. 3.26.8)
comparing the sleep deprivation and recovery sleep sam-
ples to time matched circadian controls (SD vs. CC6,
RS1 vs. CC7, RS2vs CC8, RS3 vs. CC8, RS6 vs. CC11).
Comparisons between controls CC0, CC6 and CC1 were
used to determine circadian changes in expression.
Multiple testing corrections were performed using the
method of Benjamini and Hochberg [36]. A cutoff of
false discovery rate (FDR) <0.01 was used to assess sig-
nificance. To evaluate performance, we assembled sets
of independently validated positive control genes that
are known to respond to 6 h of sleep deprivation or 2 h
of recovery sleep (see Additional file 1 for details). RUV
normalization was performed using the R/Bioconductor
package RUVSeq (v. 1.0.0). Differential expression ana-
lysis was performed using R/Bioconductor package
limma (v. 3.26.8).
Estimation of time constants of gene expression

changes in response to recovery sleep. Non-linear re-
gression analysis was used to quantify relationships be-
tween duration of recovery sleep and gene expression
for each cluster. Non-linear least squares implemented
in the R package stats (v. 3.3.0) was utilized to estimate
parameters by assuming that gene expression varies
according to an exponential function following sleep
deprivation [10]:

logFCt ¼ LA þ logFC0– LA
� �

⋅e ‐t=τdð Þ:

logFC0 and logFCt are the mean logFC at the end of the
sleep deprivation period and at time t respectively. τd is
the time constant of the decreasing exponential function
that approaches a lower asymptote, LA, approximated as
the minimum mean logFC for each cluster. Starting τd
values were estimated by visual examination of plots and
optimized over subsequent iterations.

Graphical displays
PCA plots were performed using the R/Bioconductor
package EDASeq (v. 2.0.0). The heatmap was prepared
using the R package gplots (v. 2.17.0) with modifications
to the row dendrogram using the R package dendextend
(v. 1.1.8). All other figures were generated using R base
graphics and Microsoft Excel.
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Functional enrichment analysis
Affymetrix probeset ID’s were mapped to MGI symbol
and ensemble gene ID’s for downstream analysis using the
R/Bioconductor package mogene21sttranscriptcluster.db
(v. 8.4.0). Functional annotation was based on ENSEMBL
Gene IDs and performed using the database for annota-
tion, visualization and integrated discovery v 6.7 (DAVID,
https://david.ncifcrf.gov). The following functional cat-
egories were used: GO Biological Process and Molecular
Function, KEGG pathways and Protein Information
Resource keywords. Enrichment cutoff relative to back-
ground = EASE score <0.05. All genes present in the array
were used as background for enrichment. Clustering was
used to reduce complexity. Clustering parameters: similar-
ity threshold 0.2, group membership 2.

Additional files
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Additional file 2: The impact of data integration on the detection of
differential expression following sleep deprivation (SD). Differentially
expressed genes detected, integrating all studies (Fig. 1). (XLSX 98 kb)

Additional file 3: Impact of RUV on differential expression. A) Top left.
Distribution of unadjusted limma p-values for tests of differential
expression between SD and CC samples following RMA and RUV
normalization. RUV increases discovery of differentially expressed genes
(genes that have a low p-value). Bottom. Volcano plot of differential
expression (−log10 p-value vs log fold change) of Quantile and RUV
normalized samples. Genes with and FDR <0.01 are highlighted in blue.
Positive controls are circled in red. B) Top right. Distribution of
unadjusted limma p-values for tests of differential expression between
RS2 and CC samples following RMA and RUV normalization. RUV
increases discovery of differentially expressed genes (genes that have a
low p-value). Bottom. Volcano plot of differential expression (−log10
p-value vs log fold change) of Quantile and RUV normalized samples.
Genes with and FDR <0.01 are highlighted in blue. Positive controls are
circled in red. C) Bottom left. Distribution of unadjusted limma p-values
for tests of differential expression between RS3 and CC samples following
RMA and RUV normalization. RUV increases discovery of differentially
expressed genes (genes that have a low p-value). Bottom. Volcano plot of
differential expression (−log10 p-value vs log fold change) of Quantile
and RUV normalized samples. Genes with and FDR <0.01 are highlighted
in blue. Positive controls are circled in red. D) Bottom right. Distribution
of unadjusted limma p-values for tests of differential expression between
RS6 and CC samples following RMA and RUV normalization. RUV
increases discovery of differentially expressed genes (genes that have a
low p-value). Bottom. Volcano plot of differential expression (−log10
p-value vs log fold change) of Quantile and RUV normalized samples.
Genes with and FDR <0.01 are highlighted in blue. Positive controls are
circled in red. (PDF 6414 kb)

Additional file 4: Differential expression after sleep deprivation and all
time point of recovery sleep following RUV normalization. (XLSX 179 kb)

Additional file 5: Differential expression due to circadian time following
RUV normalization. (XLSX 58 kb)

Additional file 6: Clusters of differentially expressed genes as defined
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