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Abstract

Calling fusion genes from RNA-seq data is well established, but other transcriptional
variants are difficult to detect using existing approaches. To identify all types of
variants in transcriptomes we developed MINTIE, an integrated pipeline for RNA-seq
data. We take a reference-free approach, combining de novo assembly of transcripts
with differential expression analysis to identify up-regulated novel variants in a case
sample. We compare MINTIE with eight other approaches, detecting > 85% of
variants while no other method is able to achieve this. We posit that MINTIE will be
able to identify new disease variants across a range of disease types.

Introduction
Rearrangements of the genome can disrupt or modify gene function and have been im-

plicated as the causal event in disease. In cancer, somatic genomic rearrangements are

common and can alter the genomic landscape to drive oncogenesis and cancer pro-

gression [1–3]. Whole genome sequencing (WGS) has successfully been used to detect

structural variants (SVs) and profile their frequency in cancers [4] and rare diseases [5,

6]. However, clinically relevant variants can occur alongside benign events, making pri-

oritisation of important events difficult. This is especially true in cancers with genomic

instability.

Transcriptome profiling has been used to interpret the functional impact of genomic

variants through alterations in gene expression, transcript sequence, or both [7]. Some

rearrangements that alter gene structure may be more effectively detected from RNA

sequencing (RNA-seq). In particular, numerous computational approaches have been

developed to reliably call fusion genes [8, 9]. Similarly, several methods now exist to

detect novel gene splicing [10–12], and the utilisation of RNA-seq to detect and inter-

pret splicing variants has been shown to improve diagnostic yields in rare Mendelian

disorders [13, 14].
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While there are many methods to detect fusion genes and novel splice variants

(NSVs) from RNA-seq, transcribed structural variants (TSVs) involving a single gene,

such as deletions, inversions, internal tandem duplications (ITDs) and partial tandem

duplications (PTDs) are difficult to detect, and only a handful of tools have been devel-

oped [15–18]. However, these variant types can be clinically important, for example,

IKZF1 deletions in acute lymphoblastic leukaemia [19], FLT3 internal tandem duplica-

tions (ITDs) and MLL partial tandem duplications (PTDs) in acute myeloid leukaemia

[15–17, 20]. The prevalence of TSVs in disease is not yet known, but small SVs (<

100kbp) that could give rise to TSVs are frequently seen in WGS [4, 21]. In addition,

fusion-finding tools are likely to miss non-canonical fusions, which we define as a fu-

sion transcript that includes non-reference sequence (i.e. outside of the expected tran-

scriptome) at the fusion boundary or a fusion product created between a gene and an

intergenic region.

Fusion finding tools typically use discordant or split read detection approaches,

where reads are first mapped to either a reference genome [22, 23] or transcrip-

tome [24, 25], then discordant reads are detected and a set of filtering steps are

performed. While mapping information from genome alignments can be used to

detect non-canonical fusions and other TSVs, most fusion finding tools do not

consider these variants. However, some exceptions exist; Arriba [26] is a method

that utilises chimeric reads from STAR’s alignments to detect fusions, including

non-canonical fusions, as well as PTDs. Similarly, CICERO [18] utilises chimeric

read information and combines this with local assembly to detect canonical and

non-canonical fusions, as well as ITDs. SQUID [16], which is a method based on

the idea of rearranging the reference genome using concordant and discordant

reads, can detect non-canonical fusions and some TSVs. This approach has also

been extended to handle heterogeneous (i.e. multi-allelic) contexts [27]. These ap-

proaches rely heavily on the reference genome and generally have limitations in de-

tecting small variants (< 100 bp) such as INDELs and ITDs. These methods are

biased towards detecting certain classes of variants.

An alternative to detecting variants from read alignment is to use de novo assembly.

This approach attempts to reconstruct a sample’s transcriptome, and then aligns the as-

sembly back to the reference genome to identify variants. Assembly can reconstruct

transcripts containing variants of all types and sizes, which avoids potential biases

caused by alignment to the reference genome. KisSplice [11] is an example of a refer-

ence free method focused on splice variants. It calls splice variants based on bubble-

detection within the assembly De Bruijn graph. De novo assembly approaches typically

generate many transcripts, many of which will be misassemblies, leading to a potentially

large false positive rate. Additionally, these methods are generally slower to run due to

the computational requirements of de novo assembly. One strategy to reduce false posi-

tives and improve speed is to only consider a specific list of target genes, a strategy

employed by TAP [15]. Another approach, used by DE-kupl [28], is to perform differ-

ential expression of k-mers against a set of control samples. DE-kupl performs k-mer

counting, filtering, DE and then extends the resulting DE k-mers into contigs. However,

DE-kupl reports a very large number of variants (in the order of 100,000) [28], which

makes interpretation and prioritisation difficult, particularly as the tool does not pro-

vide variant type information. Another limitation of the DE-kupl approach is that it
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compares two groups, each with multiple samples, and is therefore not designed for de-

tecting variants in a single sample.

Reference independent assembly combined with differential expression against con-

trols, as introduced by DE-kupl, is a powerful strategy for the unbiased detection of

transcribed variants. Here we propose an alternative approach, called MINTIE, which

can detect any kind of anomalous insertion/deletion (≥ 7 bp by default) or splicing

(flanked by ≥ 20 bp by default) in any gene. MINTIE is an RNA-seq analysis pipeline

that combines the advantages of full de novo assembly with differential expression to

identify unique variants in a case sample versus a set of controls. MINTIE’s pipeline in-

cludes further steps to filter, annotate and prioritise variants, which reduces transcrip-

tional noise and aids in variant discovery.

We tested MINTIE on a simulation of 1500 variants including fusions, TSVs and

NSVs and showed that it is highly sensitive across many different variant types.

We compared the performance to eight other methods and found that MINTIE

was the only one able to consistently detect all classes of variants we simulated at

high recall rates (> 85% of total variant transcripts). In addition, we ran MINTIE

on RNA-seq samples from acute myeloid leukaemia (AML) and normal blood,

where we confirmed its sensitivity in detecting FLT3-ITDs, KMT2A-PTDs and fu-

sions on real data. Normal (non-cancer) samples were used to assess the back-

ground rate of variants. In these samples, MINTIE reported a median of 122 genes

per sample containing transcriptional variants, demonstrating a low background

rate.

We used MINTIE to discover several interesting alterations in known driver or

tumour suppressor genes in a cohort of paediatric acute lymphoblastic leukaemia

(ALLs) from the Royal Children’s Hospital, Melbourne. We found a recurrent non-

canonical fusion involving RB1 with downstream intergenic regions of the genome. We

also identified novel splicing of ETV6, and PTDs of IKZF1 and PAX5. Finally, we dem-

onstrate that MINTIE is able to detect novel splice variants identified in a prior study

in a rare disease cohort. In addition, we discovered a previously missed complex re-

arrangement in the disease-causing DMD gene in a patient with muscular dystrophy

from this cohort.

Results
Algorithm overview

MINTIE is an approach for detecting novel transcribed variants that utilises de novo

assembled transcripts, which are then prioritised for novelty using differential expres-

sion. The MINTIE pipeline (Fig. 1) is divided into four main steps: transcriptome as-

sembly of the case sample, pseudo-alignment of the reads from the case and controls

to an index composed of the assembled and reference transcripts, differential expres-

sion to identify upregulated novel features, and annotation of novel transcripts. One

case sample is required as input. The pipeline is always run in a ‘single case versus N

controls’ fashion (although multiple cases versus the same control set can be run in

parallel, each case is run in a 1 vs. N controls fashion). Ideally, controls should be sam-

ples of the same tissue type but do not have to be normals or matched normals. While

we recommend running MINTIE with controls, in some cases, this may not be feasible,
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and thus, the method can also be run without controls, with the caveat that more back-

ground variants are likely to be identified.

Conceptually, the idea of MINTIE is to perform whole-transcriptome de novo assem-

bly, remove features consistent with reference transcripts, and then perform differential

expression on non-reference features versus a set of controls. Significantly over-

expressed assembled transcripts are aligned to the genome and variants are identified.

The novelty of this approach is that we use differential expression testing to select as-

sembled transcripts that contain highly expressed novel sequence. Therefore, we avoid

using alignment to a reference genome to define novel sequence. Instead, we identify

novel sequence by testing gene expression on equivalence classes that are unique to the

assembly.

In more detail, once a de novo assembly of a case sample is obtained, by default using

SOAPdenovo-Trans [29], the assembled transcripts are merged with a standard tran-

scriptome reference (we use CHESS v2.2 [28] by default), and a Salmon [30] index is

created for this file. Salmon is then run on the case and N controls. Salmon equivalence

class (EC) counts are matched across all samples. ECs represent the set of transcripts

that a given read is equally compatible with, and have been used previously as a basis

for differential expression [31], differential isoform usage [32], as well as fusion detec-

tion [33]. MINTIE retains EC counts that are compatible with de novo assembled

Fig. 1 The MINTIE pipeline uses one case sample and N controls and consists of four steps: (i) de novo
assembly is performed on the case sample; (ii) assembled transcripts, along with all reference transcripts, are
quantified using pseudo-alignment of reads for both case and controls; (iii) differential expression is
performed between the case versus controls for equivalence classes that are identified as originating from
assembled transcripts only, which contain novel sequence (i.e. we do not consider quantifications
consistent with the reference); and (iv) annotation is performed on assembled transcripts that are
overexpressed in the case sample
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transcripts only (no reference transcripts), and all other EC counts are discarded. This

step identifies novel ECs where there is no compatible match to an existing reference

transcript, as ECs containing reference transcripts are assumed to be consistent with

the reference, and therefore uninteresting. The expression of these novel transcript ECs

are then compared by performing differential expression testing between 1 case and N

controls with edgeR [34]. This step is required to remove common but unannotated

transcripts, as well as to remove erroneous assemblies where there is no discernable ex-

pression. Significant ECs (false discovery rate, FDR < 0.05 and log 2 fold change, logFC

> 2 by default) are then retained, after which the transcripts corresponding to these

ECs are extracted and aligned to the genome. MINTIE then performs annotation, filter-

ing, and estimates variant allele frequency for each given variant. See the “Methods”

section for more detail.

MINTIE detects more types of variants than other tools

In order to test the utility of MINTIE across a wide range of variant types, we simu-

lated 1500 variants by inserting, deleting, combining or duplicating sequences from 100

randomly selected hg38 UCSC RefSeq [30] transcripts. We then generated reads from

this modified reference using ART-Illumina [31] v2.5.8. Fifteen different classes of vari-

ant were simulated (Fig. 2): 500 fusions (100 each of canonical fusions, unpartnered

Fig. 2 Examples of variant types detected by MINTIE. (NTS = non-templated sequence). a Canonical fusions.
Typically defined as a transcriptional product of two genes, joined at exon-exon boundaries. b Non-
canonical fusions. Fusions that join exon-boundaries to non-gene regions, as well as fusions without a
second gene partner. c Transcribed structural variants (TSVs). May include internal tandem duplications
(ITDs), partial tandem duplications (PTDs), inversions, deletions and insertions. d Novel splice variants (NSVs).
Includes extended exons, novel exons, retained introns, truncated exons and skipped exons
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fusions, and fusions with extended exons, novel exons and insertions at their fusion

boundaries), 500 transcribed structural variants (TSVs) (100 each of deletions, inser-

tions, ITDs, PTDs and inversions), 500 novel splice variants (NSVs) (100 each of ex-

tended, novel and truncated exons, retained introns and unannotated splice variants)

and 100 unmodified background genes (see the “Methods” section). Variants were sim-

ulated at 50x coverage in a heterozygous fashion (i.e. both modified and unmodified

transcripts were simulated for the variant sample, resulting in 100x total gene coverage:

50x variant coverage and 50x wild-type coverage). We also generated a control sample

by simulating reads over wild-type (unmodified) transcripts at 100x for all transcripts

used in the variant sample.

We ran MINTIE and eight other variant detection methods (TAP [15], Barnacle [17],

SQUID [16], JAFFA [24], Arriba [26], CICERO [18], KissSplice [11] and StringTie [12]

on the reads generated from the simulated variants. Although DE-kupl is conceptually

similar to MINTIE, we were not able to test its performance because it cannot be run

on a single case sample. Due to the large number of tools, each with their own output

formats that had to be individually processed, we utilised a liberal approach to counting

variant calls as true positives (calling a variant in a gene at either end of a fusion was

counted as a hit and variant classifications were not considered; this is detailed in the

“Methods” section). MINTIE was run with control samples generated from the same

transcripts without the variants (see the “Methods” section).

MINTIE detected 86.8% of fusions, 90.6% of TSVs and 79% of NSVs (Fig. 3A). MIN-

TIE had its lowest recall on unknown splice variants (skipped exons) (63%) and trun-

cated exons (64%). Manual inspection revealed that missed cases were mostly due to

the variant not being assembled or insufficient read coverage. Assembly issues could

potentially be improved with another assembler. Insufficient read coverage particularly

affected some deletion variants that were near the end or start of the variant transcript

and thus less likely to have adequate read support. To assess the impact of read cover-

age, we downsampled the simulated reads to three coverage values: 20x, 10x and 5x.

Only a modest drop in performance was observed (Additional file 1: Fig. S1A). Even at

5x, MINTIE found most simulated variants (769 of 1500). We also found that MINTIE

retained high detection rates across all sizes of variants, even below the default inser-

tion/deletion threshold size of ≥ 7 bp and down to 1 bp, apart from single base-pair de-

letions (Additional file 1: Fig. S2).

While MINTIE had lower sensitivity when compared to specialised tools for novel

splice variant detection (StringTie and KisSplice), our method was able to find the most

total variants (86.2%), while no other tool came close to this. CICERO has been re-

ported to have high sensitivity for ITD detection [18]; however, it only identified 3

ITDs in our simulated data set. CICERO ranks ITDs by whether the gene is known for

recurrent ITDs. We did not simulate ITDs in such genes and hypothesise that this is

the reason they were missed. These ITDs were reported (93%) in CICERO’s unfil-

tered output (Additional file 1: Fig. S3); however, the unfiltered output also in-

cluded many false positives (596 in total). Given that only 100 unmodified (wild-

type) transcripts were simulated, we expected minimal false positives to be identi-

fied. No false positive calls were identified for SQUID and Arriba. JAFFA reported

six false positive fusion genes (across five calls, all at low confidence). CICERO,

TAP, MINTIE, StringTie and Barnacle called 6, 9, 11, 13 and 21 false positives
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respectively, while KisSplice had the highest number at 27. StringTie, TAP and

Barnacle reported calls in background genes (those simulated without any variants)

with 1, 2 and 3 hits respectively. MINTIE, KisSplice and JAFFA did not report any

false positive calls in background genes. All other reported false positives were out-

side of simulated gene regions. Manual inspection of MINTIE’s false positives

Fig. 3 A Recall and false positives for 1,500 simulated variants for tools listed. Fusions were considered
detected if either (or both) fusion partner(s) were present. B Comparison of simulated variant categories
and MINTIE’s classifications for variants found in the simulated genes (left), and whether MINTIE’s
classification call is consistent with the simulation (right). The ‘unknown’ classification refers to soft-clip
variants, which could indicate several types. MINTIE may call multiple variants per event (e.g. fusion + novel
exon), so some categories have more than 100 events
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revealed that these calls were largely due to poor alignment to homologous se-

quences (for example, to a pseudogene of the variant gene).

To aid with variant interpretation and prioritisation, MINTIE outputs classifications

for the type of transcribed variant found: fusion, intra-genic rearrangement, deletion,

insertion, novel/extended exon, novel exon junction and retained intron. We explored

the classification accuracy of MINTIE’s results using the simulation. Figure 3B shows

that the variant types MINTIE assigned to variants called within the simulated genes

are mostly correct (86.5%) across the 15 categories.

MINTIE identifies known fusions and ITDs in Leucegene samples

In order to demonstrate the sensitivity of MINTIE in real samples, we applied MINTIE

to a set of 77 AML samples with known fusions, internal tandem duplications and par-

tial tandem duplications (Additional file 1: Note S1). This included the NUP98-NSD1

fusions that were validated from Lavallée et al. [35] (N = 7). We also tested MINTIE on

samples containing CBFB-MYH11 fusions, RUNX1-RUNX1T1 fusions and FLT3-ITDs

known to be in the core binding factor (CBF) AML data [27], as well as a cohort con-

taining KMT2A-PTDs [32], identified by Audemard et al. [33]. Although we bench-

marked just five variants across three variant types, which represents a small subset of

the types of events MINTIE can detect, it enabled MINTIE’s sensitivity to be confirmed

using well known and validated events. The Leucegene data was also used to explore

the impact of control choice, read coverage in real data and rate of background events.

In all these analyses, we used 13 normal Leucegene samples as controls (5 granulo-

cytes, 5 monocytes and 3 total white blood cells). In the AML data sets, a median of

592 variant genes were reported per sample (range 261–2265). MINTIE detected 50/53

total fusions (Fig. 4A); manual inspection revealed that two CBFB-MYH11 fusions were

missed due to low expression and one NUP98-NSD1 fusion was not assembled. Add-

itionally, all FLT3-ITDs were detected in the CBF and NUP98-NSD1 cohorts (default

parameters needed to be adjusted for one patient sample in order to detect a small 3 bp

FLT3-ITD). MINTIE was able to find 16/24 KMT2A-PTDs in the samples identified by

Audemard et al. [33] when using normal samples as controls and 19/24 when using no

controls (Additional file 1: Table S1). Some of the variants that were successfully de-

tected (using normals as controls) had estimated expressed variant allele frequencies

(VAFs) down to 0.0580 (median 0.2220, max 0.7127), suggesting that only a small

amount of the total gene expression needs to come from the variant isoform for detec-

tion. The variants that were missed had low coverage (< 17 reads). Of the 8 missed vari-

ants, 6 were due to insufficient assembly and 2 were filtered out by the counts per

million (CPM) filter due to low counts in their respective ECs.

We also analysed these Leucegene samples with three selected state-of-the-art

methods, which are designed for these variant types: Arriba (a representative fusion

finder), SQUID (a representative large TSV caller) and TAP (a general-purpose caller).

Arriba found all fusions and KMT2A-PTDs but missed more than half the FLT3-ITDs

(Fig. 4A). Squid performed similarly to MINTIE, finding 49/53 fusions and 15/24

KMT2A-PTDs, but failed to identify any of the FLT3-ITDs. This highlights how

current tools designed to detect larger rearrangements such as fusions and PTD may

be insensitive to smaller events such as ITDs. TAP was able to detect all events
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(Fig. 4A). However, due to difficulties in installing and running TAP, detection rates

were taken from their publication [15], and results from only one KMT2A-PTD sample

were available. These results show that MINTIE has sensitivity within the range of

existing state-of-the-art tools designed specifically for detecting these known, well

Fig. 4 A Summary of true positive variants detected by MINTIE, Arriba, Squid and TAP in Leucegene AML
samples. Red line shows the total variants present in the category (only results from one sample were
available for TAP from the KMT2A cohort). *The remaining 3 bp FLT3-ITD could be detected by changing
MINTIE’s minimum gap size parameter to 3. B The number of genes with variants found per sample across
the 23 non-cancer cell types from Leucegene. Each bar represents a different sample within the cell type.
Samples are ordered by the total number of genes with detected variants. C Mean number of genes with
variants called in Leucegene granulocyte samples where different numbers of (granulocyte sample) controls
were used. ‘Error’ bars show minimum and maximum variant genes called across replicate experiments,
reflecting different combinations of controls. N = 4 has one combination of controls, N = 3 has two, N = 2
has three and N = 1 has four
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defined variants. The validation cohort incorporates only three of the 15 variant types

from our simulation study and the PTDs and ITDs were focused on a single gene in

each case (KMT2A and FLT3 respectively). Thus, they represent only a fraction of

MINTIE’s utility. Nevertheless, these results are consistent with our simulation and

suggest that MINTIE is likely to have good sensitivity over a range of events.

MINTIE detects a low number of background variants

We applied MINTIE to a set of 23 non-cancer healthy adult sorted blood cell samples

obtained from Leucegene [34]. We expected these samples to have low numbers of

transcriptional variants compared to cancer samples and thus provide an estimate to

the background rate of detected variants found by MINTIE. This set was composed of

several cell types: T cells (N = 5), B cells (N = 5), granulocytes (N = 5), monocytes (N =

5) and total white blood cells (N = 3). Each sample was run with MINTIE using all

other samples of the same cell type as controls.

Figure 4B shows the total number of genes containing transcriptional variants identi-

fied across the non-cancer samples. In general, MINTIE had a low background variant

rate, with a median of 122 affected genes across samples (range 61–1397). We identi-

fied 19,893 expressed genes across the non-cancer samples (> 1 CPM in at least one

sample); thus, the range translates to a median of 0.6% of expressed genes identified as

containing variants. 83.3% of the 2363 identified variant genes were protein coding

(compared to 74.39% of expressed genes that were protein coding). 56.2% of variants

were classified as novel splicing variants and may represent true variation in the sam-

ples. The number of variants called was variable between samples, even within samples

of the same cell type. We found only a weak correlation between library size and num-

ber of transcriptional variants detected (spearman correlation coefficient = 0.2105). A

moderate fraction of variants (23.3%) were of unknown type and may be due to poor

alignment of the de novo assembled transcripts to the genome. We note that one B cell

sample contained the largest number of variant calls (1710 variants). Upon manual in-

spection, we noted that 1259 of these variants were clustered in a 1MB region at the

end of the long arm of chromosome 14 containing immunoglobulin genes, likely indi-

cating that these genes, which are commonly rearranged, were highly expressed in this

sample.

Well-matched controls reduce the number of background variants

We found that using correctly matched controls was important for filtering out the

normal range of transcriptional diversity in each sample. We compared the number of

variant genes observed in normal total white blood cells (TWBCs) when using different

controls: the same cell type (TWBCs), as well as granulocytes, monocytes, T cells and B

cells. Using the other TWBCs as controls resulted in the fewest number of variant

genes found across all three samples (N = 412), followed by monocytes (N = 715) and

granulocytes (N = 763) (Additional file 1: Fig. S4). This corresponds with the expression

similarity (Additional file 1: Fig. S5). B cells and T cells cluster together in gene expres-

sion, distinct from TWBCs, and using them as controls identified the most variant

genes at 1564 and 1630 respectively. These results confirm that comparing against
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controls of similar expression profiles combined with enough control samples resulted

in fewer total number of variants found.

To further explore the effect of control number and similarity on MINTIE’s variant

calls, we performed an experiment using 1–4 controls in different combinations using

the Leucegene granulocyte samples. We observed fewer variant genes called as the

number of controls were increased (Fig. 4C). One sample (SRX372052) displayed not-

ably higher variability in variant genes called, compared to other samples, when using

1–3 controls. On inspection of expression similarity through a PCA plot (not shown),

the sample was revealed to cluster more closely with two samples than the others.

When the less similar samples were randomly chosen as controls, variant numbers

were significantly higher. These results suggest that using more controls reduces the

number of background variants called and confirms that sample similarity will impact

the number of variants called.

We also ran the cohort of 24 Leucegene AML samples containing KMT2A-PTDs

against three different sets of controls: (i) 13 normal (non-cancer) controls (5 granulo-

cytes, 5 monocytes and 3 total white blood cells), (ii) a reduced set of 3 normal controls

containing one sample from each cell type, (iii) a set of 13 AML samples from a differ-

ent cohort and (iv) no controls. MINTIE was able to detect 19/24 variants using no

controls, 16/24 variants using the normal controls, 15/24 variants using the reduced

normal set and 11/24 variants using AML controls (Additional file 1: Table S1). The

lower detection rate versus other cancers was due to high read counts in the controls

for the ECs corresponding to the KMT2A variant. While there was no evidence of

KMT2A rearrangements in the control samples used, some of the assembled contigs

contained other, more common variants in the same EC (such as an extra A insertion

in a small A repeat region proximal to the breakpoint), and thus were not found to be

significant at the DE step. Differences were observed in total variants found using dif-

ferent control sets (Additional file 1: Fig. S6), with a median of 645.5 variant genes

(range 264–2265) found per sample for the 13 normal controls compared to 913 me-

dian variant genes (range 490–2552) for the reduced set of 3 non-cancer control sam-

ples and a median of 211.5 variant genes (range 130–2852) found when using the 13

AML controls. Using no controls yielded significantly higher variant numbers (range

4750–11796, median 9255.5), indicating that using even small numbers of controls acts

as an effective filtering strategy. If we assume most variants are background events, un-

related to cancer, this suggests that using samples with well-matched transcriptomes as

controls reduces the number of detected background variants.

MINTIE identifies novel transcriptomic variants in B-ALL

In order to test MINTIE’s ability to discover previously undetected events, we applied

MINTIE to a set of 91 samples across a cohort of 87 paediatric B-ALL patients from

the Royal Children’s Hospital, Melbourne Australia [36]. As the control group, we used

a subset of 34 samples from the cohort with already known driver fusions, identified by

molecular testing, and validated in the RNA-seq with fusion calling (Additional file 1:

Note S2). A median of 48 variant genes was found per sample (range 15–633, Add-

itional file 1: Fig. S7). We filtered on variants found in 379 recurrently altered genes

(not considering immunoglobulin genes) in over 2500 paediatric cancer samples
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reported in two landscape papers [37, 38] and found 339 variants across 131 of these

genes. The top recurrent genes were ETV6 (26 variants across 8 samples), IKZF1 (14

variants across 7 samples) and IKZF2 (13 variants across 3 samples) (Additional file 1:

Fig. S8).

One sample contained an in-frame, single-exon tandem duplication in IKZF1.

In-frame deletions of IKZF1 are recurrent in paediatric ALL and associated with

poor prognosis [19]. They are believed to act in a dominant negative manner and

we hypothesise that this might also be the case for the IKZF1-PTD we detected.

We also found one sample with an in-frame tandem duplication of 4 exons in

PAX5, which correlates with previously reported amplification of PAX5 exons in

paediatric ALL [39]. A subtype of B-ALL is defined by PAX5 alterations, with a

range of diverse variant types across patients (fusions, amplifications and muta-

tions) [40].

In addition, we found three samples with exon skipping and cryptic exons of

ETV6 (Fig. 5A). In one sample, case 1, we observed a unique alternative splicing

event between exons 2–5, resulting in lowered expression of intervening exons, in-

dicating a potential deletion. Exon skipping due to an intragenic deletion in EVT6

has previously been reported in paediatric ALL [41]. Karyotyping of the sample in-

dicated a complex rearrangement of ETV6, but no fusion involving ETV6 was

found. The same exon skipping event was observed in a single TCGA Lung Squa-

mous Cell Carcinoma sample, found with SeqOthello [42]. In the other two B-ALL

samples, case 2, which were from diagnosis and relapse of the same patient, we ob-

served two novel ETV6 isoforms: splicing between exons 2–8 and splicing between

exon 5 and two downstream novel intergenic exons. Expression of exons 6 and 7

was absent.

A B-ALL subtype classifier based on gene expression (https://github.com/Oshlack/

ALLSorts v0.1) was run on the four diagnosis samples harbouring ETV6 splicing,

IKZF1-PTD and PAX5-PTD variants. All samples were found to have a strong

probability of belonging to their respective class, ETV6-RUNX1-like, IKZF1 N159Y and

PAX5alt (data not shown), suggesting these events may be drivers.

MINTIE also detected an unpartnered recurrent fusion involving the tumour sup-

pressor gene RB1 from the end of exon 17 to an intergenic region approximately

165 kb downstream (Fig. 5B) in three other samples. In all three samples, two

splice variants of the fusion were seen, which involved different novel downstream

exons (Additional file 1: Table S2). Read coverage dropout suggested a 188 kb gen-

omic deletion involving the 3′ end of RB1 in one sample; however, this was not

clear in the two other samples. RB1 focal deletions have been reported in both B-

ALL and T-ALL [38] from DNA-based assays, supporting this hypothesis. We fur-

ther expanded our search for this variant by querying TCGA using SeqOthello

[42]. One of the fusion splice variants involving RB1’s exon 17 and the same

downstream intergenic region was detected in two other samples, a breast invasive

carcinoma and an oesophageal carcinoma. MINTIE successfully detected the vari-

ant in both samples when we obtained the RNA-seq data and processed it through

the pipeline, using 3 normal controls from TGA. These results suggest that focal

RB1 deletions occur in multiple cancer types, and form a stable transcript that can

be detected from RNA-seq alone using MINTIE.
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MINTIE identifies novel splicing and transcribed structural variants in rare disease

To demonstrate the utility of MINTIE in rare disease, we analysed RNA sequencing data

from patients with rare muscle disorders from Cummings et al. [14]. In the study, diagnosis

was made by identifying altered transcripts using RNA-seq in pathogenic genes with an

identified variant of unknown significance. From this data set, there were 10 patients that

had RNA-seq available with 13 splicing variants that could potentially be detected by our

method. We used 10 muscle RNA-seq samples from GTEx [43] as controls and ran MIN-

TIE transcriptome wide using RNA-seq alone without knowledge of which genes had DNA

mutations. MINTIE identified the correct novel splice variants for 9/13 events (Table 1).

Fig. 5 Examples of novel variants detected in a cohort of paediatric B-ALL patient samples. A Two cases
with altered splicing of EVT6, and B three cases with RB1 unpartnered fusions. Shown for each case in top
to bottom order is the read coverage, novel assembled transcript and splicing across the variant. Novel
splice junctions are coloured with their corresponding number of supporting reads. There are two acceptor
sites (right side) for the RB1 variant, approximately 3.5 kb apart, that correspond to alternative splice
variants; the donor site (left side) is always the same. For comparison, a representative control sample is
shown (bottom) with corresponding expressed reference transcripts
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Two variants were filtered out due to low expression (exon skipping in POMGNT1

and exon truncation in TTN), while an exon skipping event in TTN which was only

supported by 2 junction reads, failed to be assembled. A transcript harbouring the

DMD skipped exon in patient C3 was not found to be significant in the DE step, as a

sizable number of reads supporting the variant transcript were found in the controls.

Manual inspection revealed that the assembled transcript for this DMD case contained

two variants, one being the target variant (the skipped exon), and a secondary variant

(a homozygous SNP). The secondary variant was not in the reference transcriptome

but was found in 9/10 controls. Cases such as this are rare but represent one potential

weakness of an EC-based method, whereby multiple variants assembled into the same

transcript cannot be resolved at the EC-level.

Patient samples C2 and C4 were identified with large-scale inversions in the DMD

gene using DNA sequencing that manifested as lower exonic coverage across regions of

the gene. Cummings et al. did not report an exon skipping RNA-seq feature, and thus,

we could not check specific boundaries in the RNA-seq. However, MINTIE did find

novel transcriptomic variants in DMD in both samples. Running BLAT [44] on these

soft-clip sequences revealed that they aligned on the opposite strand to the gene se-

quence, supporting an inversion variant. This is an example where MINTIE can pro-

vide insight into DNA-level structural variants solely from the RNA-seq.

We also investigated whether MINTIE could detect any variants of interest that

were missed by the Cummings et al. study. Prioritising the same set of NMD

Table 1 List of variants detectable by MINTIE from Cummings et al. [14] rare muscle disease data

Patient Gene Junction 1 Junction 2 DNA variant RNA
variant

Detected
variant

E2 NEB chr2:151687733-
151690727

SNP Skipped
exon

Y

NEB chr2:151687733-
151688175

SNP Extended
exon

Y

NEB chr2:151687733-
151688007

SNP Extended
exon

Y

C9 NEB chr2:151531896-
151533330

SNP Extended
exon

Y

N25 NEB chr2:151498352-
151498491

SNP Novel exon Y

N31 COL6A1 chr21:45989778-
45989894

chr21:45989965-
45990258

SNP Novel exon Y

N32 COL6A1 chr21:45989778-
45989894

chr21:45989965-
45990258

SNP Novel exon Y

C11 RYR1 chr19:38467720-
38468966

SNP Truncated
exon

Y

C1 POMGNT1 chr1:46194651-
46195811

SNP Skipped
exon

N (low CPM)

POMGNT1 chr1:46189357-
46189458

SNP Retained
intron

Y

E4 TTN chr2:178580609-
178581906

chr2:151498552-
151499298

INDEL Skipped
exon

N (not
assembled)

N22 TTN chr2:178777317-
178777460

SNP Truncated
exon

N (low CPM)

C3 DMD chrX:31729748-
31819975

Inversion-
deletion

Skipped
exon

N (EC not
significant)

Cmero et al. Genome Biology          (2021) 22:296 Page 14 of 26



candidate genes as the study’s authors, and stringent filtering on MINTIE’s out-

puts, together with manual validation (see the “Methods” section), we identified

five variants: four deletions and a fusion across eight patients (Additional file 1:

Table S3). All deletions were found to be rare UTR variants found in the general

population (< 5% MAF), of which, two were reported in ClinVar (DMD’s 3′ UTR

deletion and VAPB’s 3′ UTR deletion) as variants of unknown clinical significance.

The VAPB mutation was reported to be associated with Spinal Muscular Atrophy

(ClinVar Submission Accession SCV000434613). Most interestingly, we identified a

fusion transcript in DMD in a patient where exome sequencing suggested that

DMD was a strong candidate gene [14]; however, no corresponding RNA variant

was found in the study. The unpartnered fusion joined the end of exon 43 of

DMD on the X chromosome to an intergenic region on chromosome 8 with two

cryptic exons (Fig. 6). Upon manual inspection, we noted 10 split-reads with three

different soft-clip sequences at the exon 43 boundary; of these, 5 sequences corre-

sponded to the breakpoint on chromosome 8, matching the assembly as expected.

However, two other sequences were found to correspond to regions 650 bp up-

stream (2 split-reads) and 70 kb downstream (3 split-reads), suggesting multiple po-

tential fusion transcripts. We confirmed the presence of this rearrangement with

the original authors through private correspondence, who independently discovered

it using whole genome sequencing and recently reported it in Waddell et al. [45].

Computational Performance

Computer resources are often seen as a limitation to the application of de novo as-

sembly in variant detection. In MINTIE, we used SOAPdenovo-Trans as the default

assembler due to its computational efficiency compared to other assemblers. MIN-

TIE also leverages pseudo-alignment to minimise compute times. To benchmark

performance, we selected three samples (containing the minimum, median and

maximum variants called) from the Leucegene KMT2A-PTD cohort and ran MIN-

TIE against the set of 13 controls previously described (Table 2). Tests were run

on a server with 32 cores and 190 GB of available memory with MINTIE’s bpipe

Fig. 6 Unpartnered DMD fusion found in a rare disease sample (CE = cryptic exon). MINTIE’s assembled
transcript indicated a fusion boundary at DMD’s exon 43 to an intergenic region in chromosome 8
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pipeline concurrency limited to 32. The variant numbers also corresponded with

the number of read pairs, ranging from 67 million to 113 million. Compute times

were between 3 h and 24 min and 7 h and 4 min, where the run time scaled with

the number of reads. Maximum memory usage did not appear to be significantly

correlated with the read number, as all samples were between roughly 90–100 GB

max memory usage (we note that some samples may utilise > 190 GB memory, pri-

marily due to the assembly step). The first three steps, dedupe, trim and assemble

steps account for approximately over half the run time and most of the memory

usage. For instance, in one sample, these stages took 4 h and 4 min and used, at

maximum, 102.64GB of memory. The rest of the pipeline finished in 3 h and used

at maximum 16.95 GB of memory. These benchmarking results demonstrate that

MINTIE’s utility is not hindered by computational considerations, and many sam-

ples can be processed on a medium sized server in a reasonable time frame.

Discussion
Here, we present the MINTIE pipeline, a caller for detecting a broad range of tran-

scribed variants ≥ 7 bp in size. MINTIE excels at detecting unusual and rare upregu-

lated variants. MINTIE frames variant calling as a problem of detecting sample specific

expression of transcripts with novel sequence, without relying on read alignment to the

reference genome. MINTIE achieves this by performing de novo assembly to recon-

struct all transcripts expressed in a sample. It then leverages the unique approach of

using equivalence class counts to reliably detect differential expression of unannotated

sequence compared to a set of controls. Once novel transcripts are identified, MINTIE

performs several steps to filter out transcripts found in the reference annotation and fi-

nally annotates the remaining variants into subtypes.

We demonstrated MINTIE’s ability to find a diverse range of fusions, structural and

splice transcriptomic variants by simulating 1500 variants, where MINTIE achieved >

86% recall. We further benchmarked fusion callers, transcribed structural variant callers

and splice assemblers and found that MINTIE detected the full range of simulated vari-

ant types, while the other methods could not. We validated the ability of MINTIE to

detect fusions and duplications in a set of validated AML cancer samples. Even for fu-

sion finding, where many reliable methods exist, MINTIE’s sensitivity was comparable.

We propose that MINTIE could serve as either a first-pass scanner that is able to de-

tect a large range of variants including fusions or as a transcriptome-wide discovery

tool for rare variants if nothing is found using conventional fusion finders.

Using the Leucegene data, we showed that using several well-matched controls are

important for reducing the number of background variants. For many cases, other

Table 2 Compute times for three selected samples from the Leucegene KMT2A-PTD cohort,
including the sample with the least variants called, the median, and the most. Reads were 100 bp
and samples were run against 13 AML controls on a server with 32 cores and 190 GB of available
memory

Sample Variants Read pairs Time Max mem (GB)

08H012 128 (min) 67,789,336 3 h 24 min 101.47

07H155 214 (median) 98,946,255 6 h 42 min 89.85

10H007 2093 (max) 113,017,564 7 h 04 min 102.64
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disease samples with similar expression profiles can be used as controls. In this in-

stance, we advise using samples with known driver variants, so that the unique variants

to be detected are unlikely to be present in the controls. Identical variants that are

present in the set of controls will limit detection sensitivity in the case sample.

MINTIE has the potential to discover a wide range of important events that have

thus far evaded detection due to the limitation of conventional analysis approaches. We

demonstrated this by running MINTIE on a cohort of 87 B-ALL samples, where we

found interesting events in disease relevant genes, including 3 samples with the same

RB1 unpartnered fusion, IKZF1 and PAX5 PTDs, and 2 samples with altered splicing of

ETV6. On rare disease samples, we showed that MINTIE could detect novel splice vari-

ants and, importantly, was able to discover diagnostically relevant genomic rearrange-

ments from RNA-seq alone.

It is important to consider some of the limitations of MINTIE. The methodology

has been optimised to detect many variant types and thus some specialised ap-

proaches geared at detecting fewer variant types outperform MINTIE in accuracy

and runtime. MINTIE also requires sufficient expression of the variant relative to

the controls. A further consideration is that MINTIE is, to some extent, reliant on

appropriate control samples. MINTIE is a method based on RNA sequencing and

can only identify structural rearrangements that affect transcribed regions. Simi-

larly, lowly expressed genes or variants that knock out the expression of a gene

will be difficult to detect. Finally, MINTIE utilises de novo transcriptome assembly

to reconstruct transcript sequences. While this has the advantage of allowing com-

plex variants to be detected, the run-time and RAM requirements are generally

higher than many of the alignment-based approaches and the shortcomings of this

approach also affect the method, such as difficulty with repetitive regions. We

chose an assembler with good performance while minimising compute time.

Slower, more computationally intensive assemblers may reconstruct more accurate

transcripts. Although we have not benchmarked the effects of different transcript

assemblers, MINTIE allows an assembled transcriptome from any source to be

passed to the program bypassing default assembly by SOAPdenovo-Trans. Looking

forward, long read transcriptome sequencing technology is readily being adopted

and MINTIE could be used with polished long read data in tandem with short

reads, avoiding the disadvantages of assembly.

Here, we have presented a novel, fast, transcriptome-wide approach for detecting

rare, transcribed variants, and have demonstrated the use of the tool through simu-

lations, real cancer and non-cancer samples and have demonstrated the detection

of several alterations, some of which are clinically relevant. We propose that MIN-

TIE will be used to identify novel drivers and loss-of-function variants in cancer

and in rare diseases. Unlike existing methods, which are targeted at specific types

of rearrangements or splicing, or specific genes, MINTIE is more agnostic to vari-

ant type. We have tested MINTIE on several types of variants, but there are poten-

tially many other types which MINTIE could detect, for example, retrotransposon

insertions into genes or complex events involving multiple rearrangements, which

could be generated by chromoplexy or chromothripsis. Little is known about the

frequency or characteristics of transcribed variants, but we now have a method to

uncover and study them.
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Methods
Pipeline detail

De novo assembly

RNA-seq reads of the case sample are de-duplicated using fastuniq [46] v1.1 and

trimmed using Trimmomatic [47] v0.39 and then de novo assembled using

SOAPdenovo-Trans [30] v1.03 with k-mers of 29, 49 and 69 (by default). (Optionally,

Trinity [48] or rna-SPAdes [49] may be used for assembly, or the user may provide

their own assembly.) The different k-mer assemblies are merged, sequences are dedu-

plicated and assembled transcripts longer than 150 bp (by default) are retained.

Quantification

All assembled transcripts are merged with the CHESS [50] v2.2 transcriptome reference

sequence, which is then indexed by Salmon [51] v0.14. Salmon is then run on this

index for the case and control samples in single-end mode (otherwise short assembled

transcripts may not be correctly counted). Sequence bias is corrected (--seqBias),

equivalence class (EC) counts are extracted (--dumpEq), mapping validation (--validate-

Mappings) and hard filtering (--hardFilter) are enabled.

Differential expression

ECs are matched between all samples by membership (i.e. an EC composed of tran-

scripts A, B and C in sample 1 is given an identifier, and will be considered the same

EC as one composed of the same transcripts in sample 2). Library sizes are calculated

prior to any filtering. ECs containing only assembled transcripts (i.e. the EC does not

contain any transcripts from the reference) are kept and, after light filtering (CPM > 0.1

in the case sample), the case sample is compared to the controls using edgeR [52]

v3.26.5. Dispersions are estimated using the classic (non-GLM) model [53], and tran-

scripts are fitted using edgeR’s GLM quasi-likelihood fit function [54] with the robust

flag set to true [55]. edgeR’s GLM likelihood-ratio test [56] is used to perform differen-

tial expression. All transcripts associated with significant ECs are retained (FDR < 0.05

and logFC > 2 by default; we used a logFC > 5 for all analyses unless otherwise

indicated).

Annotation

All significant transcripts are aligned using GMAP [57] (2020-06-04) to the hg38 gen-

ome with all alternative reference contigs removed. GMAP’s --max-intronlength-ends

parameter is set to 500 kb to prevent soft-clipping at long terminal introns, and

--chimera-margin is set to correspond to MINTIE’s clip length (default = 20). All

aligned transcripts are extracted and compared to the CHESS [50] v2.2 reference GTF

to identify fusions, TSVs and novel splicing. We require that at least 30 base-pairs and

30% of the transcript sequence is aligned somewhere in the genome to retain a candi-

date transcript. Transcripts not overlapping any known reference exons are discarded.

Broadly, we set the criteria for novel variants as follows: (i) the transcript contains an

insertion or deletion of at least 7 base-pairs, (ii) the transcript has a soft-clip or hard-

clip (based on the GMAP’s alignment) that is least 20 base-pairs in length, (iii) the tran-

script contains a splice junction not seen in the reference transcriptome and (iv) the
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transcript contains a block of at least 20 base-pairs that is not normally transcribed in

the reference genome. Passing category (i), (ii), (iii) and/or (iv) will retain the transcript

as potentially harbouring a candidate variant. We discard any variants matching cat-

egory (iv) where no splicing occurs (i.e. the transcript is aligned as an unspliced block)

unless the transcript’s start and end are contained within flanking exons, indicating a

potential retained intron.

Annotated variants are further refined by matching novel blocks with novel splice

junctions and identifying valid donor/acceptor sites for novel junctions (defined as ob-

serving the sequences AG/GT or AC/CT before the splice junction). By default, the

motif checking allows tolerance for one mutation on either end of a junction (this can

be made more or less lenient by the user). As extended/novel exons should create novel

exon boundaries, we consolidate these variants and discard any extended/novel exons

not supported by a corresponding novel junction. Novel and extended exons must be

accompanied by at least one novel junction at either (or both) ends of the block and

have a valid donor or acceptor motif. Alignment gaps (of at least 7 bp) within single

exons are checked to capture potential novel intron, and exon ends are checked for

truncation by at least 20 bp. A single transcript may have multiple annotated variants,

but only those matching specified filters are retained. The variant sizes listed above for

filtering are defaults only and may be adjusted in MINTIE.

Selecting appropriate control samples

Control samples ideally have the same transcriptional profile as the case samples but

without the variants of interest. Controls can be from normal samples from the same

tissue type as the case sample if they still have a similar transcriptional program as the

case. As RNA sequencing data from the given tissue may be difficult to obtain, other

samples from the same cancer type (and same tissue type) can be used as controls. We

recommend using at least one control, but ideally 3–10 (using large numbers of con-

trols, > 20 for example, will result in increased processing time). In some cases, no ap-

propriate controls may be available, in which case MINTIE can be run without

controls. In this mode, differential expression is not performed; however, novel ECs are

still selected based on read quantification.

Simulations

We simulated 1500 variants using code available in the MINTIE source code repository

(https://github.com/Oshlack/MINTIE/tree/master/simu/run_simu.py). Simulations were

generated by extracting sequences from the transcripts listed in the hg38 UCSC RefSeq

reference and simulating reads from the resulting sequence. One hundred variants from

15 variant types were generated (five fusion types: canonical, extended exon, novel exon,

with insertion and unpartnered, five TSV types: insertions, deletions, ITDs, PTDs and in-

versions, and five novel splice variants: extended exons, novel exons, truncated exons,

skipped exons and retained introns). Only transcripts from genes that did not overlap any

other genes were used in the simulation. Additionally, each transcript had to have at least

3 exons to be considered as a simulation transcript.

All fusions were simulated by selecting the first two and the last two exons from two

random transcripts from different genes and inserting the intervening sequence.
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Canonical fusions contained no intervening sequence, while fusions with extended

exons inserted 30–199 bp of intronic sequence from the end of the second exon of the

first transcript. Similarly, fusions with novel exons contained intronic sequence 30–199

bp downstream with a size of 30–199 bp. Non-canonical fusions with insertions were

generated by inserting 7–49 bp of randomly-generated sequence between the two fu-

sion transcripts.

Small TSVs were generated by inserting, duplicating or deleting sequence within ran-

domly selected exons from randomly selected transcripts. These small variant types

were between 7 and 49 base-pairs and had to reside at least 10 bp within the exon. In-

versions and partial-tandem duplications were generated by selecting 1–3 random

exons within a transcript and either inverting or duplicating their sequence in tandem.

Extended and novel exons were generated by adding intronic sequence downstream

(directly, or with a 30–199 bp gap) of a randomly selected exon. To ensure that novel

or extended exons did not overlap exons from other transcripts (or downstream exons

of the same transcript), each candidate exon was checked for these potential overlaps

(which would otherwise result in obfuscation of the variant, or the wrong variant type

being created). Novel junction (skipped exon) variants were created by selecting a ran-

dom pair of exons and checking whether an existing junction existed between them,

creating a transcript with this junction if not. Two randomly selected neighbouring

exons were both truncated at their facing ends (end and start respectively) by 30–199

bp. Retained introns included sequence from a randomly selected intron from a given

transcript that was > 30 bp. The presence of correct splicing motifs was not considered

for the simulation.

In addition to each variant gene, the sequence of the unaltered wild-type gene was

added to the simulated case sample’s reference. An additional 100 unaltered back-

ground genes were also added to the case sample. A control sample reference was also

generated, which included the unaltered wildtype sequence only for all simulated tran-

scripts. ART-illumina [31] v2.5.8 was run on the corresponding references with 100 bp

paired-end reads with a fragment size of 300 and coverage of 50x (transcripts thus have

an effective coverage of 100x, given the bi-allelic reference containing variant and wild-

type transcripts).

The simulated variant fastq files were run through the MINTIE pipeline with default

k-mers (29, 49 and 69). Minimum read length was set to 80 (for trimming), minimum

assembled transcript length was set to 100, and motif checking was disabled. To ensure

that setting a fixed low dispersion value did not adversely over-state the results, we also

reran the simulations at four extra dispersion levels: 0.3, 0.5, 0.6 and 0.7 (the original

being 0.1). Increasing dispersion had minimal effect on the results until a value between

0.6 and 0.7, after which very few ECs are found to be differentially expressed (Add-

itional file 1: Fig. S1B). This indicated that dispersion is unlikely to play a significant

role in the observed results, unless the value is abnormally high (> 0.6). All other pa-

rameters were left at default. Seven other tools were run on the resulting simulation

output: TAP [15] (commit 8940e45), Barnacle [17] v1.0.4, SQUID v1.5 [16], JAFFA [24]

v1.07, Arriba [26] v1.1.0, CICERO [18] v1.3.0, KisSplice [11] v2.4.0 and StringTie [12]

v1.3.6. TAP was run using the tap2.py pipeline with k-mer lengths of 49 and 79, and

--max_diff_splice set to 4 to bypass motif checking. Other parameters were kept at de-

fault. The transcript reference was generated with PAVfinder’s extract_transcript_
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sequence.py script, using the UCSC RefGene sequence reference as input. Barnacle was

run with its default hg19 reference. SQUID was run using STAR’s alignments. JAFFA

was run using its direct mode and default reference. References used in generating sim-

ulations were used whenever possible. Default parameters were used for each tool un-

less otherwise specified. Samtools [58] v1.8, BLAT [44] v36.1, STAR [59] v2.5.3a and

bwa [60] v0.7.17 were used by all methods that required these tools. CICERO was run

through the St. Jude Cloud Genomics Platform, using fastq files as input (STAR align-

ments were performed through St. Jude’s Rapid RNA-seq pipeline, which incorporates

CICERO).

Variants were counted as true positives for all tools run for the benchmarking ana-

lysis if a variant was reported in the same gene name as the simulated variant (for

MINTIE, Arriba and TAP). Gene coordinates were used for all other tools where gene

names were not reported (SQUID, StringTie and KissSplice) or where using specific

references proved prohibitive (Barnacle). Only transcripts marked as novel were consid-

ered for StringTie. Sequence results from KisSplice were aligned with GMAP [57]

(2019-05-12), and aligned coordinates were extracted in order to obtain variant posi-

tions. As long as a variant coordinate was found within the expected gene region, this

was counted as a hit. Only one gene/coordinate match was needed (of a partnered fu-

sion pair) to be called a true positive. As Barnacle and CICERO were run using a hg19

reference, we used UCSC liftover (https://genome.ucsc.edu/cgi-bin/hgLiftOver) to con-

vert the hg38 simulation coordinates to hg19 (6 TSVs/NSVs and 9 fusion gene coordi-

nates were partially deleted in the liftover; the TSVs/NSVs could not be counted, while

the fusion were only affected at one coordinate and could still be counted). All code

used to process each tool’s results can be found in the paper analysis code (see Code

Availability).

To perform experiments with varying coverage, the simulated fastq files were down-

sampled using seqtk v1.0 (https://github.com/lh3/seqtk) at 40x, 20x and 10x (resulting

in variant coverage of half of each of these values, due to the heterogeneous nature of

the simulation). The varying dispersion experiments were generated by manually chan-

ging the fixed dispersion parameter (0.1) in the MINTIE source code, to values 0.7, 0.6,

0.5, 0.3. No other parameters were modified. Detection limit experiments were gener-

ated by generating nine simulations of 300 variants each (deletions, insertions and

ITDs), each with the same random seed (123), only varying by the variant size, ranging

from 1 to 9.

Running MINTIE on Leucegene samples

MINTIE was run on four Leucegene cohorts: the NUP98-NSD1 fusion cohort [35], the

CBF AML cohort [61], the KMT2A-PTD cohort [32] and the non-cancer peripheral

blood (normals) data set [34], using k-mer sizes of 49 and 79 for assembly. We used

the patient IDs identified by Audemard et al. [62] to identify the samples containing

KMT2A-PTDs, as these were not disclosed in the original paper. For all AML data sets,

we used 13 Leucegene normals as the controls (5 monocytes, 5 granulocytes and 3

TWBCs). We also ran the KMT2A-PTD data set against a set of randomly selected

AML samples from the CBF cohort (see Additional file 1: Note S1 for the control sam-

ples used). The normal samples were run individually against the remaining samples
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from that cell type. (The pooled peripheral CD34+ blood cells were not considered for

this analysis.) In the granulocyte 1-4 control experiments, all combinations of cases and

controls were run for the five total samples, resulting in four total runs for 1 vs. 1, three

total runs for 1 vs. 2, two total runs for 1 vs. 3 and a single run for 1 vs. 4.

Salmon [51] (v0.14) was run separately on the Leucegene normals, the KMT2A-

PTD cohort and the selected CBF AML control samples in paired-end mode with

default parameters and the --seqBias flag using the same CHESS transcriptome ref-

erence used in all other analyses. Counts were summarised at the gene level using

tximport [63] (v1.12.3) with the countsFromAbundance=‘lengthScaledTPM’ param-

eter. The voom function from Limma [64] v3.42.0 was used to normalise libraries,

and the base prcomp function (R v3.6.2) was used to perform principal component

analysis.

Squid and Arriba were run on the Leucegene samples using the same parameters and

workflow as on the simulations. As the experiment emphasised sensitivity and com-

pared fewer tools, variants were checked with greater stringency, requiring, in the case

of fusions, both variant genes or loci to be called in one variant call (or contig), or as

an unknown soft-clip variant containing either fusion gene (in MINTIE’s case). This

only happened in two cases, and these variants were manually validated by BLATing

the contig sequence to ensure the correct fusion was being reported. In cases where a

variant was contained in a single gene and caller output listed gene 1 and gene 2, these

both had to match the single gene. A variant filter was also used where classifications

were reported (MINTIE, Arriba and TAP) to ensure variants were plausibly classified.

Plausible classifications for fusions included ‘fusion’ or ‘unknown’ for MINTIE, ‘translo-

cations’ or ‘inversions’ for Arriba and ‘fusions’ for TAP. Plausible classifications for

ITDs included ‘insertion’, ‘unknown’ or ‘intergenic rearrangement’ for MINTIE, ‘ITD’

or ‘duplication’ for Arriba and ‘ITD’ for TAP. Plausible classifications for PTDs in-

cluded ‘intergenic rearrangement’ or ‘unknown’ for MINTIE, and ‘duplication’ for

Arriba and TAP.

Running MINTIE on B-ALL and TCGA samples

B-ALL samples used in this study were obtained from the Royal Children’s Hospital;

data is described in Brown et al. [36]. Seven samples were excluded due to significantly

different sequencing characteristics (shorter read lengths and using an unstranded

protocol). Patient samples were selected as controls if they had a positive molecular test

and the driver fusions were confirmed in the RNA-seq data. If there were multiple sam-

ples obtained from the same patient, they were not considered as controls. This re-

sulted in 34 controls (see Additional file 1: Note S2 for a list). MINTIE was run with k-

mer sizes 49 and 79 and a logFC > 5 cutoff. The RB1 variants were detected in two

samples initially, and a third was found after rerunning the pipeline at a lower logFC

cutoff (> 2). For the TCGA samples that were identified to contain the variant (using

SeqOthello), we obtained the RNA-seq sequence data and ran these samples through

the MINTIE pipeline. We used single random TCGA control of the same disease type,

sex and similar read length. LogFC cutoff was 2 and k-mer sizes of 29 and 39 were used

due to short read lengths (samples had 51 bp and 76 bp reads for the BRCA and ESCA

samples respectively).
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Running MINTIE on rare disease samples

MINTIE was run on each of the 52 available samples described in Cummings et al. [14]

against a set of 10 muscle sample controls from GTeX [43]. Motif checking was turned

off due to the presence of SNP-induced splice sites described in the study; all

other parameters were set as default. We manually inspected variants called and

transcripts assembled in order to determine whether a given variant was called. In

order to look for novel candidate variants, we considered all available samples that

did not have RNA variants described in the Cummings et al. paper. We applied

the following additional filters to the results: (i) VAF > 0.1, (ii) total reads in con-

trols < 10, (iii) < 10 variants found on the de novo assembled transcript, (iv) the

variant was classified as a TSV or (any type of) fusion and (v) the affected variant

affected a gene within the NMD gene list used by the Cummings et al. authors.

Each variant was then manually curated considering contig alignment, read cover-

age and variant location.
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