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Abstract

A modified Chromium 10x droplet-based protocol that subsamples cells for both
short-read and long-read (nanopore) sequencing together with a new computational
pipeline (FLAMES) is developed to enable isoform discovery, splicing analysis, and
mutation detection in single cells. We identify thousands of unannotated isoforms
and find conserved functional modules that are enriched for alternative transcript
usage in different cell types and species, including ribosome biogenesis and mRNA
splicing. Analysis at the transcript level allows data integration with scATAC-seq on
individual promoters, improved correlation with protein expression data, and linked
mutations known to confer drug resistance to transcriptome heterogeneity.

Keywords: Single-cell gene expression, Long-read sequencing, Splicing, Single-cell
multi-omics

Background
Single-cell RNA sequencing (scRNA-seq) is a widely adopted method for profiling

transcriptomic heterogeneity in health and disease [1]. However, assessing transcript-

level changes between cell types using current scRNA-seq protocols is challenging due

to their reliance on short-read sequencing. Previous studies using plate-based methods

[2, 3] have focused on individual alternative splicing events such as exon skipping, due

to the fundamental limitation of short-read sequencing in linking distal splicing out-

comes belonging to the same transcript. The Smartseq3 protocol [4] can achieve full-

length transcript coverage but is still unable to assemble the complete transcript

sequence and is heavily reliant on the reference annotation. Droplet-based methods [5]

such as 10x only sequence the 3′ or 5′ end of transcripts which largely precludes
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isoform identification. Long-read sequencing can overcome this limitation and generate

full-length transcript information in single cells, as illustrated in several recent studies

[6–9]. However, the throughput of current long-read sequencing platforms is still not

comparable to short-read platforms (especially for Pacific Biosciences’ Sequel platform)

and the per-base accuracy may also be lower (particularly for Oxford Nanopore Tech-

nologies), which together create many issues. Limited sequencing throughput intro-

duces a trade-off between the per-cell sequencing depth and the number of cells or

genes processed. Protocols such as ScISOr-Seq [6] sequence all processed cells necessi-

tating either shallow depth per cell or high cost, while RAGE-Seq [7] focuses on spe-

cific transcripts rather than the whole transcriptome. The recently published ScNaUmi-

seq [9] protocol requires saturated sequencing to error-correct UMI sequences, which

increases the sequencing cost. On top of the current protocol limitations, another

pressing issue is the lack of data analysis pipelines for long-read transcriptome data, es-

pecially for single cells. Tools such as ScNapBar [10] and SiCeLoRe [9] focus on cell

barcode and UMI assignment, while others such as FLAIR [11] and TALON [12] lack

the ability to process single-cell data. New protocols and computational pipelines to

overcome these limitations are needed.

To this end, we adapted the popular Chromium 10x protocol and the data analysis

platform FLAMES to perform single-cell isoform sequencing and data analysis. Adapt-

ing the 10x Chromium platform creates a cost-effective approach to discover and quan-

tify isoforms in single cells by integrating data from short- and long-read sequencing

technologies. Subsampling single cells from a full 10x run and applying nanopore long-

read sequencing can achieve a comparable number of sequencing reads per cell to that

obtained from short-read platforms. For data analysis, we developed a computational

framework to perform single-cell full-length analysis of mutations and splicing

(FLAMES), which includes cell barcode and UMI assignment from nanopore reads as

well as semi-supervised isoform discovery and quantification. We applied this method-

ology to human and mouse samples containing different cell types and highlight shared

splicing patterns in human cancer cells and mouse quiescent muscle stem cells. Differ-

ential transcript usage analysis pinpointed common functional modules and genes

across samples. We also demonstrate that these protocols are a promising tool for de-

tecting coding variants of clinical relevance. Taken together, our modified protocol and

data analysis pipeline enable comprehensive characterization of the full-length isoforms

present in single cells that are currently overlooked in short-read sequencing datasets.

Results
High-throughput single-cell full-length transcriptome sequencing with Chromium 10x

We modified the standard Chromium scRNA-seq protocol (10x Genomics) to better amplify

the full-length cDNA. Since the throughput of long-read platforms is still limited compared to

Illumina sequencing platforms, we subsample 10–20% of the 10x Chromium generated Gel

Bead-in-Emulsions (GEMs) after reverse transcription (Fig. 1A), similar to the method recently

described by Lebrigand et al. [9]. This is equivalent to sampling 10–20% of the cells as the

cDNA of each cell is still within the GEMs. After subsampling, the GEMs are pooled separ-

ately for library preparation. Part of the amplified cDNA from the 10–20% subsample is used

for Oxford Nanopore Technologies long-read library preparation and sequencing on a
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PromethION. The remainder of the cDNA from the 10–20% sample together with the GEMs

from the 80–90% sample are used for regular 10x library preparation and Illumina sequencing

in parallel. In the end, long-read data from the 10–20% subsample of cells and Illumina short-

read data for all cells are generated by this protocol.

We demonstrate the use of this protocol by profiling 16,660 cells from diverse bio-

logical systems, 2737 of which were sequenced by both long-read and short-read tech-

nologies (Fig. 1A, Additional file 1). Firstly, we used our previously published
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Fig. 1 Overview of experimental design, modified 10x protocol, FLAMESmethod, and basic summary statistics. A
Summary of the study design, with an overview of the modified 10x protocol and FLAMES data processing pipeline. B
UMAP visualization of cells in each sample, cells colored in red are sampled for long-read sequencing. scmixology1 and
scmixology2 were integrated and shown together in one plot. All UMAP visualizations are based on short-read data. C
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shows the transcripts that have their TSSs in open chromatin regions
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scmixology design [13], which involved an equal mixture of cells from five cell lines

(H2228, H838, H1975, HCC827, A549). Two biological replicates were profiled (scmix-

ology1 and scmixology2) with this protocol together with 10x scATAC-seq for the sec-

ond replicate. In addition to the cell-line mixtures, we sequenced freshly isolated

quiescent and activated muscle stem cells (MuSCs) from mouse. Lastly, we applied this

protocol to a cryogenically preserved peripheral blood mononuclear cell (PBMC) sam-

ple from a patient (CLL2) whose chronic lymphocytic leukemia (CLL) had progressed

on venetoclax treatment after a durable response. The sample was prepared together

with the 10x CITE-seq assay with 17 antibody markers. This demonstrated the broad

utility of this approach, which is compatible with different 10x transcriptomic assays

and can be applied to both fresh and frozen samples. The Uniform Manifold Approxi-

mation and Projection (UMAP) visualization presented the cell populations as expected

(Additional file 2: Fig. S1) and revealed no obvious bias in the GEM sampling process

(Fig. 1B). Collectively, we generated 230 million long reads across all samples, together

with scATAC-seq and CITE-seq data for the scmixology2 and CLL2 samples,

respectively.

Single-cell isoform detection and quantification with FLAMES

We developed a flexible computational framework called FLAMES (Full-Length Analysis

of Mutations and Splicing in long-read RNA-seq data) to detect and quantify isoforms for

both single-cell and bulk long-read data (Fig. 1A, Additional file 2: Fig. S2 and Methods).

Input to FLAMES are fastq files generated from the long-read platform. Using the cell

barcode annotation obtained from short-read data as the reference, it identifies and trims

cell barcodes/UMI sequences from the long reads. After barcode assignment, all reads

were aligned to the relevant genome to obtain a draft read alignment. The draft alignment

is then polished and grouped to generate a consensus transcript assembly. All reads are

aligned again using the transcript assembly as the reference and quantified. Benchmarking

of the isoform detection component of FLAMES on bulk synthetic spike-in control sam-

ples showed good performance in terms of recovery of known transcripts while identifying

fewer false-positive transcripts compared to other leading methods FLAIR, TALON, and

StringTie2. Next, we benchmarked FLAMES on a bulk SIRV spike-in dataset [14] for

which the isoform structure and abundances are known a priori. Our results clearly show

that FLAMES outperforms FLAIR, TALON, and StringTie2 [15] both in terms of the iso-

form detection (Fig. S3A, Additional file 3) and quantification (Additional file 2: Fig. S3B).

Additional benchmarking of FLAMES on a bulk sequins spike-in dataset showed similar

results [16].

We used FLAMES to preprocess and analyze the four datasets generated. Forty to

60% of the long reads could be assigned to an expected cell barcode and were kept for

further analysis (Fig. 1C). The transcript coverage of reads realigned to assembled tran-

scripts showed that the percentages of full-length reads decreased for longer transcripts

(Fig. S4), which has also been shown in another study [17]. Reads that are not full-

length and cannot be uniquely assigned to transcripts are discarded during data pro-

cessing. The average UMI count per cell ranges from 10,000 to 60,000, varied by cell

type, and was comparable to the short-read counts from the same cells (Fig. 1D).

Gene-level UMI counts between the matched nanopore and Illumina data were also
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found to be highly correlated (Fig. 1E). The data processed by FLAMES showed that

our modified 10x protocol generated high-quality long-read data that was comparable

to the short-read Illumina data when analyzed at the gene level.

To validate the transcription start sites (TSSs) from the isoforms generated by

FLAMES, we compared them to the FANTOM5 TSS peaks [18] and found that around

75% of the TSSs are within the FANTOM5 annotation (Additional file 2: Fig. S5A). For

the scmixology data where scATAC-seq data from the same populations were also

available, we aggregated scATAC-seq signals around the TSSs as an indicator of open

promoters. The result showed scmixology1 and scmixology2 have similar open pro-

moters and more than 85% of the TSSs are within active promoters, supporting the ex-

istence of these transcripts (Fig. 1F). In contrast, when we process the scmixology data

using TALON, FLAIR, and StringTie2, the results were less optimal. The majority of

transcripts generated by FLAIR and TALON did not match the reference annotations

(Additional file 2: Fig. S5B), and FLAIR, TALON, and StringTie2 had fewer TSSs over-

lapping the FANTOM5 annotations compared to FLAMES (Fig. S5C). We found simi-

lar results when comparing the scATAC-seq signals around the TSS regions from

transcripts generated by different methods (Fig. S5D), with TALON and FLAIR having

around 40% and 50% of their TSSs in open chromatin regions, respectively. In sum-

mary, our comparisons yield similar results between a spike-in dataset and the scmixol-

ogy dataset, with FLAMES outperforming StringTie2, FLAIR, and TALON with the

latter two likely generating many false transcripts.

Characterization of isoforms reveals the distinct splicing landscapes of different cell

populations

We compared the transcripts generated by FLAMES to the reference annotation and

classified them using the scheme introduced in SQANTI [19], including transcripts with

all splice junctions matching to reference transcripts (full splice match, FSM) or par-

tially matching to consecutive splice junctions for a reference transcript (incomplete

splice match, ISM) and transcripts with novel splice junctions with new (Novel, not in

catalog, NNC) or known (Novel, in catalog, NIC) donor and acceptor sites (Fig. 2A).

We observed that the number of transcripts detected varies between samples (Fig. 2B)

and is correlated with the sequencing throughput as shown in Fig. 1C. While around

half of the transcripts detected were novel, the majority of reads aligned to known tran-

scripts with novel transcripts having lower abundance in general. In addition to the

comparison with reference annotations, we also compared the transcripts generated

from the three human samples to each other (Fig. 2C) and found many transcripts

unique to each sample (22%, 27%, and 68% for scmixology1, scmixology2, and CLL2, re-

spectively). A majority of transcripts (~60%) were shared between biological replicates

and among these 30% were novel, suggesting that many conserved alternative splicing

events in these cell lines have not been annotated. The results from FLAMES were also

compared to short-read bulk RNA-seq profiled from matched samples analyzed using

STAR (Additional file 2: Fig. S6). The degree of overlap of known junctions between

the long- and short-read results was relatively high across all samples (Additional file 2:

Fig. S6A). For novel junctions, the overlap was considerably less (Additional file 2: Fig.

S6B), with relatively fewer junctions detected in the short-read data across the different
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samples compared to the long-read data, which identified between 3- and 14-fold more

novel junctions.

Within samples, we found consistent alterations in splicing patterns between cell

populations (Fig. 2D). CLL cells had higher proportions of novel transcripts, especially

transcripts with novel splice junctions (NNC), compared to non-CLL cells from the

same sample, including T cells, NK cells, and monocytes. Similarly, quiescent muscle

stem cells also had higher proportions of novel transcripts compared to activated stem

cells. Analysis of intronic reads from RNA-seq data [20] has demonstrated that intron

retention, which would produce novel transcripts, is increased in quiescent mouse
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muscle stem cells and is essential for these cells to exit the quiescent state. This is con-

sistent with our results and suggests that differences in splicing patterns between differ-

ent cell populations may act as a regulatory mechanism.

After comparing the transcripts identified against reference annotations, we sought to

characterize isoforms within the same gene. Around 80% of genes can be expressed as

multiple isoforms (Fig. 2E). The average number of isoforms expressed per gene ranges

between 3 and 6 and varied between the different samples (Fig. 2E). The distribution of

isoform expression is skewed with only a few abundant transcripts dominantly

expressed for most genes (Fig. 2F), consistent with previous results [21]. On average,

the two most highly expressed isoforms account for 80% of the total counts (median

85%). Next, we categorized the types of alternative splicing between the two most

highly expressed isoforms (Fig. 2G). Alternative splicing has mostly been studied based

on particular events such as exon skipping or alternative 5′ splice sites using short-read

sequencing technology [22]. We found the most common category, comprising around

30% of genes, has more than one type of alternative splicing event between the top two

isoforms. This means that the 2 most highly expressed isoforms differ by complex spli-

cing changes involving multiple exons, which may not be accurately characterized by

short reads because two isoforms could have a skipped exon near the 5′ end and a dif-

ferent splice site near the 3′ end.

Common classes of genes with differential transcript usage across samples

Following the analysis of isoform abundance, we investigated whether genes with mul-

tiple isoforms exhibited differential transcript usage (DTU) between the clusters or cell

types shown in Additional file 2: Fig. S1. We focused on changes in the use of internal

splice junctions, grouping transcripts with the same intron chain. To mitigate the high

dropout rate in single-cell data, we aggregated the transcript counts into pseudo-bulk

values per cluster and filtered out transcripts with low abundance. A chi-square test

was performed on the pseudo-bulk count matrix for DTU analysis. To assess how sen-

sitive the DTU results are to sequencing level, we down-sampled the number of long-

reads from the scmixology2 dataset (from 20 to 80% of the total number). We observed

that although the number of detected isoforms (Additional file 2: Fig. S7A) and the

number of genes with DTU (Additional file 2: Fig. S7B) decrease with decreasing se-

quencing level per cell, 58% of the DTU changes could still be detected with as little as

20% of the starting reads (Additional file 2: Fig. S7B). We performed DTU analysis on

all samples and identified between 500 and 1000 genes with differential transcript usage

(gDTU) in each sample (Fig. 3A, Additional file 4). Nearly half of the gDTU (244 out of

573) are shared between scmixology1 and scmixology2. Besides this overlap, gDTU were

largely unique for each sample (Additional file 2: Fig. S8A). The functional annotation

clustering of these genes revealed shared pathways across different samples, especially

pathways related to transcription and translation, such as mRNA splicing and ribosome

biogenesis (Fig. 3B, Additional file 5). As an example, different gDTU related to mRNA

splicing were found in different samples. PQBP1, which is involved in pre-mRNA spli-

cing, is a gene with DTU in the scmixology samples (Additional file 2: Fig. S8B), while

SRSF2 and SRSF3, which belong to a family that acts both as general splicing factors
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Fig. 3 Summary of differential transcript usage results from FLAMES. A Summary of results from the statistical testing
of DTU detected many significant genes per sample (adjusted P-value < 0.01). B Table of common functional
categories among different samples from the functional enrichment analysis of gDTU. C Top 4 most abundant
isoforms of RPS24 in human and heatmap of their expression at the single-cell level in the scmixology1, scmixology2,
and CLL2 samples. D Top 4 most abundant isoforms of RPS24 in mouse and heatmap of their expression at the
single-cell level in MuSCs. E UMAP of cells in CLL2, colored by RPS24 gene expression and transcript expression. Two
transcripts with differential expression on different populations were selected. Transcript expression in each cell is
colored by scaled relative expression to highlight the difference between different populations. F Similar to E, UMAP
of cells in MuSC sample, colored by RPS24 gene expression and transcript expression. G Top 4 most abundant
isoforms of CD45 in CLL2 and UMAP visualizations of the cells colored by (from left to right) gene expression,
transcript expression, and corresponding protein expression. H Top 4 most abundant isoforms of CD82 in MuSC, with
UMAP visualization of cells colored by expression of two isoforms that have differential expression between quiescent
and activated MuSC. I scATAC-seq read coverage for PRDX1 with cells from each cell line aggregated and plotted
together. UMAP plots showing isoform expression, with each cell colored by scaled transcript expression
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and as regulators of alternative splicing [23], exhibit DTU in the CLL2 sample (Add-

itional file 2: Fig. S8C).

Apart from the gDTU that are unique to each sample, we also found a few genes (18)

that appeared in all samples (Additional file 2: Fig. S8A), including a ribosomal protein

RPS24 that had the smallest P-value among different samples (Additional file 4). RPS24

is a highly conserved gene between mouse and human, with exons 5 and 6 alternatively

spliced to generate different protein coding sequence (Fig. 3C, D). Further analysis

showed transcript usage of this gene is altered at multiple levels in different samples.

Firstly, the major transcript of RPS24 was distinct between different samples. Tran-

scripts without exons 5 and 6 were most abundant in the cell lines (scmixology1 and

scmixology2, Fig. 3C), while the transcript with only exon 5 was highly expressed in the

patient-derived PBMC sample (CLL2, Fig. 3C) and MuSC sample (Fig. 3D). In addition

to the major transcript, additional transcripts showed differential transcript usage in

different cells within the same sample. The transcript with exons 5 and 6 was more

frequently expressed in CLL cells while the transcript without exons 5 and 6 was pref-

erentially expressed in non-CLL cells (Fig. 3E). Besides these known transcripts, we also

identified a new isoform in mouse (Rps24-001) that was preferentially expressed in qui-

escent MuSCs (Fig. 3F). Different RPS24 isoforms have tissue-specific expression [24]

and some have been linked to tumor progression [25]; however, the functional differ-

ences between the encoded proteins remain unclear. In summary, we have highlighted

the heterogeneity of expression of the RPS24 transcript that is missed in a typical gene-

level analysis (Fig. 3E, F).

Another category of gDTU of interest is cell-surface proteins. Genes encoding cell-

surface proteins produce alternative mRNA isoforms, usually by changing the combina-

tions of consecutive exons corresponding to certain functional domains. Some of the

isoforms have been characterized, such as CD45, where alternative splicing of exons 4

to 6 are expressed in different lymphocytes [26]. By analyzing the CLL2 data where the

surface marker expression is available through CITE-seq, we detected multiple isoforms

of CD45 (Fig. 3G). We found similar expression patterns between the transcript and

the protein it encodes, where the protein was quantified by counting antibody-derived

tags (ADT) from CITE-seq data. The result both validated the isoform quantification

from the FLAMES pipeline and showed that transcript-level analysis can provide a bet-

ter correlation between mRNA and protein expression that cannot be achieved using

gene-level quantification. CD45 was the only DTU gene identified among the CITE-seq

panel of 17 antibodies. We also observed other genes encoding important cell surface

markers with DTU, such as Cd82 (Fig. 3H), CD47 (Additional file 2: Fig. S8D), and

CD44 (Additional file 2: Fig. S8E), with different combinations of consecutive exons.

Notably, some of the novel transcripts in CD47 can be observed in different samples

(Additional file 2: Fig. S8D), suggesting conserved alternative splicing patterns that are

missing from the reference annotation. In sum, we observed previously overlooked iso-

form diversity of cell-surface proteins, which could introduce functional diversity and

contribute to development and diseases [27, 28].

Alternative promoters have been shown to regulate cancer-specific transcription [29].

Here, we found transcripts with different TSSs expressed in different cancer cell lines.

We have shown that open chromatin captured by scATAC-seq is correlated with the

promoter region indicated by the TSS (Fig. 1F). As an example, we found multiple
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isoforms of PRDX1, including a new isoform PRDX1-001 with a different TSS. The

new isoform expressed in H838 and A549 contains a novel first exon that is not found

in the other cell lines (Fig. 3I). Additional open promoter regions are observed in the

scATAC-seq data from H838 and A549 that coincide with the new exon (Fig. 3I). This

result suggests that the long-read scRNA-seq data can be integrated with scATAC-seq

at the promoter level to further enhance the resolution of integration and reveal pro-

moter heterogeneity that cannot be found via gene-level integration [30].

Long-read scRNA-seq links coding sequence variation to transcriptome heterogeneity

Nanopore long-read sequencing allows full transcript coverage compared to 3′ or 5′-

end short-read sequencing, which provides us with a better chance of identifying cod-

ing variations. However, the high error rate in nanopore sequencing presents an obs-

tacle [31]. To overcome this challenge, we first exclude homopolymer regions since

they have higher sequence error rates [32, 33]. After excluding these regions, ~95% of

regions have a reference allele frequency >90% (Additional file 2: Fig. S9A). The

remaining single-nucleotide variants (SNVs) were filtered again using a statistical test

in FLAMES to enrich for true positives and clonal variants, based on the assumption

that the occurrence of sequencing errors is independent of cell barcode and such errors

will occur randomly in all cells (Fig. 4A and the “Methods” section). We tested our ap-

proach on the scmixology samples where the five cell lines carry distinct variants. The

principal component analysis (PCA) on the filtered allele count matrix successfully re-

capitulated the expected population structure (Fig. 4B). Louvain clustering on leading

principal components generated similar results to the cell type assignment obtained

from running Demuxlet [34] on the short-read data (98.7% and 99.4% concordance for

scmixology1 and scmixology2, respectively), which indicated that we can successfully

capture variants in these different cell lines using long-read data. We then performed
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differential allele frequency analysis to find SNVs that were specific to each cell line.

The results showed a high precision (80.1%) with the SNVs called from bulk RNA-seq

data from individual cell lines.

After we confirmed the approach using the cell lines, a similar analysis was per-

formed on the CLL2 dataset to examine the relationship between transcriptome hetero-

geneity and sequence variations. We searched for SNVs that only existed in the cancer

cells and had a differential allele frequency across different CLL transcriptional clusters.

We found four significant variants (adjusted P-value < 0.05, chi-square test, Benjamini–

Hochberg correction) associated with different CLL clusters (Fig. 4C, D). Material from

the same sample was further analyzed using bulk RNA-seq and whole exome sequen-

cing. All four variants were detected in the bulk RNA-seq, and 3 out of 4 were present

in the bulk whole exome sequencing (the RAD21 variant was outside the capture re-

gion). The variant in PHEX is a known polymorphism and the variant allele frequency

was consistent with it being a germline SNV, so the difference of its allele frequency

could be a result of allele-specific expression. By investigating the allele frequency of

these variants across clusters (Additional file 2: Fig. S9B), we identified two subclones,

where SNVs in the genes BCL2, RAD21, and PHEX are enriched in subclone1 and the

variant located in the gene B3GAT3 is enriched in subclone2 (Fig. 4D). Although the

analysis itself does not require genomic sequence data as a reference, it is important to

validate the variants detected since the changes in allele frequency may also come from

allele-specific expression or RNA editing. The Gly101Val mutation has been confirmed

to promote resistance to venetoclax treatment by reducing the affinity of BCL2 for

venetoclax [35], and patient CLL2 was known to carry ~25% Gly101Val mutations. Our

modified protocol shows that the mutation is not just subclonal, but also linked to spe-

cific transcriptional clusters. The distribution of the Gly101Val mutation was further

confirmed by capture enrichment of the BCL2 gene (Additional file 2: Fig S9C), which

greatly increased the coverage of the mutation site (Additional file 2: Fig S9D). Taken

together, this approach provides unbiased high-throughput linking of single-cell vari-

ants and transcriptomic heterogeneity.

Discussion
Transcriptional activity is typically summarized at the gene level due to the limitations

of short-read technology, especially in scRNA-seq studies. The recent development of

long-read sequencing technology promises sequencing of the full-length transcript, but

its application to single cells has been slowed by a lack of protocols and data analysis

pipelines. Using a modified 10x Genomics scRNA-seq protocol that includes subsamp-

ling of cells, we demonstrate that a similar per-cell sequencing level can be achieved to

short-read technologies at a much lower cost than other methods [6] because only a

subset of the cell population undergoes nanopore sequencing. As library preparation

artifacts can cause a substantial fraction of reads to lack barcodes (40–60% in this

study), enriching for full-length cDNAs that contain barcodes as proposed in Lebrigand

et al. [9] has the potential to further enhance the efficiency of sequencing. The hybrid

approach taken in our study combines the advantages of throughput and accuracy from

short-read sequencing to identify cell barcodes and perform clustering with the

strengths of long-read sequencing that enables isoform discovery and quantification,

the results of which are combined in an integrated analysis. This modified protocol is
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compatible with a variety of 10x transcriptomic assays and could be potentially applied

to any single-cell transcriptomic protocol with cell barcoding [36]. It could also be

combined with other single-cell long-read sequencing approaches such as R2C2 [37] or

other sequencing platforms including PacBio Sequel II. As the throughput and accuracy

of long-read sequencing platforms increases, it may be possible to skip the sampling

step and short-read sequencing altogether and apply long-read sequencing alone rather

than the current hybrid approach to achieve similar aims and further reduce sequen-

cing costs.

To analyze noisy long-read data, we developed the FLAMES pipeline that can detect

and quantify novel and known isoforms in single-cell and bulk samples [16]. FLAMES

implements a strict filter on consensus read clustering and filters out spurious reads

that are mostly truncated reads with incomplete 3′ or 5′ ends. It also has two rounds

of alignment using the genome and the recovered isoforms as reference to reduce

alignment artifacts and distinguish reads aligned to similar isoforms. The recently pub-

lished SiCeLoRe method can also detect and quantify isoforms, although it requires

deep sequencing to perform UMI correction and has not been as extensively validated.

FLAMES also identifies cell-type-specific splicing patterns and variants through com-

parative analysis. Further validation of our approach is available in the recent demon-

stration that gene fusions can be detected using the scmixology data and the output of

FLAMES together with the JAFFAL [38] long-read fusion finding tool. Areas for further

improvement of FLAMES include using more sophisticated methods for assessing dif-

ferential transcript usage and allele frequency between clusters (a simple chi-square test

is currently applied), extending the framework to accommodate multi-sample analyses,

and applying an optimized nanopore-specific variant caller to improve the mutation

analysis. There is also a pressing need for further systematic benchmarking of long-

read isoform analysis methods, which is currently being pursued by the Long-read

RNA-seq Genome Annotation Assessment Project (LR-GASP, https://www.

gencodegenes.org/pages/LRGASP/).

With FLAMES, we characterized full-length isoforms at the single-cell level across

species and cell types. We detected thousands of novel transcripts expressed at low

levels, most of which were unique to each sample. Novel transcripts also showed dis-

tinct enrichment patterns at the single-cell level where CLL cells and quiescent muscle

stem cells often have more novel transcripts. We frequently found complex splicing

changes between the two most abundant isoforms of a gene, suggesting the inadequacy

of studying individual splicing junctions via short reads. We observed cell-type-specific

isoform usage for genes that are enriched for common functions such as mRNA spli-

cing and ribosome biogenesis. The expression of ribosomal and spliceosome proteins

has low correlation with their gene-level expression [39], indicating some protein ex-

pression levels might be regulated by alternative splicing. Genes encoding cell-surface

proteins such as CD44 and CD47 often have cell-type-specific splice variants, some of

which have not been previously annotated, and may result in different functions [40].

The examples we show indicate that identification of cell-type-specific isoforms may

have broad applications in many fields such as immunotherapy, where cell surface pro-

teins play an important role.

Compared to short-read scRNA-seq, our approach provides a better linkage between

proteome and genome as it can resolve the full-length transcript. Transcript abundance
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can be aligned directly to single-cell protein measurements, which is particularly helpful

for proteins with multiple isoforms such as CD45. We also showed that data integra-

tion with scATAC-seq is possible by summarizing open chromatin signals at the exact

transcription start site rather than at the gene level. Full transcript coverage unlocks

the potential to detect mutations and allelic expression for specific isoforms in an un-

biased way compared to methods such as GoT-seq [41]. Through unsupervised ana-

lysis, we not only identified coding variants that cannot be easily detected by 3′ or 5′-

end short-read sequencing, but we could also associate variants to different transcrip-

tional signatures. This can improve our understanding of the correlation between the

single-cell transcriptome and genome in cancer. The detection of cluster-specific tran-

script fusions is also possible using this type of data [38].

Conclusions
Our approach provides new avenues for characterizing single-cell transcriptomic het-

erogeneity at the transcript level and unveils new questions and challenges. Bench-

marking studies that compare the performance of emerging long-read sequencing

protocols and computational methods are needed to help our understanding of the

strengths and weaknesses of different approaches. Many unanswered questions about

transcript expression and alternative splicing in single cells also remain. For example,

do the majority of novel transcripts simply reflect stochastic noise in the splicing ma-

chinery [42], or are they indicative of a genuine increase in protein diversity? Our

methods and analysis provide a starting point for addressing these questions to acceler-

ate isoform-level studies in single cells.

Methods
Human cell lines

The cell culture and sample preparation of the scmixology cell lines are as previously

described. Briefly, the five cell lines (H2228, H838, H1975, HCC837, A549) were re-

trieved from the ATCC (https://www.atcc.org/) and cultured in Roswell Park Memorial

Institute (RPMI) 1640 medium with 10% fetal calf serum and 1% penicillin–strepto-

mycin. The cells were grown independently at 37°C with 5% carbon dioxide until near

100% confluency. The cells were then counted and mixed in equal numbers. The mix

was used for Chromium 10x library preparation. The first batch was derived from the

same sample featured in a previous study (scmixology1). The cell lines were cultured

again using the same protocol to create a second batch (scmixology2) processed by both

Chromium 10x scRNA-seq and scATAC-seq.

Mouse muscle stem cells

Animals

All procedures were approved by the Animal Ethics Committee of The University of

Melbourne and conformed to the Australian code of practice for the care and use of

animals for scientific purposes as stipulated by the National Health and Medical Re-

search Council of Australia. Mice were housed in the Biological Research Facility at

The University of Melbourne under a 12-h light–dark cycle, with drinking water and

standard chow provided ad libitum. Pax7creERT2R26-eYFPfl/fl mice were generated from
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Pax7creERT2 and R26-eYFPfl/fl founder mice strains [43, 44] both on a C57BL6

background.

Muscle injury and stem cell isolation

At 3 months of age, Pax7creERT2; R26RYFP mice received daily 100μL tamoxifen (20mg/ml

in corn oil) for 5 days to label MuSCs with YFP. Two weeks after the final injection, ani-

mals were killed and hindlimb muscles excised and dissociated as described previously

[45]. Cells were sorted on a FACS Aria III (BD Biosciences) with gating based on YFP.

To obtain activated MuSCs, mice were anesthetized with isoflurane and muscles were

injured with 1.2% barium chloride (Sigma). Lower hindlimbs received 40μL barium

chloride via an intramuscular injection. Activated cells were isolated 72 h postinjury

while quiescent MuSCs were isolated from uninjured muscles as described previously.

Human CLL sample (CLL2)

After providing written informed consent, the patient sample was collected after pro-

gression on venetoclax treatment [46] (Human Research Ethics Committee approvals:

Melbourne Health 2011.044, 2016.305, 2012.274; Peter MacCallum Cancer Centre 11/

18; Walter and Eliza Hall Institute 05/04, 13/01). Blood was collected in EDTA tubes

and processed within 2 h. Peripheral blood mononuclear cells (PBMCs) were isolated

using Ficoll-Paque Plus (#17144002, lot:10258101, GE Healthcare) density gradient cen-

trifugation and cells were cryopreserved. PBMCs were thawed, rested for 2 h, and incu-

bated with Fc Receptor blocking solution (Human TruStain FcX, Biolegend) for 10 min

prior to staining with TotalSeq C antibodies (Biolegend) at 4 ° for 30 min. PBMCs were

washed three times and stained with propidium iodide (PI, Sigma). Viable cells (PI

negative) were flow sorted using the FACSAria (BD) and diluted to 1000 cells/μL.

scRNA-seq cell isolation and library preparation

Single-cell capture and cDNA amplification for mouse skeletal muscle stem cell and

cell lines was performed using 10x Genomics Chromium Single cell 3′ Library and Gel

Bead (v2 for MuSC and scmixology1 and v3 for scmixology2) and for the CLL2 sample

using Chromium Single Cell 5′ Library & Gel Bead Kit (v1) according to manufacturer

instructions with some modifications. Full-length cDNA generation was carried out as

described in detail at protocols.io [47]. Briefly, we followed the standard 10x Genomics

user guide, with RT time increased to 2 h in the CLL2 sample only to potentially in-

crease the reverse transcription of longer transcripts. After GEM-RT, we transferred

10–20% volumes of GEMs into a new tube and performed subsequent steps in parallel

for both 10–20% and 80–90% subsample where each subsample is treated as a separate

sample according to the 10x user guide for Illumina library preparation for scmixology

and MuSC samples and increasing cDNA PCR extension step to 3 min for the CLL2

sample. Long-read library preparation is detailed at protocols.io [47]. cDNA generation

for hybrid capture input was similar to the main protocol except that cDNA from the

remaining sample (i.e., 80–90%, excluding the 10–20% subsample) was used for ampli-

fication using primers 10x Partial R1: CTACACGACGCTCTTCCGATCT and T5′

PCR Primer IIA: AAGCAGTGGTATCAACGCAGAG in place of FPSfilA and RPSfilBr.
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To capture the BCL2 gene, all annotated isoforms from Gencode and Ensembl data

bases and isoforms identified in ~20% subsamples were integrated and used for IDT

xGEN Lockdown capture probe design with one probe for each exon up to 1Kb. To de-

sign probes for exons shorter than 120 nucleotides, they were concatenated to flanking

exons and two probes were designed to include short exons and part of flanking exons.

Hybrid capture was done with 2μg of cDNA input using IDT xGEN Hybridisation and

Wash Kit. Captured cDNA were pulled down with streptavidin beads and washed with

IDT buffers. The targeted cDNA library was amplified in a similar manner to the main

protocol for 12 cycles with Takara LA Taq DNA polymerase in place of PrimeSTAR

GXL DNA polymerase.

Standard single-cell Illumina libraries were prepared according to 10x protocol. Illumina

HiSeq2500 was used for sequencing scmixology1 (2 × 125 cycles) and MuSC (2 × 150 cy-

cles). Other libraries were sequenced on NextSeq 500 (1 × 28/1 × 91 cycles plus 8 base

index cycle) using the v2 150 cycle High Output kit (Illumina) as per the manufacturer’s

instructions. The base calling and quality scoring were determined using Real-Time Ana-

lysis on board software v2.4.6, while the FASTQ file generation and de-multiplexing uti-

lized bcl2fastq conversion software v2.15.0.4. Full-length cDNA libraries from subsamples

or capture cDNA were prepared using Oxford Nanopore Technologies SQK-LSK109

Ligation Sequencing Kit with the following modifications: incubation times for end-

preparation and A-tailing were lengthened to 15 min, and all washes were performed with

1.8X Ampure beads to conserve smaller fragments. SFB was used for the final wash of the

libraries. Fifty femtomole per library was sequenced on PromethION FLO-PRO002 R9.4.1

flow cells according to manufacturer protocols.

Single-cell ATAC-seq (scATAC-seq)

The cells from five cell lines were counted and mixed equally. Cell nuclei were isolated

and washed according to the Nuclei Isolation for Single Cell ATAC Sequencing (10x Gen-

omics) protocol, with 1 million cells to start with (0.2 million from each cell line) and 3

min lysis on 100μL buffer. Nuclei were then used to generate scATAC-seq libraries ac-

cording to the Chromium Single Cell ATAC Reagent Kits User Guide (10x Genomics;

CG000168 Rev B). Sequencing libraries were loaded on an Illumina sequencer with 2 × 75

paired-end kits using the following read length: 72 bp read 1, 8 bp i7 index, 16 bp i5 index,

and 72 bp read 2. In the sequencing reaction, reads 1 and 2 contain the DNA insert, while

the index reads, i5 and i7, capture the cell barcodes and sample indices, respectively. Cells

were sequenced on Illumina HiSeq2500 with near around 300 million read pairs in total.

scATAC-seq data analysis

scATAC-seq sequencing data was demultiplexed, preprocessed, and aligned with the

default settings of the single-cell ATAC Cell Ranger platform (1.0). The reference used

for alignment through the Cell Ranger platform was hg38. Next, Picard tools (http://

broadinstitute.github.io/picard/) was used to remove the PCR duplicates. Samtools [48]

(1.7) was used to extract read pairs that have mapping quality (MAPQ)>30, were non-

mitochondrial, and not chimerically mapped. bedtools [49] (v.2.26.0) was used to iden-

tify reads in mate pairs (i.e., fragments) and adjust the start of the paired reads to

account for the 9-bp region that the transposase enzyme occupies during transposition
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(i.e., +4 bp for + strand and −5 bp for − strand). Next, Demuxlet was used to identify

the cell lines of each cell barcode using the genotypic information acquired in our pre-

vious benchmarking studies [13, 50].

The count matrix was generated for each barcode-separated BAM file using the fea-

tureCounts function in the Rsubread package [51] (1.32.4) in the R environment (v.

3.5.1). The annotation features were promoter regions (i.e., TSS − 500 bp to TSS + 200

bp) corresponding to isoforms identified by the various long-read analysis methods

(i.e., FLAMES, TALON, FLAIR, StringTie2). To determine the background of scATAC-

seq and identify the open promoter, we performed analysis on randomized TSS, where

a random position in each gene body was used as the TSS. The 90% percentile of the

fragment count around random TSS (7.64) was used as the threshold to determine the

open promoters and is annotated in Fig. 1F and Additional file 2: Fig. S5D.

For Fig. 3I, scATAC-seq coverage was calculated from the aligned BAM files using

compute_coverage in the plyranges package [52] (1.7.14) and visualized using view_

coverage in the superintronic [53] package (0.99.4).

Illumina short-read data analysis

The fastq data were processed by scPipe to generate a gene count matrix for all samples

except CLL2, which was processed by Cell Ranger (3.0.0) to generate the antibody and

gene count matrix. Each gene count matrix was used as input to the standard Seurat

pipeline with normalization performed by SCTransform [54]. Clustering was performed

for the MuSC and CLL2 samples with a resolution equal to 0.6. The cell line annotation

for scmixology was acquired using Demuxlet with the same parameters as our previous

benchmark study. Integration of the scmixology1 and scmixology2 datasets was per-

formed using Seurat. The clustering results and cell line annotation are shown in Add-

itional file 2: Fig. S1.

Nanopore sequencing and data preprocessing

We performed basecalling on the raw fast5 data using Guppy (1.8.1 for MuSC sample

and 3.1.5 for scmixology and CLL2) from Oxford Nanopore Technologies. For each

read, we locate the barcode sequence by searching for the flanking sequence before the

cell barcode. The cell barcodes identified from the short-read data provide a reference

to search for and trim in the long reads. An edit distance of up to 2 is allowed during

cell barcode matching. Reads that failed to match any cell barcode were discarded. Se-

quences following the cell barcode were used as UMIs and trimmed. For the 3′ end

protocol, the polyA tail after the UMI sequence was trimmed and sequences after the

polyA tail were kept. The cell barcode and UMI sequence were integrated into the fastq

read header as per scPipe [55]. The processed fastq was used as input for genome align-

ment and further analysis.

Detection and quantification of isoforms

Reads were aligned to the genome by minimap2 [56] (-ax splice --junc-bonus 1 -k14

--secondary=no --junc-bed) using Gencode reference (human hg38.v33, mouse

mm10.vM24). FLAMES summarizes the alignment for each read by grouping reads

with similar splice junctions (<5bp by default) to get a raw isoform annotation. The
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raw isoform annotation is compared against the reference annotation to correct poten-

tial splice site and transcript start/end errors. Transcripts that have similar splice junc-

tions (<5bp by default) and transcript start/end (<100bp by default) to the reference

transcript were merged with the reference. This process will also collapse isoforms that

are likely to be truncated transcripts. This is achieved by modeling the possibility of a

read to be truncated as a linear function to the isoform length, given that longer iso-

forms are more likely to have truncated reads with incomplete 5′/3′ ends (depending

on the 10x protocol applied). Next, the sequence of each polished transcript was ex-

tracted and used as the updated reference. The reads were realigned to this reference

by minimap2. The transcript coverage of individual reads is summarized in Additional

file 2: Fig. S3. We noticed that the scmixology2 data contained more reads that were

not full-length, which might relate to the difference in sample preparation time or the

v2 and v3 10x chemistry. The transcripts with fewer than 5 full-length aligned reads

(>95% coverage by default) were discarded. The reads were assigned to transcripts

based on both alignment score, fractions of reads aligned, and transcript coverage.

Reads that cannot be uniquely assigned to transcripts or had low transcript coverage (<

60%) were discarded. The UMI transcript count matrix was generated by collapsing the

reads with the same UMI in a similar way to what is done for short-read scRNA-seq

data, but allowing for an edit distance of up to 2. The counts of transcripts from the

same gene were aggerated to generate the gene-level UMI count and compared to the

gene count generated from the short-read data in Fig. 1E. All default parameters men-

tioned above are encoded in a configuration file (config_sclr_nanopore_default.json)

and can be changed to fit different protocols. For example, the 5-bp distance for splice

site correction could be smaller for data generated by PacBio which has a lower error

rate. FLAMES is written in python and R and uses other packages, including pysam

[48] (0.15.2), numpy [57] (1.14.2), and editdistance (0.5.3) (pypi.org/project/

editdistance).

Comparison of FLAMES to other tools

Direct RNA sequencing data from SIRV spike-in E2 mix which contains 69 synthetic

isoform transcripts (from 7 SIRV genes) was downloaded from NCBI (SRX3204589).

The reference annotation for the spike-ins was provided to all methods to ensure a fair

comparison. Alignment was performed using minimap2 (2.17), with “-ax splice

--splice-flank=no -k14 --secondary=no” and “--junc-bed.” For TALON, the mapped

reads were processed using TranscriptClean (1.02) to correct for mismatches and

microindels. Following correction, long reads were collapsed into a transcript isoform

quantification table in TALON (4.1), using the SIRV annotation. We ran the FLAIR

pipeline (1.4) using default parameters with all modules including “flair align,” “flair

correct,” “flair collapse,” and “flair quantify.” The SIRV annotation was supplied in the

“flair correct” step to help correct misaligned splicing sites. We ran StringTie2 (2.0.4)

with “-L -G -c 10” and the SIRV annotation. For FLAMES, we used the default parame-

ters except “strand_specific:1” and we filtered transcripts with at least 10 reads. For

comparison, transcripts generated by TALON and FLAIR were also filtered to have a

read count of at least 10. The scmixology1 data was processed in a similar way to the

SIRV data. Gencode human hg38.v33 was used as the gene reference annotation for
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each method. TALON was run in parallel on each chromosome to reduce compute

time and the results were aggregated later. Unfortunately, we were unable to install the

SiCeLoRe software on our system to compare with FLAMES.

Isoform classification and splicing analysis

SQANTI2 (4.1, https://github.com/Magdoll/SQANTI2) was used to compare the tran-

scripts identified to the reference with parameter “-g --cage_peak --coverage --force_

id_ignore.” We used the FANTOM5 cage peak dataset on hg19 and mm9 and lifted

these to the hg38 and mm10 reference using UCSC’s liftOver tool (https://genome.

ucsc.edu/cgi-bin/hgLiftOver). The isoform classification was extracted from the SQAN

TI2 result and plotted in Fig. 2B. The gffcompare [58] (0.11.2) program was used with

parameter “-T -R -M” to compare isoform annotations generated from different sam-

ples (Fig. 2B). It was also used to compare isoform annotations obtained after down-

sampling, which was achieved by randomly subsampling the long reads in the bam file

(20%, 40%, 60%, and 80%) and re-running the pipeline with the same parameters (Add-

itional file 2: Fig. S7A-B). Results from these comparisons were plotted using UpsetR

[59] (1.4.0). We ranked transcript abundance for each gene that had multiple isoforms

and obtained the alternative splicing events from the most expressed transcript and the

second most expressed transcript. We used a common model to classify the splicing

events [60], where alternative 5/3′ splice site includes alternative promoter and alterna-

tive polyadenylation. Transcripts with more than one splicing event were classified as

complex splicing changes (Fig. 2G).

Differential transcript usage analysis

We filtered genes to have at least two isoforms, each with more than 15 UMI counts.

For each gene, the per cell transcript counts were merged by group to generate

pseudo-bulk samples. For scmixology, the groups are based on cell line identity inferred

by known genetic variation, and for the MuSC and CLL2 data, the groups are based on

the clusters acquired from Seurat clustering, shown in Additional file 2: Fig. S1. The

top 2 highly expressed transcripts for each group were selected and a UMI count

matrix where the rows are selected transcripts and columns are groups was used as in-

put to a chi-square test of independence (chisq.test in R). P-values were adjusted by

Benjamini–Hochberg correction [61] and results were summarized in Additional file 4.

We performed functional clustering with DAVID [62] using genes with significant

DTU (adjusted P-value < 0.01) as input (Additional file 5). The transcript structures in

all figures were plotted using geom_alignment in ggbio [63] (1.36.0). We performed im-

putation of transcript counts on cells that were not sampled for long-read sequencing

using the shared nearest neighbor network constructed by Seurat [64] (3.1.5). We then

scaled the transcript expression matrix for each gene and the results were used in heat-

maps and UMAP visualizations (available in Seurat) in Fig. 3 and Additional file 2: Fig.

S8. The imputed results were used for visualization purposes only.

Variant calling and clonal analysis

First, we identified candidate SNVs using FLAMES by excluding homopolymer regions

(runs >3 of the same nucleotides), positions with coverage of fewer than 100 reads, and
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positions with reference allele frequency less than 10% or greater than 90%. For each

candidate SNV, we generated an allele count matrix of the reference and alternative al-

lele. Next, we collect the cells that have reads with the reference allele and the alterna-

tive allele and performed a binomial test on the allele counts, assuming that under the

null hypothesis each cell has the same probability of having the alternative and refer-

ence allele as their allele frequency in the whole sample. P-values were adjusted by Ben-

jamini–Hochberg correction and candidate SNVs with an adjusted P-value < 0.05 were

kept for further analysis. PCA was applied to the filtered alternative allele count matrix

from the scmixology data and first two PCs were plotted in Fig. 4B. The top 5 PCs were

selected to build the shared neighbor network (scran::buildSNNGraph [65] k = 20, d =

5) which is used for Louvain clustering (igraph::cluster_louvain [66]) in order to exam-

ine whether the allele count matrix captured the variants in the cell lines. Next, we

performed differential allele frequency analysis in a similar way to the DTU analysis,

but with the allele counts aggregated for each cluster. The candidate SNVs with ad-

justed P-values < 0.05 were selected and compared to the VCF reference generated

from a previous study using bulk RNA-seq. After analyzing the scmixology dataset, we

processed the CLL2 data in the same way and conducted differential allele frequency

analysis on the CLL2 clusters shown in Additional file 2: Fig. S1. The bar plot of cells

with alternative alleles of significant SNVs is shown in Additional file 2: Fig S9B and

summarized in Fig. 4D. The capture enrichment data was analyzed in a similar way,

with the reads processed by FLAMES and an allele count matrix generated for the

Gly101Val mutation. All plots were generated using ggplot2 unless otherwise specified

and most of the analysis was performed in R [67] (4.0) unless otherwise specified.

Implementation of the FLAMES software

FLAMES is available as both a Python (https://github.com/LuyiTian/FLAMES) and R/Bio-

conductor package (https://bioconductor.org/packages/FLAMES) (0.99.31). The R pack-

age provides functionality of the original Python package using the basilisk software

(1.2.1) (https://bioconductor.org/packages/release/bioc/html/basilisk.html) to create and

manage a “frozen” conda environment, allowing all required Python packages to be down-

loaded from R. This allows for specific package versions to be accessed, without relying

on the user to self-manage the required Python modules. Using this basilisk environment,

the reticulate package (1.18) (https://cran.r-project.org/web/packages/reticulate/index.

html) was used to call the FLAMES Python functions directly from R. The FLAMES pack-

age (Additional file 2: Fig S2) thus provides a series of wrapper functions for these reticu-

late Python calls. All basic data type conversion between R and Python, such as R named

list to Python dictionary, is handled by reticulate; however, a few more complex data types

required manual conversion.

The Python FLAMES package provided two pipelines, one for single-cell data and one for

bulk long reads which have been re-written in R. Each function called from either pipeline is

supplied as an R exported function to facilitate user configuration changes if wishing to manu-

ally run the pipeline, without the automated pipeline functions. To assist with interfacing with

other Bioconductor packages, FLAMES stores the count and annotation data in either a Sin-

gleCellExperiment (1.12.0) object (https://bioconductor.org/packages/release/bioc/html/

SingleCellExperiment.html) or SummarizedExperiment (1.20.0) (http://bioconductor.org/

Tian et al. Genome Biology          (2021) 22:310 Page 19 of 24

https://github.com/LuyiTian/FLAMES
https://bioconductor.org/packages/FLAMES
https://bioconductor.org/packages/release/bioc/html/SingleCellExperiment.html
https://cran.r-project.org/web/packages/reticulate/index.html
https://cran.r-project.org/web/packages/reticulate/index.html
https://bioconductor.org/packages/release/bioc/html/SingleCellExperiment.html
https://bioconductor.org/packages/release/bioc/html/SingleCellExperiment.html
http://bioconductor.org/packages/release/bioc/html/SummarizedExperiment.html


packages/release/bioc/html/SummarizedExperiment.html) for the single-cell and bulk pipeline,

respectively, as well as providing a number of additional output files. The package includes vi-

gnettes for running the FLAMES pipeline without the read alignment and realignment steps,

which are platform dependent.

Bulk RNA-seq and exome data

Bulk data from the 5 Human Cell lines used in the scmixology experiments were down-

loaded from GEO accession number GSE86337.

PBMCs from CLL2 were thawed and stained with CD19-BV510 antibody (BD Biosci-

ences) at 4 ° for 30 min. PBMCs were washed stained with propidium iodide (PI,

Sigma). Viable cells (PI negative) were flow sorted into a CD19+ tumor sample using

the FACSAria (BD). RNA was extracted using an RNeasy Mini Kit (Qiagen #74104) ac-

cording to the manufacturer’s instructions. Library preparation and sequencing were

performed, using the Truseq Stranded Total RNA library prep kit (Illumina) and 100-

bp single-end sequencing protocol.

The data was aligned to the human genome (hg38) using STAR (2.7.3) with default

parameters. Junctions with more than 5 uniquely mapping reads were retained and

classified as known or novel based on the Gencode annotation. These were compared

to the unique junctions obtained from FLAMES for isoforms with at least 1 read in the

relevant single-cell sample (scmixology1 and CLL2 with non-tumor cells removed) that

were classified (as known and novel) and extracted using SQANTI3. DNA was ex-

tracted from the CLL2 PBMCs using the QIAamp DNA Mini Kit (Qiagen # 51304) ac-

cording to the manufacturer’s instructions. Library preparation and sequencing were

performed at the Australian Genome Research Facility (AGRF), using the TruSeq Nano

kit (Illumina), SureSelectXT2 Target Enrichment System, and Human All Exon v6 Cap-

ture Library (Agilent Technologies) and 150-bp paired-end sequencing protocol. The

bulk sequencing data was aligned with BWA mem [68] (0.7.17) (exome) and STAR [69]

(2.7.3) (RNA) and variants were called by superFreq [70] (1.4.3). Select variants detected

in the scRNA-seq analysis were visually inspected.
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