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Abstract

As malaria is being pushed back on many frontiers and global case numbers are declining,
accurate measurement and prediction of transmission becomes increasingly difficult. Low
transmission settings are characterised by high levels of spatial heterogeneity, which
stands in stark contrast to the widely used assumption of spatially homogeneous transmis-
sion used in mathematical transmission models for malaria. In the present study an individ-
ual-based mathematical malaria transmission model that incorporates multiple parasite
clones, variable human exposure and duration of infection, limited mosquito flight distance
and most importantly geographically heterogeneous human and mosquito population den-
sities was used to illustrate the differences between homogeneous and heterogeneous
transmission assumptions when aiming to predict surrogate indicators of transmission
intensity such as population parasite prevalence or multiplicity of infection (MOI). In tradi-
tionally highly malaria endemic regions where most of the population harbours malaria par-
asites, humans are often infected with multiple parasite clones. However, studies have
shown also in areas with low overall parasite prevalence, infection with multiple parasite
clones is a common occurrence. Mathematical models assuming homogeneous transmis-
sion between humans and mosquitoes cannot explain these observations. Heterogeneity
of transmission can arise from many factors including acquired immunity, body size and
occupational exposure. In this study, we show that spatial heterogeneity has a profound
effect on predictions of MOl and parasite prevalence. We illustrate, that models assuming
homogeneous transmission underestimate average MOI in low transmission settings when
compared to field data and that spatially heterogeneous models predict stable transmission
at much lower overall parasite prevalence. Therefore it is very important that models used
to guide malaria surveillance and control strategies in low transmission and elimination
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settings take into account the spatial features of the specific target area, including human
and mosquito vector distribution.

Introduction

Declining malaria transmission is associated with the formation of ‘hotspots, which are geo-
graphical regions of limited extent, where infections cluster and transmission may remain per-
sistent. [1] Such hotspots may not be easily identifiable by routine surveillance as much of the
transmission within a hotspot is likely to occur between asymptomatic individuals. [2]

The primary reason for the occurrence of transmission hotspots is that malaria transmission
is not homogeneous and humans can be exposed to substantially different levels of mosquito
biting on the micro-scale (i.e., on a scale of a few meters, between neighbouring households or
even within the same household). Most likely both vector population related factors such as
productivity of breeding sites and distance of human dwellings from these sites as well as
human related factors crucially affect micro-scale variation in transmission intensity and
human exposure. [3] Although Anopheles mosquitoes are known to be able to fly considerable
distances (several km) [4, 5], they will prefer available hosts close to their breeding sites. [6, 7]
A wide variety of human factors such as body size, bed net usage, time spent outdoors, quality
of housing and even beer-consumption has previously been shown to affect human susceptibil-
ity to mosquito bites. [8-11]

Another important factor contributing to the heterogeneity of transmission is the very vari-
able and difficult-to-quantify duration of infection in humans. [12] Some aspects influencing
duration of infection, such as acquired immunity and super-infection with new clones are
directly related to exposure, others, such as treatment-seeking behaviour are less dependent on
exposure. [13, 14] For example, people living a considerable distance from a health centre will
seek malaria treatment less frequently leading to longer average durations of infection. [15]
From the interplay of these different aspects complex patterns may arise: for example, infants,
who still carry maternal antibodies (e.g., < 6 months of age) and very small children who stay
mostly indoors and are closely monitored by their parents (e.g., < 2-3 yrs. of age) are often
shown to harbour infections less frequently. [16] If they do get infected, they will receive treat-
ment more often, especially since they will develop symptomatic infections more frequently
leading to comparatively short durations of infection and thus a smaller overall contribution to
onward transmission. [17-19] In contrast, older children and young adults (e.g., 5-15 yrs. of
age) who spend more time outdoors are usually found to carry infections more frequently.
However, due to a higher degree of immunity these infections are more often asymptomatic.
[18, 20, 21]

Incorporation of heterogeneity in transmission represents a challenge for mathematical
transmission models of vector borne diseases. Previous mathematical modelling studies have
shown that heterogeneity of exposure, for example, based on the ‘80/20-rule’ (i.e., a scenario
where 20% of the human population receives 80% of mosquito bites) may contribute consider-
ably to sustaining transmission by leading to increased estimates of the basic reproduction
number, Ro. [3] However, few studies have modelled the spatial aspects, specifically the geo-
graphical distribution of humans and mosquitoes on the micro-scale (i.e., with a spatial resolu-
tion of a few meters), an important factor underlying this heterogeneity in transmission
intensity. [22-26]

Infections with multiple parasite clones are common in high transmission settings and it
has been hypothesized that the observed multiplicity of infection (number of clones per person,
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MOI) may be a good indicator of the level of transmission in a population. MOI is calculated
by counting the number of genetically distinct clones detected in infected individuals. MOI
must therefore take values of >1. Many studies report ‘mean MOI, although it is unlikely that
MOI follows a simple Poisson distribution in a population where transmission is heteroge-
neous. [3] Heterogeneity also impacts the relationship between MOI and parasite prevalence
(another surrogate measure of transmission). Individuals residing within local transmission
hotspots may be subject to much higher rates of infectious bites, therefore maintaining higher
MOTI levels even at very low (i.e., < 1%) overall parasite prevalence in the larger population.
[27] Previous studies have shown that at low parasite prevalence average MOI is often higher
than what can be explained by the random mixing of parasite clones, humans and mosquitoes
in homogeneous transmission models (for a list of relevant studies describing MOI based on
merozoite surface protein 2 (msp2) genotyping, see supporting information S1 Table). [28]

Using a spatial mathematical transmission model that allows for the transmission of multi-
ple parasite clones, we therefore investigated whether spatially heterogeneous human and mos-
quito populations better explain the observed mean MOI vs. mean parasite prevalence
relationship. [3, 7, 16, 23, 29] Based on the underlying spatial distributions of human and mos-
quito populations, limited mixing between these populations will arise from i) the constrained
radius of mosquito flight and ii) the distance dependent movement of human individuals. [29,
30] Coupled with other factors (some mentioned above) that determine human exposure, this
will inherently result in a small proportion of the population receiving most mosquito bites. As
opposed to imposing an ‘80/20-rule; these spatial features may better capture heterogeneous
transmission and result in more versatile and realistic models.

Most currently used mathematical models for malaria and other vector borne infectious dis-
eases do not explicitly consider spatial features of transmission but assume a homogeneous
mixture of human individuals and mosquitoes. [23, 31-37] This may be appropriate for many
aspects of transmission especially for scenarios of high transmission. However, in the model-
ling of very low transmission scenarios where the mosquito distribution is more heterogeneous,
the actual spatial distribution of human and mosquito populations may need to be taken into
account in order to provide reliable estimates. Such low transmission scenarios will be domi-
nant in the future if malaria incidence continues to decline as expected.

The model presented here was calibrated using the spatial village structure, human age dis-
tribution and household composition (number of inhabitants and family structure) as present
on the North Coast of Papua New Guinea (PNG) to ensure realistic simulations. [38] Our
recent studies in this area also provided detailed data on the number circulating msp2 alleles,
overall malaria prevalence and MOL. [18, 27, 39-41]

Materials and Methods

We used an individual based, spatially explicit model with individual humans and mosquitoes.
[42] The human population in the model (n = 3461) was based on the age distribution and
household structure of rural Madang Province, PNG. [38] We used a set of geo-referenced
households (n = 663) in an area of approximately 35 km” (Fig 1).

Anopheles farauti s.l. is the main vector in coastal Madang. [44] It has been shown that A.
farauti generally fly less than 50 m after blood feeding and have a memorized home range,
whereas the other, less abundant species in the area (e.g., A. punctulatus and A. koliensis) may
disperse further. [45, 46]. Another circumstance that will limit mosquito dispersal in coastal
PNG is the relative absence of non-human hosts as there are only few domestic animals (pigs,
few cattle). These animals are usually kept next to, or under the houses at night in PNG. [46,
47] As in previous modelling approaches, we assumed that mosquitoes are confined to the
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Fig 1. Modelling Area and Characteristics of the Modelled Human Population. Panel A: Geographical distribution of households (black
dots = households); Panel B: Age dependent exposure [9] and duration of infection [12, 43]; Panel C: Rural population age distribution in Madang Province,
PNG based on the current census data. [38]

doi:10.1371/journal.pone.0164054.9001

households of a specific geographical area and predominantly feed on humans residing in
households within this area. [48] Within household exposure and duration of infection are
dependent on human age (Fig 1). [9] It is also possible for mosquitoes to bite humans outside
their area, however this probability decreases with the square of the distance between individ-
ual human and mosquito locations (households).

The probability that a specific mosquito (M;) bites a specific human (Hj) is:

P(Hi/Mj) =we,; (1 + qdij)2 (1)

In Eq (1), d is distance between a human and a mosquito (if human and mosquito are within
the same household then d = 0), ¢, is a weight of human exposure related to age (a) based on
[9] with a value < 1, w is the biting rate and q is the scaling factor that determines the extent of
human/mosquito mixing. Note that g does not represent the maximum distance that
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Fig 2. Plasmodium falciparum Clone Distribution Used in the Present Study. This distribution resembles that in lowland coastal PNG based on msp2
genotyping data collected in a recent cohort study in the same region of PNG (data unpublished).

doi:10.1371/journal.pone.0164054.9002

mosquitoes are physically able to fly but is related to the range of host seeking in the presence
of an ample host reservoir in close proximity of the mosquito’s present location. We assume
that for transmission from human to mosquito, clones are transmitted independently from
each other with the same probability of transmission per bite a. [49] For transmission from
mosquito to human it is assumed that all clones present in the salivary glands of the mosquito
are transmitted simultaneously with a success rate b.

Multi-clone infections are acquired either by humans being bitten by one mosquito infected
with multiple clones or infected humans being bitten again (on the same day, or a subsequent
day), by different infected mosquitoes. If a human is superinfected with the same clone, dura-
tion of infection can be extended (a new independent infection process for the same clone is
started parallel to the existing one). If a human is infected with multiple strains, these are
cleared independently. Similarly, in theory, mosquitoes can bite other infected humans and
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Table 1. Parameters Used in the Present Study.

Parameter Description Value Ref.
Transmission probability
a human to mosquito 0.23 [54]
b mosquito to human 0.5 [55]
Human/Parasite
s number of clones’ 28 unpublished
r rate of clearance of infections
<2yrs 1/129 day™ [43]
2-19yrs 1/200 day™’ [43]
>19yrs 1/150 day™ [43]
€, weighted exposure dependent on age
<2yrs 0.01 [9]
2-10yrs 0.33 [9]
10-18 yrs 0.37 [9]
>18yrs 1 [9]
Mosquito
w mosquito biting frequency 0.21 day™ [56]
u 1/mosquito life expectancy 0.1 day™ [50, 56]
n 1/duration of sporogony in mosquito 0.083 day™ [50]
q distance scale of human/mosquito mixing® 0.03m™ arbitrary
Migration
F fraction of adult humans travelling 0.1 arbitrary
t average travel time 14 days arbitrary
Pout probability of infection while traveling® 0.0-0.1 day™ arbitrary

'see Fig 2 for clone distribution

2with g = 0.03 m the probability that a mosquito seeks a host at a distance of 10 m is 25% of that at 0 m (same household) and 0.3% at 100 m

3poutis a linear function based on the number of infections within the modelling area, p,,, = kz | where Z Iis the sum of all infections within the modelling
area and kis a scaling factor to achieve 0.1/day probability at 100% infection rate (k= 1.07 x 1075).

doi:10.1371/journal.pone.0164054.t001

acquire more infections however, due to the limited mosquito life-span, this occurs very
infrequently.

On each simulation day, travellers can acquire single or multi-clone infections similar to
humans that are present in the modelling area. The force of infection acting on travellers is
assumed to be constant and independent of that within the modelling area. This causes infec-
tions to be occasionally introduced to the modelling area, and overall strain distribution to be
maintained. The clone distribution used in the present study is shown in Fig 2.

Humans remain infected for a duration that is dependent on age, based on previous field
observations and modelling [12, 14, 43] and are assumed to remain infectious for the entire
duration of infection. Mosquitoes undergo an extrinsic incubation period of the average dura-
tion 1/n (12 days) and live on average 1/u of 10 days. [50]

The model is implemented as a simulation in which individual humans and mosquitoes are
objects with properties such as geographic location and infection status (susceptible-S, infected-
E, infective,-I). Transmission and progression between the infection states are stochastic pro-
cesses, with fixed probabilities (as given in Table 1), and follow the standard approach (Fig 3).
Mosquitoes are assumed to bite with a frequency w, meaning that at each day (simulation
time-step), a proportion ~w of the mosquito population is randomly chosen (i.e., assuming an
exponential distribution of biting frequency per mosquito) and assigned to bite humans

PLOS ONE | DOI:10.1371/journal.pone.0164054 October 6, 2016 6/20
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Fig 3. Model Used in the Present Study. Humans are either susceptible (S) or infected/infectious (l).
Correspondingly, mosquitoes are either susceptible (S), within the extrinsic incubation period (E) or within
the infectious period (1). Superscripts Hand M refer to humans and mosquitoes, respectively. n" an n refer
to the total number of mosquitoes and humans, respectively. As in most previous models of malaria
transmission, all durations of residence in these states are assumed to be exponentially distributed (constant
transition probabilities). The indices iand jindicate that we use an individual based approach in which each
human and each mosquito is represented as an individual object. P(S"//")) and P(I"y SV;) denote the
distance weighted probability (Eq 1) that a human (j) is bitten by a specific mosquito (i), whereas aand b are
the probabilities of transmission given a potentially infectious bite.

doi:10.1371/journal.pone.0164054.9003

A\ 4

(multiple bites per human are possible). The choices of the human/mosquito pairs are based
on distance between humans and mosquitoes and on human exposure characteristics as speci-
fied by Eq (1) and shown in Fig 1. Only the adult, female mosquito population is modelled and
‘dead’ mosquitoes are replaced by new mosquitoes resulting in a constant mosquito popula-
tion, equivalent to widely used approaches. [51]

To represent the integration of the modelling area into a wider geographical region with a
similar parasite clone distribution, we allow for infections to be introduced into the modelling
area by human migration/travel. We assume, that on average a 10% fraction of the adult popu-
lation (>14 years) is currently travelling, resulting in a constant population within the model-
ling area. Average travelling time per person is 14 days. Humans outside the modelling area
can be infected with a probability dependent on transmission within the modelling area, and
the infecting clone(s) will be chosen based on the overall clone distribution in the modelling
area at the start of the simulation. (Fig 2). If transmission within the modelling area is high,
introductions through migration occur more frequently but decrease linearly with decreasing
transmission. More complex models describing human movement and migration have previ-
ously been developed yet their implementation is only reasonable if local human migration
and movement data for the modelling area is available, which was not the case for PNG. [23,
52, 53] All model parameters are shown in Table 1.

Different Transmission Environments

Following observations from the field, we assumed that in high transmission settings, mosquito
density is more evenly distributed across households as compared to low transmission settings
(this is further underpinned by the data analysis presented in Supporting Information S1

Text). In low transmission settings, mosquitoes were assumed to be clustered around specific
breeding sites so that a smaller proportion of households sustained most of the mosquito popu-
lation. In the present study 3 such mosquito population clusters were purposely generated to
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Fig 4. Heterogeneous Mosquito Distribution per Household in Low Transmission Settings. For the illustrative purposes of this work, we assumed 3
regions in the modelling area where mosquito density was higher than in the surrounding areas (indicated by circles in Fig 4A). The colour scale indicates the

number of mosquitoes per household assumed for households located in the respective areas. Panel B shows the resulting overall proportion of mosquitoes
found in the overall proportion of households. As observed in field studies, especially in low transmission settings, often a small proportion of households

harbour most of the mosquitoes. A general experimental observation is that mosquito numbers become more evenly distributed as mosquito numbers
increase (Supporting Information S1 Text). [57, 58] The numbers on the curves in 4B indicate the mosquito-to-human ratios resulting in the respective

curves.
doi:10.1371/journal.pone.0164054.9004

represent hotspots. These are represented by the circles in Fig 4A. We assumed that stable mos-
quito numbers exist in these clusters (e.g., related to stable bodies of water), and that mosquito
numbers are decreasing with the square of the distance away from the centre of each of these

hotspots (Fig 4A).

As transmission intensity increases, the areas away from these ‘hotspots’ are gradually and
homogeneously populated with mosquitoes (e.g., by the formation of temporal, shallow water
bodies during the rainy season) whereas within the hotspot area, mosquito numbers remain

stable but not lower than the mosquito density of the surrounding landscape a characteristic
e.g., observed by Ribeiro et al. in Ethiopia. [57] A Supporting Video File (S1 Video) was gener-

ated to illustrate this assumption graphically. Fig 4B shows the resulting proportion of mosqui-

toes vs proportion of households for various mosquito-to-human ratios. This resembles
observations from the field (e.g., from Kenya and Ethiopia, for further analyses see Supporting

Information S1 Text). [57-60]

The spatial model including heterogeneous biting based on geography, mosquito flight and

age-dependent exposure was compared to two other models. Firstly, a ‘null model, where

8/20
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exposure was homogeneous and parasite clones were Poisson distributed across the human
population at a given prevalence, and secondly, a model with no spatial features but taking into
account age-dependent within-human differences in exposure and duration of infection
(shown in Fig 1B and 1C). The model was run for different mosquito-to-human ratios as
shown in Fig 4A to achieve different parasite prevalence. Prevalence was then plotted against
MOIL. The resulting prevalence vs MOI pattern was compared to data compiled from a litera-
ture survey on msp2 based observations of MOI (S1 Table). Spatial estimates for average fre-
quency of infected bites per person per unit time (entomological inoculation rate, EIR) where
derived by running the model at an equilibrium state for 30 years, mapping the average num-
ber of infectious bites per person per year and applying an inverse distance weighted interpola-
tion algorithm to derive EIR isolines using the QGis 2.0 software.

Model Limitations

Similarly to previous modelling studies, transmission of individual clones was regarded to be mutu-
ally independent and the present model does not account for genetic recombination in the mos-
quito vector. [61] Therefore, clones are not changed by passage through the mosquito. This
simplistic assumption is sensible for a scenario where estimates of MOI are based on genotyping of
a single marker gene such as pfinsp2, where new alleles will only arise through relatively rare events
such as point mutations, crossing overs and /or replication errors changing the number of sequence
repeats. [62] Similarly, the model does not account for clone specific acquisition of immunity in
the human population. [43, 63] However, the aim of this study was to show the general effects of
spatial heterogeneity on MOI and therefore these features were not considered essential.

As with previous vector borne disease models, the present model assumes a fixed spatial dis-
tribution of humans and mosquitoes in which humans and mosquitoes are predominantly
associated with specificlocations. [33, 48] Mixing due to human movement and mosquito
flight are partially captured by the distance weighted biting given by Eq 1. [64] As with most
other malaria transmission models, we do not explicitly model the mosquito life cycle (apart
from the female adult stage). While epidemiological models aiming to describe vector control
(e.g., [23, 65-67]) should include mosquito population dynamics, this was not within the scope
of the present study.

The model is subject to the usual limitations of the widely used compartmental model sys-
tems including exponentially distributed transitions and fixed infectivity (gametocytes are not
explicitly included in the model). [68, 69] Only P. falciparum transmission is considered. For P.
vivax, additional considerations regarding the presence of a hypnozoite reservoir in the human
population will need to be taken into account. [70] We do not explicitly account for treatment
or other malaria control measures such as bed nets. Furthermore, we do not consider imperfect
detectability of clones in multiple-clone infections, which is the main cause for the age vs. MOI
relationship shown by several studies [43]. However we show that the present model can be
expanded to realistically reproduce this relationship when incorporating additional data on age
dependent detectability. (S1 Text)

In agent-based simulations, the number of modelled parasite clones, humans and mosqui-
toes is constrained by computational limitations and therefore a relatively confined modelling
area and population size were chosen. [71]

Results
Spatial EIR estimates

The clustering of mosquitoes around persistent breeding sites leads to very variable EIR esti-
mates across the landscape in low transmission settings. This is illustrated in Fig 5 showing

PLOS ONE | DOI:10.1371/journal.pone.0164054 October 6, 2016 9/20



o @
@ : PLOS ‘ ONE Spatial Effects on Multiplicity of Infection

Mosquito to human ratio: 0.1 Mosquito to human ratio: 1 Mosquito to human ratio: 1.5

Fig 5. Estimated EIR Isolines for Different Transmission Settings. At low transmission (3%) transmission is highly clustered based on mosquito and
household density. The heterogeneity in EIR decreases as transmission increases (25% and 70%) and the hotspots lose their clear-cut edges. The isolines
were derived from infection event counts when running the model for 30 years at the respective prevalence. It can be seen especially in Panel A, that the
northernmost mosquito cluster does not result in sustained transmission due to lower mosquito numbers in this cluster as explained in the text.

doi:10.1371/journal.pone.0164054.9005

estimated EIR isolines for low, medium and high transmission settings [3%,25% and 70% para-
site prevalence in the overall population, respectively, based on the mosquito density distribu-
tion illustrated in Fig 4 (and S1 Video)]. Fig 5A, representing the low transmission scenario,
shows clearly defined hotspots. As the mosquito-to-human ratio is increased and the overall
mosquito distribution becomes more homogeneous, EIR estimates also become more evenly
distributed. (Fig 5B and 5C).

Fig 5 shows that, with the spatial model, even at very low average prevalence in the entire
population, individuals in a confined area determined by the mosquito clusters may still be
exposed to >100 infectious bites per year, whereas in most of the remaining area the probabil-
ity to receive an infectious bite is near zero. The individuals within the hotspot are therefore
likely to maintain higher infection prevalence and MOI levels and the MOI population average
is likely to be considerably above the lower limit value of 1. Importantly, this will also facilitate
the generation of genetic diversity until transmission within the hotspot itself is targeted.

Especially Panel 5A shows, that the northernmost mosquito cluster (shown in Fig 4A) does
not result in sustained transmission given the same assumptions about mosquito numbers and
flight as in the other clusters. The reason for this is that the centre of the cluster (with the highest
mosquito density) is around a relatively isolated household (only 1 other household is within 50

PLOS ONE | DOI:10.1371/journal.pone.0164054 October 6, 2016 10/20



o @
@ : PLOS | ONE Spatial Effects on Multiplicity of Infection

m, and 5 within 100 m). Since we assume decreasing mosquito numbers away from the cluster
centre, this mosquito cluster contains overall fewer mosquitoes. The other mosquito clusters con-
tain 15 and 11 households, respectively, within a 100 m radius from the centre leading to much
higher mosquito numbers and a much higher rate of exchange of infections between households.

Average MOI with Changing Parasite Prevalence

Average MOI of the overall population in the spatially explicit simulations remained consider-
ably above the lower limit of 1 for very low malaria prevalences (~ 1%). It should be noted that
below a prevalence of around 1% (or ~35 infected individuals in the modelling area) the para-
site population was not sustained, owing to the limited number of human individuals in the
model. However, even if the modelling area would be much larger (e.g., containing many 10K
or 100K people) it is really the size of the hotspot and the transmission intensity within the hot-
spot (e.g., Fig 5A) that determines prevalence. In other words, if the modelling area would be
expanded but no new hotspots would be added, much lower overall prevalence would be possi-
ble, and MOI would asymptotically approach the limit value of 1. Fig 6 shows the MOI versus
overall prevalence data compiled from the literature survey (S1 Table) in combination with the
predictions from the spatially explicit model, the non-spatial model incorporating within-
human differences and the homogeneous null model. Both, the null-model (homogeneous
mixing) and also the model where only human attributes are heterogeneous but no spatial fea-
tures are included, do not support field observations of MOI substantially >1 at low levels of

6— R 6
A | s
| -

MOI

0.1 1 Q- QF Q- QF Q° Q Q°
Prevalence

Fig 6. MOI vs. Parasite Prevalence: Spatial Model and Null Model Predictions vs. Field Data. Panel A shows the spatial model prediction (red, with

95% Cl band), the null-model prediction (black), the model with no spatial features but age based exposure and infection duration (blue, dashed) and the

field data (dots). Spatial model predictions were smoothened by appying a lowess algorithm. Panel B shows the data gathered in the literature review
grouped into 10% prevalence ranges using box and whisker plots (boxes are median/interquartile ranges, whiskers are ranges).

Prevalence Range

doi:10.1371/journal.pone.0164054.9006
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overall parasite prevalence (e.g., at prevalence levels below 10% the null model and the non-
spatial model both predict MOI levels of ~1).

MOI Estimates for Populations Inside and Outside of Hotspots

Fig 7 shows an example of predicted MOI distribution for the population living inside and out-
side the hotspots generated in the present model with an average mosquito-to-human ratio of
0.1, 1 and 1.5 (corresponding to the same scenarios as in Fig 5 with 3%, 25% and 70% preva-
lence in the spatial model). For the low transmission scenario (3% prevalence), there are stark
differences in prevalence outside and inside the hotspots (0.4% outside, 13% inside and mean
MOI: 1 outside and 2.1 inside). The differences decrease in the higher transmission scenarios,
yet MOI is always higher in the population residing within the hotspots (2.7 vs. 1.4 for the 25%
scenario and 3.6 vs. 1.9 for the 70% scenario).

Changing Average Prevalence with Mosquito-to-Human Ratio

Mosquito-to-human ratio is usually used to adjust the ‘transmission level in compartmental
models. The spatial model and the null model exhibit different characteristics with regard to the
relationship between mosquito-to-human ratio and the resulting equilibrium parasite prevalence
as shown in Fig 8. Whereas in the non-spatial, homogeneous human population model, predicted
prevalence increases within a narrow range from 0% to ~100%, the spatial model shows a slower
increase but prevalence > 0% is sustained by lower mosquito-to-human ratios than in the null
model. The reasons for this are i) the assumption that mosquitoes are clustered around specific
households and ii) the resulting limited spatial mixing of mosquitoes and human populations.

Discussion

The present modelling study using a spatially explicit environment with realistic geographic
household distribution underlines the importance of considering spatial heterogeneity when
modelling malaria transmission, especially in low transmission settings. [71] We show that the
relationship between MOI and parasite prevalence is not well captured by models with homo-
geneous transmission as field studies have shown that even in low transmission settings, MOI
levels above the limiting value of 1 are a common occurrence. [27]

From a modelling perspective, the existence of ‘hotspots’ where stable transmission occurs
only within a small, and geographically focused proportion of the population can explain these
observations. Within the hotspot, transmission (e.g., as measured by local or household-based
EIR) can be much higher than in the surrounding areas, causing a small proportion of the pop-
ulation to exhibit higher MOI levels. Fig 6A shows that MOI is a nonlinear function of preva-
lence and especially at low transmission intensities (e.g., as indicated by overall parasite
prevalence of <10%), MOI changes very little with changing overall prevalence. This implies
that average MOI is unlikely to be a very sensitive measure of the overall transmission intensity
in low transmission settings and that local EIR variation will need to be taken into consider-
ation when deducing transmission intensity based on MOI. Genotyping however, may also
represent an opportunity to ‘triangulate’ hotspot locations and guide focalised malaria control
in very low transmission settings.

It should be noted that spatial heterogeneity is not the only type of heterogeneity that deter-
mines human exposure and infection, and thus MOI distribution in a population. Several other
important factors such as age-related exposure and occupational exposure, and the related
degree of acquired (clone-specific) immunity will also influence the MOI distribution in a
population.
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Fig 7. MOI in Sub-Populations Living Inside or Outside of Hotspots. The extent of the potential hotspots
is given in Fig 4. The population within the hotspots exhibits higher average MOI and a higher parasite
prevalence consistent with field observations. [43]

doi:10.1371/journal.pone.0164054.9007

It is very likely, that Anopheles flight and host seeking behaviour significantly influences the
extent and focus of transmission hotspots. Different species of Anopheles mosquitoes exhibit
very different behaviour. Although it has been shown that Anopheles mosquitoes are able to
fly, or be carried by wind, for >10 km, recapture rates are often very low (<1%) making it diffi-
cult to estimate the distance naturally flown by an individual mosquito, especially when an
ample host reservoir is present. [72, 73] We assume that the majority of mosquitoes stay in
close proximity to suitable hosts and rarely fly long distance since Anopheles farauti s.l., which
is the main vector in coastal lowlands on the North Coast of PNG has been shown to exhibit
this behaviour. [74-77]

All models discussed here (the spatial model, the non-spatial model incorporating inter-
human heterogeneity and the homogeneous null-model) exhibit a very steep increase in MOI
at prevalence rates > 80%, whereas the data collected in the literature review as part of the pres-
ent study, suggests a more moderate increase. It should be noted, that all available molecular
techniques to determine MOI will underestimate true MOI due to the non-detection of minor-
ity clones. Therefore, due to the fact that the present model does not account for detectability
(e.g., the probability to detect a clone based on different parasite density of clones in the blood
of an individual), MOI is likely to be overestimated by the models [78]. At high transmission,
an increasing proportion of people are infected with minority clones for which the probability
of detection is lower. [41] Therefore, it is expected that detectability reduces observed MOI at
high transmission levels much more than at low transmission levels. However, data on within-
host clone distribution and related detectability are very sparse. In addition, it is likely that
clone specific acquired immunity and the related clone specific clinical incidence shapes
regional clone abundance profiles. Studies that relate parasite genotypes with clinical incidence
are required to calibrate more complex multi-clone models which include clinical incidence
and treatment. [79]

1.0- < Hotspot Regimen Homogeneous Regimen=
0.84 )
le;\\{z}
(O] B
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(]
©
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o
0.2+
0.0 ; : : .
0.0 0.5 1.0 15 20

Mosquito to Human Ratio

Fig 8. Relationship Between Mosquito-to-Human Ratio and Equilibrium Prevalence. While spatial
transmission features lead to higher predicted prevalence in overall low transmission settings, these features
result in a lower rise in predicted prevalence with increasing mosquito-to-human ratio (as transmission is still
locally confined even at higher mosquito-to-human ratios).

doi:10.1371/journal.pone.0164054.9008
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Challenges for the development of models such as the one presented here, are the require-
ments for much more detailed parasitological (clone specific growth, clinical incidence rates),
entomological (mosquito dispersion and host seeking) and human behavioural (movement
and migration) data, efficient programming and supercomputer facilities to minimize run
time.

However, the current model, although subject to substantial limitations, illustrates clearly
that individual-based, spatial approaches are required to capture important features of micro-
scale malaria transmission, especially in low transmission settings. As these types of settings
will become more and more common as malaria infection rates decline, it will be very benefi-
cial to incorporate spatial approaches into prediction frameworks aimed at informing malaria
control in low transmission and pre-elimination settings.

Supporting Information

S1 Table. Results from Literature Review on msp2 MOI vs. Malaria Prevalence. The search
query ‘falciparum multiplicity infection prevalence msp2’ resulted in 33 hits. Data for all ages
was used.
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quito Population. The video shows a gradual increase of mosquito numbers based on our
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