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Abstract 

The tumor suppressor p53 is mutated in ~50% of human cancers. P53 is activated by a 

range of stimuli and regulates several cellular processes, including apoptotic cell death, 

cell cycle arrest, senescence and DNA repair. P53 induces apoptosis via transcriptional 

induction of the BH3-only proteins PUMA and NOXA and cell cycle arrest via p21. 

Induction of these processes was proposed to be critical for p53-mediated tumor 

suppression. It is therefore surprising that mice lacking PUMA, NOXA and p21 as well as 

mice bearing mutations in p53 that impair the transcriptional activation of these genes, 

are not tumor prone, unlike mice lacking p53 function, which spontaneously develop 

tumors with 100% incidence. These p53 target genes and the processes they regulate 

may, however, impact differently on tumor development depending on the oncogenic 

drivers. For example, loss of PUMA enhances c-MYC-driven lymphoma development in 

mice but, interestingly, the acceleration was less impressive compared to that caused by 

the loss of even a single p53 allele. Different studies have reported that loss of p21 can 

either accelerate, delay or have no impact on tumorigenesis. In an attempt to resolve 

this controversy we examined whether loss of p21-mediated cell cycle arrest cooperates 

with PUMA deficiency in accelerating lymphoma development in Eµ-Myc mice (over-

expressing c-MYC in B lymphoid cells). We found that Eµ-Myc mice lacking both p21 

and PUMA (Eµ-Myc;Puma-/-;p21-/-) developed lymphoma at a rate comparable to Eµ-

Myc;Puma-/- animals, notably with considerably longer latency than Eµ-Myc;p53+/- mice. 

Loss of p21 had no impact on the numbers, cycling or survival of pre-leukemic Eµ-Myc B 

lymphoid cells, even when PUMA was lost concomitantly. These results demonstrate 

that even in the context of deregulated c-MYC expression, p53 must suppress tumor 

development by activating processes apart from, or in addition to PUMA-mediated 

apoptosis and p21-induced cell cycle arrest.  
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Introduction 

The tumor suppressor p53 and the effector processes that are activated by this 

transcription factor impose a critical barrier to tumor formation 1. p53’s essential role in 

blocking the progression of nascent neoplastic cells to malignancy is evidenced by the 

fact that ~50% of spontaneous human cancers bear mutations in p53, the majority 

residing in its DNA binding domain. Moreover, another ~40% of human cancers contain 

other abnormalities that impair the p53 signaling pathway, for example over-expression 

of negative regulators of p53, such as MDM2 (Mouse Double Minute 2, called HDM2 in 

humans), or mutation or epigenetic silencing of downstream target genes, such as Puma 
2-4. Accordingly, mice deficient for p53 function develop thymic lymphoma or more rarely 

sarcoma with 100% incidence by ~280 days of age 5, 6. 

In nascent neoplastic cells, p53 is activated in response to oncogene activation, such as 

deregulated expression of c-MYC or mutant RAS 7. Activation of these onco-proteins 

triggers expression of the tumor suppressor p14ARF (Alternative Reading Frame; 

human)/p19ARF (mouse), which disrupt the p53-MDM2 interaction. This prevents 

ubiquitination and proteasomal degradation of p53, leading to p53 accumulation with 

consequent effector pathway activation 8-10. 

p53 plays a critical tumor suppressive role in the development of cancers driven by 

deregulated expression of c-MYC, which promotes aberrant cell proliferation. For 

example, loss of a single allele of p53 substantially accelerates lymphoma development 

in Eµ-Myc mice 11, 12, which over-express c-MYC in their B lymphoid cells 13. Moreover, 

defects in the ARF-MDM2-p53 pathway are selected for in ~20% of lymphomas that 

arise spontaneously in Eµ-Myc mice 14. 

Loss of the BH3-only protein, PUMA (p53-upregulated modulator of apoptosis), a direct 

transcriptional target of p53 that is critical for its ability to kill cells 15, 16, substantially 

accelerates c-MYC-driven lymphoma development 11, 12. However, lymphoma onset in 

Eµ-Myc mice lacking PUMA and even in those lacking both PUMA and NOXA, another 

pro-apoptotic BH3-only protein that is a direct transcriptional target of p53, is still 

considerably slower compared to Eµ-Myc;p53+/- mice 11. This suggests that processes in 

addition to PUMA- and NOXA-mediated apoptosis must contribute to p53-dependent 

suppression of Eµ-Myc induced lymphoma development.  

Unrestrained cellular proliferation is a hallmark of cancer 17. The cyclin-dependent kinase 

(CDK)-inhibitor p21 (protein 21 KDa, also called CIP1 or WAF1) is a downstream target 

of p53 that is critical for its ability to induce G1/S boundary cell cycle arrest and 
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senescence (although other p53 target genes are also critical for the latter, e.g. PML, 

PAI-1) 18. Surprisingly, despite p21’s critical role in restraining cellular proliferation, p21-

deficient mice are not tumor prone 18, 19 and mutations in the p21 gene are only rarely 

found in human cancers 20-22. The role of p21 in tumorigenesis therefore remains 

controversial. Various studies using carcinogens	
  or transgenic mice expressing different 

oncogenes reached discordant conclusions, namely that p21 can either suppress or 

promote tumor development, or in some cases it had no discernible impact. For 

example, in chemical carcinogen-induced models 23, 24, the MMTV-Ras–driven mammary 

adenocarcinoma mouse model 25 and in the mutant APC–driven model of intestinal 

cancer (APC1638+/- mice) 26 loss of p21 was reported to accelerate tumorigenesis. This 

indicates that at least in these contexts p21 functions as a tumor suppressor. In contrast, 

loss of p21 was found to delay thymic lymphoma development caused by loss of the 

DNA-damage response activator ATM 27, or by low dose γ-radiation 28. Similarly, loss of 

p21 delayed tumor development in the murine MMTV-MYC mammary cancer model 29. 

Thus, in these settings p21-mediated cell cycle arrest may promote tumorigenesis. 

Finally, in a murine leukemia virus-induced T cell lymphoma model 30 and in c-MYC-

driven pre-B/B lymphomagenesis loss of p21 had no impact on the rate of tumor 

development 19.  

Studies using gene-targeted mice revealed that cooperation between p21-induced cell 

cycle arrest and induction of apoptosis is critical for p53-mediated tumor suppression 31. 

It was also suggested that expression of p21 and consequent induction of cell 

senescence is required to suppress c-MYC-driven tumorigenesis when p53-mediated 

apoptosis is impaired 32. However, mice lacking p21 plus the essential mediators of p53-

mediated apoptosis, PUMA and NOXA (Puma-/-;Noxa-/-;p21-/-) 33 and mice bearing 

mutations in p53 that impair its ability to induce these target genes 34 were not 

abnormally tumor prone, the latter animals even in context of expression of oncogenes, 

such as mutant Ras. In order to directly test the overlapping roles between p21–

mediated cell cycle arrest/senescence and PUMA-mediated apoptosis in the 

suppression of c-MYC-driven lymphomagenesis we generated Eµ-Myc;Puma-/-;p21-/- 

mice. The analysis of these animals revealed that loss of p21 had no impact on the pre-

leukemic state, rate of lymphoma development and disease severity imparted by 

deregulated c-MYC expression even when PUMA was also absent. This demonstrates 

that even in the context of the potent oncogenic driver, c-MYC, p53 must suppress 
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tumorigenesis through processes in addition to induction of apoptosis and cell cycle 

arrest/senescence. 

 

Results 

Expression of p21 is increased upon DNA damage in pre-leukemic Eµ-Myc B 

lymphoid cells   

The Eµ-Myc mice used in this study overexpress c-MYC in B lymphoid cells and have 

been employed extensively to study the impact of defects in the p53-pathway in 

tumorigenesis 11, 12, 14. Since there is considerable controversy on whether de-regulated 

c-MYC expression is able to repress the induction of the cell cycle inhibitor p21, we 

investigated the impact of c-MYC overexpression on p21 protein expression in pre-

leukemic B lymphoid (CD19+) cells. These cells were isolated from the bone marrow of 

4-week old Eµ-Myc mice (before they present with malignant lymphoma) and compared 

to B lymphoid cells from wt animals. Western blot analysis revealed that after DNA 

damage elicited by treatment with etoposide, p21 was induced in the Eµ-Myc B lymphoid 

cells at least to the same extent as in wt B lymphoid cells (Figure 1). PUMA protein could 

be readily detected in etoposide treated B lymphoid cells from both Eµ-Myc and wt B 

lymphoid cells but, as previously reported 11, PUMA levels were already high in B 

lymphoid cells from Eµ-Myc mice (Figure 1). These data show that deregulated c-MYC 

expression does not prevent the DNA damage induced increase in p21 expression in B 

lymphoid cells. They also show that deregulated c-MYC expression causes an increase 

in PUMA but not p21 expression in pre-leukemic B lymphoid cells. 

 

 Loss of p21 does not further accelerate the onset of lymphoma in Eµ-Myc mice 

beyond the impact of loss of PUMA 

MYC-driven lymphoma development is dramatically accelerated by loss of p53 11, 14, 35. 

Loss of PUMA, the major mediator of p53-induced apoptosis, accelerates lymphoma 

development in Eµ-Myc mice to a considerably lesser extent than loss of even a single 

allele of p53. We therefore examined the combined impact of loss of the cyclin 

dependent kinase inhibitor, p21, and the critical p53 activated apoptosis initiator, PUMA, 

on lymphoma development by generating Eµ-Myc;Puma-/-;p21-/- mice. Consistent with 

previous reports 11, 12, loss of PUMA significantly accelerated lymphoma development in 

Eµ-Myc mice (median survival, Eµ-Myc: 163 days, Eµ-Myc;Puma-/-: 96 day p=0.007; 

Figure 1). In contrast, and consistent with a previous publication 19, loss of p21 did not 
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significantly alter the rate of lymphoma development in Eµ-Myc mice (median survival: 

274 days, p=0.33 compared to Eµ-Myc mice; Figure 2).  Interestingly, the median 

lymphoma-free survival of Eµ-Myc;Puma-/-;p21-/- (93 days) was comparable to that of Eµ-

Myc;Puma-/- mice (96 days, p=0.73; Figure 2). These results demonstrate that loss of 

p21 does not cooperate with loss of PUMA to accelerate MYC-driven lymphoma 

development. 

 

Impact of combined loss of p21 and PUMA on lymphoma burden in Eµ-Myc mice 

We next investigated the impact of combined loss of p21 and PUMA on lymphoma 

burden in sick Eµ-Myc mice by measuring spleen weights and lymphocyte counts in 

peripheral blood. Spleen weights and peripheral lymphocyte counts in sick Eµ-

Myc;Puma-/-;p21-/- mice did not differ significantly from those observed in lymphoma-

burdened Eµ-Myc;Puma-/- mice (p=0.11 and p=0.06, respectively) (Figure 3A). 

Immunophenotyping of lymphomas from sick Eµ-Myc;Puma-/- and Eµ-Myc;Puma-/-;p21-/- 

animals showed similar percentages of surface immunoglobulin sIg- pre-B and sIg+ B cell 

lymphomas (Figure 3B). 

 

Impact of combined loss of p21 and PUMA on pre-leukemic pre-B cells and sIg+ B 

cells in Eµ-Myc mice  

In Eµ-Myc mice lymphomas arise from abnormally cycling pre-B cells 36, 37. Loss of 

PUMA enhances the survival of these pre-leukemic cells, increasing their risk of 

acquiring collaborating oncogenic lesions, and thereby accelerates c-MYC-driven 

lymphomagenesis 11, 12. We investigated the impact of combined loss of p21 and PUMA 

on the pre-leukemic B lymphoid cells in Eµ-Myc mice. The numbers of pre-leukemic pre-

B cells and sIg+ B cells in the bone marrow of young (~4 week-old; i.e. before they 

present with malignant, clonal lymphoma) Eµ-Myc;Puma-/-;p21-/- mice were not 

significantly different from those of Eµ-Myc;Puma-/- mice (ppre-B=0.33; psIg-B=0.99; Figure 

4A). The pre-leukemic pre-B cells and sIg+ B cells from Eµ-Myc mice die more rapidly in 

culture compared to the corresponding cells from wt mice 38 and this cell death can be 

greatly delayed by loss of PUMA 11 or over-expression of pro-survival BCL-2 38, 39. The 

pre-leukemic pre-B cells and sIg+ B cells from young Eµ-Myc;Puma-/-;p21-/- mice did not 

survive significantly better at 24 and 48 h in simple tissue culture medium (no added 

cytokines) when compared to the corresponding cells from pre-leukemic Eµ-Myc;Puma-/- 

mice (p24h=0.29; p48h=0.45; Figure 4B-C).  
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The CDK inhibitor p21 inhibits cell cycle progression 18. We therefore examined the 

impact of loss of p21 alone or in combination with loss of PUMA on the distribution of 

pre-leukemic Eµ-Myc pre-B and sIg+ B cells in the G1, S and G2/M phases of the cell 

cycle. Young Eµ-Myc mice of all genotypes tested presented with more pre-leukemic 

pre-B cells and sIg+ B cells in the S and G2/M phases of the cell cycle compared to wt 

mice (Figure 4D). Notably, there was no significant difference in cell cycle distribution 

between pre-B cells and sIg+ B cells from Eµ-Myc, Eµ-Myc;p21-/-, Eµ-Myc;Puma-/- and 

Eµ-Myc;Puma-/-;p21-/- mice (Figure 4D). These results demonstrate that loss of p21 does 

not alter the cycling of pre-leukemic B lymphoid cells in Eµ-Myc mice on its own or even 

when PUMA is also lost. 

 

DISCUSSION 

Over-expression of c-MYC is observed in ~70% of all human cancers; therefore 

understanding the tumor suppressive mechanisms that curtail c-MYC-driven 

tumorigenesis may provide insight for improved treatment of such cancers. p53 potently 

suppresses c-MYC-induced lymphoma development 11, 14, 35. 	
  
p53 activates several tumor suppressive processes, including apoptosis, cell cycle 

arrest, senescence and DNA repair 4. The importance of p53-mediated apoptosis in 

suppressing lymphoma development in Eµ-­‐Myc mice is well established. Loss of PUMA 

or combined loss of PUMA and NOXA, the essential mediators of p53-induced apoptosis 
15, 16, accelerate lymphoma development in Eµ-Myc mice, albeit to a substantially lesser 

extent than loss of even a single allele of p53 11, 12. Hence loss of other p53-related 

processes beyond loss of apoptosis induction by PUMA (and NOXA) must be involved to 

achieve this substantial acceleration in c-MYC-driven lymphomagenesis caused by loss 

of only one allele of p53. The p53 target p21 induces G1/S boundary cell cycle arrest 

and/or senescence upon stress signals, such as DNA damage. Much controversy exists 

in regards to whether p21 functions as a tumor suppressor or a tumor promoter (or has 

no impact) in general and in the context of deregulated c-MYC expression. We found 

that upon DNA damage the levels of p21 were markedly increased in pre-leukemic B 

lymphoid cells from Eµ-Myc mice, demonstrating that deregulated c-MYC expression 

does not prevent the induction of this cell cycle inhibitor. Interestingly, deregulated c-

MYC expression on its own caused an increase in PUMA but not p21. Since the Puma 

and p21 genes are both direct p53 targets 40, this finding suggests that their expression 

must also be affected by regulators in addition to p53.  
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Consistent with a previous report we found that loss of p21 on its own had no impact on 

lymphoma development in Eµ-Myc mice 19. Moreover, we found that combined loss of 

p21 and PUMA accelerated c-MYC-induced lymphomagenesis no more than loss of 

PUMA alone. Remarkably, lymphoma development in Eµ-Myc;Puma-/-;p21-/- mice was 

much slower compared to Eµ-Myc;p53+/- mice. In a similar vein, it was found that 

impaired induction of both PUMA and p21 (due to a mutation in p53, p5325,26) 

accelerated c-MYC-driven lymphoma development considerably less than loss of one 

allele of p53 41. The inability of loss of p21 to cooperate with PUMA-deficiency in 

accelerating c-MYC-driven lymphomagenesis may be explained by the finding that c-

MYC over-expression down-regulates p21 levels 42. However, we found that p21 can still 

be induced in cells with deregulatred c-MYC expression, at least in the context of DNA 

damage (see above). Moreover, it was previously shown that Eµ-Myc mice bearing the 

R172P mutant p53, which is defective in Puma induction but could still transcriptionally 

activate p21, exhibited slower lymphoma onset than Eµ-Myc;p53+/- mice (although still 

faster than Eµ-Myc controls). The lymphomas in the Eµ-Myc;p53 (R172P mutant) mice 

exhibited increased p21 expression and bore markers of senescence, suggesting that c-

MYC-overexpression is unable to block p21 induction in these cells 32. 

So, the question remains, which processes in addition to PUMA-induced apoptosis 

contribute to p53-mediated tumor suppression in Eµ-Myc mice? p53 has been shown to 

also regulate DNA repair, cellular metabolism and cell division through mechanisms not 

involving p21 43, 44. It appears likely that some of these processes cooperate with p53-

induced apoptosis in tumor suppression in the context of deregulated c-MYC expression 

and possibly also in the context of other drivers of neoplastic transformation. In 

conclusion, this work and previous studies on spontaneous tumor development 33, 34, 45 

demonstrate that p53 must suppress tumorigenesis by activating a broad range of 

cellular processes, where the relative contributions of apoptosis, cell cycle arrest, 

senescence and other processes may vary depending on the nature of the oncogenic 

driver and cell type.   
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Figures 

 

Figure 1. Expression of p21 is increased upon DNA damage in pre-leukemic Eµ-

Myc B lymphoid cells  

Western blot analysis of p21, PUMA and β-actin (loading control) on extracts from pre-

leukemic B lymphoid (CD19+) cells from the bone marrow of Eµ-Myc mice and control B 

lymphoid cells from wt mice, that had been left untreated (-) or (+) treated for 6 h with 

etoposide. 

CD19+ B cells were isolated from the bone marrow of two wt and two Eµ-Myc mice (all 4 

week-old) by MACS cell separation (Miltenyi Biotech, Bergisch Gladbach, Germany) 

using CD19 MicroBeads and LS columns according to the manufacturer’s protocols. 

Cells were cultured at 1.5 x106/mL for 6 h with 50 µM Q-VD-OPH (MP Biomedicals; 

caspase inhibitor to prevent cell degradation) alone or plus 1 µM etoposide (Sigma). 
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Protein extracts were prepared by lysis in RIPA buffer (300 mM NaCl, 2% IGEPAL CA-

630, 1% deoxycholic acid, 0.2% SDS, 100 mM Tris-HCl pH 8.0) containing complete 

ULTRA protease inhibitors (Roche, Basel, Switzerland) and 1 mM PMSF (Sigma). 

Western blotting was carried out using 25 µg total protein per sample run on NuPAGE 

Bis-Tris gels (Life Technologies). Proteins were transferred onto nitrocellulose 

membranes with an iBlot (Life Technologies) according to the manufacturer’s protocols. 

Blots were probed with antibodies against p21 (rabbit polyclonal ab7960, Abcam), 

PUMA (rabbit polyclonal ab27669, Abcam) and β-actin (mouse monoclonal AC-74, 

Sigma-Aldrich; loading control). 

 

Figure 2. Loss of p21 does not further accelerate lymphoma development in Eµ-

Myc;Puma-/- mice. 

Kaplan-Meier survival curves showing rate of lymphoma development in Eµ-Myc 

transgenic mice of the indicated genotypes. Median survival Eµ-Myc = 163 days; Eµ-

Myc;p53+/-= 32 days (p<0.0001 vs Eµ-Myc);  Eµ-Myc;Puma-/- = 96 days (p=0.007 vs Eµ-

Myc); Eµ-Myc;p21-/- = 274 days (p=0.33 vs Eµ-Myc), Eµ-Myc;Puma-/-;p21-/- = 93 days, 

p=0.0002 vs Eµ-Myc). There was no significant difference in lymphoma onset between 

Eµ-Myc;Puma-/- and Eµ-Myc;Puma-/-;p21-/- mice (p=0.73). The numbers of Eµ-Myc, Eµ-

Myc;p21-/- , Eµ-Myc;Puma-/-, Eµ-Myc;Puma-/-;p21-/- and Eµ-Myc;p53+/- mice followed were 

28, 26, 16, 30 and  7, respectively.  

Experiments with mice were conducted according to the guidelines of the Walter and 

Eliza Hall Institute of Medical Research Animal Ethics Committee. The Eµ-Myc 13, Puma-

/- 15, p21-/- 46 and p53−/− 6 mice, females and males, were all maintained on a C57BL/6 

background. Protocols for PCR-based genotyping of these mice will be provided upon 

request. Animal survival data were plotted using Kaplan-Meier curves and compared 

using Log-Rank Mantel-Cox test. P values of <0.05 were considered significant. 

 

Figure 3. Lymphoma burden in sick Eµ-Myc mice of the different genotypes. 

(A) Spleen weights and lymphocyte counts in the blood of sick Eµ-Myc transgenic mice 

of the indicated genotypes. Lymphocyte counts were determined by using the Advia 

automated hematology system (Bayer). Data represent mean cell counts±SEM. Each 

circle represents the lymphocyte count or spleen weight from a single mouse. No 

significant differences were observed in blood lymphocyte counts or spleen weights 

between sick Eµ-Myc;Puma-/-;p21-/- and Eµ-Myc;Puma-/- mice (p=0.11 and p=0.06, 
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respectively; as determined by unpaired t-test analysis). (B) The proportions of sIg- pre-B 

and sIg+ B cell lymphomas in sick Eµ-Myc mice of the indicated genotypes. The numbers 

of Eµ-Myc, Eµ-Myc;p21-/- , Eµ-Myc;Puma-/- and Eµ-Myc;Puma-/-;p21-/- lymphomas 

analyzed were 10, 5, 7 and 10, respectively. 

Lymphoid organs from lymphoma-burdened mice were harvested, and single-cell 

suspensions prepared using 100 µM sieves (BD BioSciences, San Jose, CA). Cells (5 × 

104) were stained for surface markers using fluorochrome–conjugated (fluorescein 

isothiocyanate, APC, R-phycoerythrin; Life technologies, Mulgrave, VIC, Australia) 

monoclonal antibodies to B220 (RA3-6B2), IgM (5.1), IgD (11-26C) and C-KIT (ACK4) 

for 30 min in balanced salt solution supplemented with 2% fetal calf serum (Life 

Technologies, Mulgrave, VIC, Australia). Cells were analyzed in a FACS-Calibur (BD 

BioSciences, San Jose, CA). Cell counts were determined using a CASY counter (BD 

BioSciences, San Jose, CA). 

 

Figure 4. Impact of combined loss of PUMA and p21 on the accumulation, survival 

and cycling of pre-leukemic Eµ-Myc pre-B cells  

Pre-leukemic analysis was conducted on 4-5 week old mice, females or males, of the 

indicated genotypes. The numbers of Eµ-Myc, Eµ-Myc;p21-/-, Eµ-Myc;Puma-/-, ,Eµ-

Myc;Puma-/-;p21-/-, and wt mice analyzed were 3, 3, 3, 4 and 4, respectively, and the 

mean ±SEM are indicated. (A) Enumeration of pre-B cells and sIg+ B cells in the bone 

marrow (data presented per femur) of mice of the indicated genotypes. (B) In vitro 

survival assay of FACS sorted pre-B cells (B220+C-KIT-sIg-) and sIg+ B cells (B220+C-

KIT-IgM/IgD+) in normal medium without addition of cytokines. Cell survival was 

measured at 0, 24 and 48 h by PI staining and flow cytometric analysis. (C) Eµ-

Myc;Puma-/-;p21-/- pre-B cells and sIg+ B cells did not survive significantly better 

compared to Eµ-Myc;Puma-/- pre-B or sIg+ B cells (pre-B cells: p24h=0.22; p48h=0.94; sIg+ 

B cells: p24h=0.29; p48h=0.45; as determined by unpaired t-test analysis). Flow cytometric 

analysis was performed as indicated in Figure 2. For cell sorting and cell survival 

assays, bone marrow cells were extracted by flushing both femurs with PBS containing 

10% FCS. Red blood cells were depleted prior to staining with surface marker specific 

antibodies (see above) and cell sorting was performed on a BD FACSAriaIII (BD 

BioSciences, San Jose, CA). Cells were plated at 5x105 cells/well in DMEM containing 

10% FCS and 50 µM β-mercaptoethanol without addition of cytokines. Cell viability was 

assessed by staining with propidium iodide (2 µg/mL) and analysis on a FACS-Calibur 
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(BD BioSciences, San Jose, CA). (D) Cell cycle analysis of pre-leukemic pre-B cells and 

sIg+ B cells from 3-5 week-old mice of the indicated genotypes. No significant 

differences in cell cycle distribution were observed (as determined by unpaired t-test 

analysis). Pre-B cells from Eµ-Myc (G1=43%; S=48%; G2/M=8%); Eµ-Myc;Puma-/- 

(G1=51%; S=42%; G2/M=5%); Eµ-Myc;p21-/- (G1=44%; S=47%; G2/M=7%) and Eµ-

Myc;Puma-/-;p21-/- (G1=53%; S=39%; G2/M=6%) compared to wild-type cells (G1=69%; 

S=23%, G2/M=4%). sIg+ B cells from Eµ-Myc (G1=50%; S=40%; G2/M=7%); Eµ-

Myc;Puma-/- (G1=52%; S=40%; G2/M=5%); Eµ-Myc;p21-/- (G1=56%; S=36%; G2/M=6%) 

and Eµ-Myc;Puma-/-;p21-/- (G1=57%; S=34%; G2/M=6%) mice compared to wt mice 

(G1=88%; S=7%; G2/M=3%).  

For cell cycle analysis, bone marrow cell suspensions were surface stained with 

antibodies to B220, IgM and IgD (see above), fixed and permeabilized with the 

Transcription Factor staining Buffer Set (eBioscience, San Diego, CA, USA), then 

stained with Propidium Iodide/RNase staining solution (Cell Signaling Technology, 

Danvers, MA, USA) for 30 min prior to analysis on an LSR II flow cytometer (BD 

Biosciences). Cell cycle distribution was determined using FlowJo employing the Watson 

pragmatic model (FlowJo, Ashland, US). 
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