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Abstract

Background: Papua New Guinea exhibits a complex malaria epidemiology due to diversity in malaria parasites,
mosquito vectors, human hosts, and their natural environment. Heterogeneities in transmission and burden of
malaria at various scales are likely to affect the success of malaria control interventions, and vice-versa. This
manuscript assesses changes in malaria prevalence, incidence and transmission in sentinel sites following the first
national distribution of long-lasting insecticidal nets (LLINs).

Methods: Before and after the distribution of LLINs, data collection in six purposively selected sentinel sites
included clinical surveillance in the local health facility, household surveys and entomological surveys. Not all
activities were carried out in all sites. Mosquitoes were collected by human landing catches. Diagnosis of malaria
infection in humans was done by rapid diagnostic test, light microscopy and PCR for species confirmation.

Results: Following the roll-out of LLINs, the average monthly malaria incidence rate dropped from 13/1,000
population to 2/1,000 (incidence rate ratio = 0.12; 95 % CI: 0.09–0.17; P < 0.001). The average population prevalence
of malaria decreased from 15.7 % pre-LLIN to 4.8 % post-LLIN (adjusted odds ratio = 0.26; 95 % CI: 0.20–0.33; P < 0.
001). In general, reductions in incidence and prevalence were more pronounced in infections with P. falciparum
than with P. vivax. Additional morbidity indicators (anaemia, splenomegaly, self-reported fever) showed a decreasing
trend in most sites. Mean Anopheles man biting rates decreased from 83 bites/person/night pre-LLIN to 31
post-LLIN (P = 0.008). Anopheles species composition differed between sites but everywhere diversity was lower
post-LLIN. In two sites, post-LLIN P. vivax infections in anophelines had decreased but P. falciparum infections had
increased despite the opposite observation in humans.

Conclusions: LLIN distribution had distinct effects on P. falciparum and P. vivax. Higher resilience of P. vivax may be
attributed to relapses from hypnozoites and other biological characteristics favouring the transmission of P. vivax.
The effect on vector species composition varied by location which is likely to impact on the effectiveness of LLINs.
In-depth and longer-term epidemiological and entomological investigations are required to understand when and
where residual transmission occurs and whether observed changes are sustained.
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Background
Papua New Guinea (PNG) exhibits a diverse and com-
plex malaria epidemiology [1]. Four Plasmodium species
(P. falciparum, P. vivax, P. ovale and P. malariae) are
endemic and more than ten Anopheles species filling dif-
ferent ecological niches have been incriminated in the
parasite’s transmission [2]. Historical malaria control
measures in the 1960s and 1970s included indoor re-
sidual spraying of insecticides, mass drug administration
as well as environmental management in certain areas
resulting in substantial initial reductions in malaria in
many locations [3, 4]. The cessation of the spraying pro-
gram in the 1980s coinciding with the decentralization
of responsibilities for malaria control as well as emerging
resistance of the malaria parasites to commonly used
drugs [5, 6] led to a subsequent resurgence, particularly
of P. falciparum malaria, across most parts of PNG [7].
In 2004, the Government of Papua New Guinea re-

intensified its malaria control efforts with the financial
support of a round 3 grant from the Global Fund to
Fight AIDS, Tuberculosis and Malaria. The central com-
ponent of this program was the first country-wide free
distribution of long-lasting insecticidal mosquito nets
(LLIN) [8]. Insecticide-treated nets had been shown to
reduce the incidence and prevalence of falciparum-
malaria in children in PNG as early as 1985 [9]. Yet,
while these results were later reflected in policy docu-
ments [10], little effort was made in practice to scale up
mosquito net use. Coverage with mosquito nets, particu-
larly insecticide-treated nets, therefore remained patchy

and low in most parts of the country until 2004 [11–13].
The Global Fund supported program that subsequently
facilitated a single round of LLIN distribution resulted in
an increase in ownership and use of bednets, particularly
LLINs. A national household survey after the distribu-
tion found 80 % of all households owning a mosquito
net of any type and 65 % owning a LLIN, while 33 % of
people reported to sleep under a LLIN [8]. In six senti-
nel surveillance sites established by the Papua New
Guinea Institute of Medical Research (PNGIMR), aver-
age LLIN ownership increased from 9 % before the dis-
tribution to 89 % thereafter and LLIN use rose from 6 to
55 % [8].
This manuscript assesses malaria morbidity and trans-

mission indicators in sentinel sites before and after the
LLIN distribution. The study was part of the evaluation
of the Global Fund round 3 malaria grant.

Methods
Study sites
Sentinel site locations were selected purposively in 2008
in places which were yet to be covered with the LLIN
campaign. The sites were located in the Momase and
Highlands regions of the main island of PNG (Fig. 1)
and consisted of three to four randomly selected villages
in the catchment area of a sentinel health facility. Five
sites were located in Momase: Dreikikir in the hills on
the edges of the Sepik River basin (altitude 200–400 m),
Finschhafen on the Morobe coastline of the Huon pen-
insula (altitude 0–50 m), Sausi in the Ramu River valley

Fig. 1 Location of sentinel sites used for (1) clinical surveillance, (2) household surveys, and (3) entomological surveys. Major rivers and lake
in blue
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(altitude 100–250 m), Mumeng at an intermediate alti-
tude (450–1,550 m) along the road to Bulolo and Wau
and Yapsie/Yapsiei near the Indonesian border along a
tributary of the Sepik River (altitude 150–250 m). Tabi-
buga in the Jimi Valley was the only site in the High-
lands (altitude 1,350–1,500 m).

Data collection
Data were collected prior to the LLIN campaign (10/
2008–08/2009) and one year later after LLINs had been
distributed (10/2009–08/2010). Data collection included
clinical surveillance in the local health centre in three
sites (Dreikikir, Mumeng and Sausi) over a period of ap-
proximately two months pre- and post-LLIN, coinciding
roughly with the main malaria transmission season. A
household survey in two to three randomly selected vil-
lages in the health centre’s catchment area was carried
out in five sites (Finschhafen, Mumeng, Sausi, Tabibuga
and Yapsie) and entomological surveys were conducted
in five sites (Dreikikir, Finschhafen, Mumeng, Sausi and
Yapsie). For operational reasons not all activities could
be carried out in all sites (Additional file 1: Table S1).

Clinical surveillance
For the clinical surveillance, all patients attending the
health facility were screened for a history of fever within
the previous three days. A research nurse collected a
finger-prick blood sample from all consenting fever pa-
tients and malaria was diagnosed by rapid diagnostic test
(RDT; ICT Malaria Combo, ICT Diagnostics, South Af-
rica). From the same blood sample, thick and thin blood
films were prepared on one slide and haemoglobin (Hb)
levels were measured using a portable analyser (Hemo-
Cue Hb 201+, HemoCue AB, Sweden). Anaemia and se-
vere anaemia were defined in accordance with World
Health Organization definitions applying age group-
specific cut-offs and altitude adjustment [14]. A dry
blood spot was prepared on Whatman 3MM filter paper
(GE Healthcare), whenever possible, and stored in indi-
vidual plastic zip-bags with desiccant silica gel. Axillary
temperature was measured with an electronic thermom-
eter, and in patients between 2 and 9 years of age the
spleen was palpated and graded according to Hackett
[15]. Demographic details of the patient were recorded
in a paper form. The subsequent clinical assessment,
final diagnosis and treatment were then taken over by
the health facility’s clinician following standard proce-
dures and results were recorded on the patient’s study
form.

Household survey
For the household survey, three (in the case of Yapsie
four) villages were randomly selected from the sentinel
health facility’s catchment area. In each village, 30 to 35

households were randomly sampled from a list of all
households. A structured questionnaire about the cover-
age with malaria control interventions was administered
to the heads of sampled households. A finger-prick
blood sample was collected from household members
above five months of age for preparing a microscopy
slide, a dry blood spot on filter paper, and for measuring
Hb levels as described above. Symptomatic individuals
were diagnosed on the spot using a malaria RDT and
positive cases were treated according to standard treat-
ment guidelines [16]. Axillary temperature was mea-
sured with an electronic thermometer. Details of the
household survey methodology have been described in
more details elsewhere [8, 17].

Entomological surveys
Entomological surveys were conducted in two villages
per site. Mosquitoes were collected by outdoor human
landing catch from 6 households per village prior to the
LLIN distribution and again 12 months later. The num-
ber of person-nights per collection ranged from 16 to
48. Collectors worked in pairs with one member collect-
ing from 18:00 to 24:00 h and the second collecting
from 24:00 to 06:00 h. Mosquitoes were stored per col-
lection hour and identified to morphological species be-
fore storage on silica gel. Lysates from whole mosquitoes
were screened for P. falciparum, P. vivax 210 and P.
vivax 247 circumsporozoite proteins by enzyme-linked
immunosorbent assay [18]. DNA was extracted from a
portion of the lysate using DNEasy blood and tissue kit
(QIAGEN, Maryland, USA). Mosquitoes that were mor-
phologically identified as members of the An. punctula-
tus group were confirmed to species by polymerase
chain reaction (PCR) restriction length polymorphism of
the ITS2 region [2].

Laboratory procedures
Thin blood smears were first fixed with methanol and
thick and thin smears stained with Giemsa and read by
light microscopy independently by two PNGIMR mi-
croscopists. Discordant reads were confirmed by a senior
microscopist. The number of parasites was counted until
reaching 200 white blood cells and a slide was declared
negative only after reading a minimum of 200 thick film
fields. Molecular diagnosis was used to complement
missing second reads and to disambiguate discordant
species read results (clinical surveillance n = 127; house-
hold survey n = 87). DNA was extracted from filter pa-
pers using the DNeasy Blood and Tissue Kit (Qiagen,
Valencia, USA) or the Favorgen 96-Well Genomic DNA
Kit (Favorgen Biotech Corp., Taiwan) following the man-
ufacturer’s protocols. The molecular assay was a semi-
quantitative post-PCR, ligase detection reaction/
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fluorescent microsphere assay described in more detail
elsewhere [19–21].

Data analysis
Data were double-entered into a Microsoft FoxPro or
Microsoft Access database at PNGIMR Goroka and ana-
lysed with Stata (StataCorp, USA) software. Differences
in binary and categorical variables between study sites
were assessed by Chi-square test and logistic regression,
differences in continuous variables by t-test and linear
regression and a non-parametric test for median age.
Multivariable logistic and linear regression models asses-
sing changes in malaria prevalence, parasite density and
morbidity indicators were adjusted for age group and
study site, anaemia furthermore for sex. In the clinical
surveillance samples, primary diagnosis of malaria was
based on the result of the RDT as performed in routine
clinical practice while species-results were based on light
microscopic/PCR diagnosis, which comprised only a
sub-set of patients in the case of Mumeng post-LLIN.
For the calculation of incidence rates, a stable popula-
tion denominator was used for both years in the absence
of available village-level growth rates.

Results
Study sample
Clinical surveillance in three sites included 1,325 fever pa-
tients pre-LLIN and 680 post-LLIN. The household sur-
veys in five sites included blood samples from 1,967
individuals pre-LLIN and 1,986 individuals post-LLIN.
Pre-LLIN and post-LLIN samples had comparable age dis-
tributions in all sites with the exception of the Mumeng
clinical surveillance sample (P = 0.02). Sample details in-
cluding LLIN coverage by site are provided in Additional
file 2: Table S2. Entomological surveys collected 15,481
anophelines pre-LLIN and 6,066 anophelines post-LLIN.
Due to the high density of mosquitoes collected in Sausi,
only 34 % (n = 5,036) of the pre-LLIN collection in this
site and 43 % (n = 2,558) of the post-LLIN collection were
screened for Plasmodium spp. infection.

Malaria incidence and morbidity in health facilities
Across the three sentinel health facilities (Dreikikir,
Mumeng, Sausi), the average proportion of fever patients

with a positive RDT decreased from 57.3 % (95 % CI:
54.6–60.0) pre-LLIN to 17.9 % (95 % CI: 15.1–21.0)
post-LLIN resulting in a 87 % drop in the pooled crude
monthly incidence rate from 13/1,000 population to 2/
1,000 (incidence rate ratio IRR = 0.12; 95 % CI: 0.09–
0.17; P < 0.001) (Table 1).
Based on PCR-corrected light microscopy, the reduc-

tion was more pronounced in the proportion of fever
cases infected with P. falciparum (46.8 to 9.1 %; adjusted
odds ratio AOR = 0.10; 95 % CI: 0.07–0.14; P < 0.001)
than with P. vivax (12.7 to 6.9 %; AOR = 0.59; 95 % CI:
0.40–0.85; P < 0.001). Reductions in P. vivax infections
were statistically significant only in children below 5
years of age in two sites (Mumeng AOR = 0.09, 95 % CI:
0.01–0.64; P = 0.017; Sausi AOR = 0.36; 95 % CI: 0.15–
0.91) but not in older age groups (all sites AOR = 0.62;
95 % CI: 0.34–1.14; P = 0.122). In Dreikikir, there was no
significant reduction in P. vivax in any age group (AOR
= 0.87; 95 % CI: 0.51–1.48; P = 0.6). The decrease in in-
fections with P. malariae was substantial but due to low
numbers of cases not statistically significant (2.1 to
0.3 %; AOR = 0.24; 95 % CI: 0.06–1.04; P = 0.057).
The parasite species composition in the febrile patient

sample changed in Dreikikir (but not in the other sites)
from a clear dominance of P. falciparum over P. vivax
(67.9 vs 12.9 %, Fisher's exact test, P < 0.001) to equal
proportions of the two species (7.9 vs 8.6 %, P = 0.88).
Pre-LLIN, P. falciparum infection prevalence peaked in
fever patients aged 5–9 years, and P. vivax in 1–4 year
olds. Post-LLIN, the P. falciparum peak had shifted to
later age groups, while for P. vivax infections a clear
peak could not be identified due to the low number of
positive patients. Changes in test-positivity and species
composition by site are shown in Fig. 2.
In two sites (Mumeng and Sausi), anaemia and spleno-

megaly were assessed in the fever patients. A statistically
significant reduction was found in anaemia in Mumeng
(52.9 to 40.7 %; AOR = 0.6; 95 % CI: 0.5–0.9; P = 0.015),
and in splenomegaly (all grades) in both sites (pooled
36.9 to 12.9 %; AOR = 0.3; 95 % CI: 0.1–0.5; P < 0.001).
Reductions in anaemia in Sausi and of severe anaemia in
both sites were not statistically significant (Fig. 3). De-
tails by site are provided as supplementary material
(Additional file 3: Table S3).

Table 1 Crude monthly malaria incidence rate (IR) in three sentinel health facilities. Diagnosis by RDT

Site Patients Pre-LLIN Post-LLIN Change

n RDT+/ Month IR/1,000 n RDT+/ Month IR/1,000 /1,000 %

Dreikikir 8,300 377 178 21.5 290 27 3.3 -18.2 -84.7

Mumeng 17,000 469 102 6.0 215 11 0.6 -5.4 -90.0

Sausi 6,700 458 122 18.2 172 12 1.8 -16.4 -90.1

Overall 32,000 1,304 402 12.6 677 50 1.6 -11.0 -87.3
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Malaria prevalence and morbidity in the general
population
Across five sentinel sites, the average prevalence of mal-
aria by light microscopy in the general population of the
health facility catchment areas decreased from 15.7 %
pre-LLIN to 4.8 % post-LLIN (AOR = 0.26; 95 % CI:
0.20–0.33; P < 0.001). The largest reduction was

observed in Yapsie, the site with the highest pre-LLIN
prevalence of both P. falciparum (18.9 %) and P. vivax
(11.8 %). Across all sites, the reductions were more pro-
nounced in infections with P. falciparum than with P.
vivax (Table 2). The changes in P. vivax infections were
only statistically significant in two sites (Finschhafen and
Yapsie) (Table 2). In three sites (Finschhafen, Tabibuga

Fig. 2 a Prevalence of malaria in fever patients by site and age group before (dotted line) and after (solid line) LLIN distribution. b Species
distribution by site. Abbreviations: P.f., P. falciparum (grey), P.v., P. vivax (white), P.m., P. malariae (black)

Fig. 3 Indicators of morbidity in fever patients before and after LLIN distribution. Error bars show 95 % confidence intervals. *P < 0.05
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and Yapsie), there was a change from P. falciparum
dominance to P. vivax dominance, which reached
statistical significance (P = 0.005) only in Tabibuga
(Fig. 4). There was no statistically significant differ-
ence in the observed reductions between age groups
or sex (Mantel Haenszel test of homogeneity of odds
ratios, all P > 0.1).
Axillary temperature, self-reported fever and anaemia

were assessed as additional morbidity indicators in the
general population in four sites (Finschhafen, Mumeng,
Sausi, Tabibuga). Acute fever, defined as axillary
temperature of > 37.5 °C, was measured in 2.3 % (95 %
CI: 1.6–3.2) of individuals pre-LLIN and 1.9 % (95 % CI:
1.3–2.7) post-LLIN (AOR = 0.72; 95 % CI: 0.43–1.20; P
= 0.208). Of those infected with malaria parasites, 12.9 %

(95 % CI: 7.7–19.8) had an acute fever pre-LLIN and
8.1 % (95 % CI: 3.0–16.8) post-LLIN (AOR = 0.30; 95 %
CI: 0.09–0.95; P = 0.041). Self-reported recent febrile ill-
ness (previous 2 days) was reported more frequently, by
14.3 % (95 % CI: 12.5–16.3) pre-LLIN and 7.9 % (95 %
CI: 6.6–9.3) post-LLIN (AOR = 0.5; 95 % CI: 0.4–0.7; P
< 0.001). A reduction was also noted in anaemia from
68.3 % (95 % CI: 65.6–70.9) to 50.1 % (95 % CI: 47.6–
52.6) (AOR = 0.4; 95 % CI: 0.4–0.5; P < 0.001), and in se-
vere anaemia from 4.9 % (95 % CI: 3.8–6.2) to 2.4 %
(95 % CI: 1.7–3.3) (AOR 0.5; 95 % CI: 0.3–0.7; P <
0.001). Not all reductions reached statistical significance
in all sites, partly due to small sample sizes (Fig. 5). De-
tails by site are provided as supplementary material
(Additional file 4: Table S4).

Table 2 Malaria prevalence in the general population before and after LLIN distribution

Site Pre-LLIN Post-LLIN

n % (95 % CI) n % (95 % CI) AOR P-value

Any species

Finschhafen 455 9.9 (7.3–13.0) 442 2.5 (1.2–4.4) 0.16 (0.07–0.34) < 0.001

Mumeng 290 10.0 (6.8–14.0) 462 7.8 (5.5–10.6) 0.62 (0.36–1.07) 0.086

Sausi 337 9.2 (6.3–12.8) 422 4.7 (2.9–7.2) 0.48 (0.26–0.88) 0.017

Tabibuga 325 9.8 (6.8–13.6) 341 3.2 (1.6–5.7) 0.25 (0.12–0.52) < 0.001

Yapsie 560 30.5 (26.7–34.5) 319 5.6 (3.4–8.8) 0.10 (0.06–0.18) < 0.001

Overall 1,967 15.7 (14.1–17.3) 1,986 4.8 (3.9–5.9) 0.26 (0.20–0.33) < 0.001

P. falciparum

Finschhafen 455 6.2 (4.1–8.8) 442 0.7 (0.1–2.0) 0.10 (0.03–0.33) < 0.001

Mumeng 290 8.6 (5.7–12.5) 462 5.4 (3.5–7.9) 0.49 (0.27–0.91) 0.023

Sausi 337 5.9 (3.7–9.0) 422 2.6 (1.3–4.6) 0.46 (0.21–0.98) 0.044

Tabibuga 325 6.2 (3.8–9.3) 341 0.6 (0.1–2.1) 0.08 (0.02–0.34) 0.001

Yapsie 560 18.9 (15.8–22.4) 319 2.5 (1.1–4.9) 0.12 (0.05–0.24) < 0.001

Overall 1,967 10.1 (8.8–11.5) 1,986 2.5 (1.8–3.2) 0.23 (0.16–0.32) < 0.001

P. vivax

Finschhafen 455 4.2 (2.5–6.4) 442 1.6 (0.6–3.2) 0.25 (0.09–0.68) 0.007

Mumeng 290 3.8 (1.9–6.7) 462 2.2 (1.0–3.9) 0.44 (0.18–1.07) 0.071

Sausi 337 3.6 (1.9–6.1) 422 2.6 (1.3–4.6) 0.67 (0.28–1.58) 0.357

Tabibuga 325 2.8 (1.3–5.2) 341 2.6 (1.2–5.0) 0.84 (0.32–2.20) 0.728

Yapsie 560 11.8 (9.2–14.7) 319 3.1 (1.5–5.7) 0.18 (0.08–0.39) < 0.001

Overall 1,967 5.9 (4.9–7.1) 1,986 2.4 (1.7–3.1) 0.38 (0.26–0.55) < 0.001

P. malariae

Finschhafen 455 0.4 (0.1–1.6) 442 0.2 (0–1.3) 0.51 (0.05–5.68) 0.587

Mumeng 290 0 (0–1.3) 462 0.2 (0–1.2) na

Sausi 337 0.3 (0–1.6) 422 0 (0–0.9) na

Tabibuga 325 1.5 (0.5–3.6) 341 0 (0–1.1) na

Yapsie 560 2.7 (1.5–4.4) 319 0 (0–1.1) na

Overall 1,967 1.2 (0.7–1.7) 1,986 0.1 (0–0.4) 0.09 (0.02–0.36) a 0.001
a unadjusted odds ratio
na, not available
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Fig. 4 Plasmodium species composition in infected community members before (top) and after (bottom) LLIN distribution. Abbreviations: P.f., P.
falciparum (grey), P.v., P. vivax (white), P.m., P. malariae (black)

Fig. 5 Indicators of morbidity in the general population before and after LLIN distribution. Error bars show 95 % confidence intervals. *P < 0.05
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Malaria transmission
Mean Anopheles man biting rates (MBR) across five sites
decreased from 83 (95 % CI: 48– 117) bites/person/night
pre-LLIN to 31 (95 % CI: 15–47) bites/person/night
post-LLIN (t(141) = 2.69, P = 0.008). The highest mean
pre-LLIN MBR (361/person/night) was found in Sausi
and dominated by An. farauti 4 (Fig. 6). Reductions were
greatest in biting rates of An. koliensis (none collected
post-LLIN), An. punctulatus (-93.3 %) and An. farauti
(s.s.) (formerly An. farauti 1; -76.2 %), while An. farauti
4 (-48.1 %), present in large numbers in Sausi, and An.
longirostris (-6.3 %) appeared least affected. An. hine-
sorum and An. farauti 5 were mainly found post-LLIN.
Diversity in species composition was lower after the
LLIN distribution and in all sites except Yapsie, the spe-
cies dominant pre-LLIN remained dominant post-LLIN
(Fig. 6).

Prior to LLIN roll-out, the majority of infected mos-
quitoes in three sites (Finschhafen, Mumeng and Sausi)
carried P. vivax sporozoites, while in two sites (Dreikikir
and Yapsie) P. falciparum infections were dominant.
Sporozoite prevalence was lowest in Sausi, where the
MBR was highest. Post-LLIN, no infected mosquitoes
were found in Dreikikir, Mumeng and Yapsie. In the
remaining sites, pre-LLIN infection of mosquitoes and
monthly entomological inoculation rate (EIR) were
higher for P. vivax than for P. falciparum. Post-LLIN, P.
vivax infections had decreased, but P. falciparum infec-
tions had increased in both sites (Table 3).

Discussion
The roll-out of LLINs in 2009 was followed by substan-
tial reductions in key indicators of malaria morbidity
and transmission in six sites in PNG within less than

Fig. 6 a Mean nightly Anopheles man biting rate (MBR; bites/person/night) before (grey) and after (white) LLIN distribution. b Anopheles species
composition before and after LLIN distribution. Error bars show 95 % confidence intervals. *P < 0.05; **P < 0.001
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one year. Average LLIN use in these sites had increased
from 6 to 55 %, and 89 % of households in the sites
owned at least one LLIN after the distribution [8]. The
LLINs were new and efficacious [22] and there was no
indication of resistance to pyrethroids in PNG, even
though data at that time was limited [23]. The preva-
lence of Plasmodium spp. infection in the general popu-
lation dropped significantly over the same period mainly
due to a 76 % reduction in infections with P. falciparum
(AOR = 0.23, P < 0.001). The prevalence of blood-stage
P. vivax parasitaemia decreased less prominently (-60 %)
reaching statistical significance in two of five study sites
(Finschhafen and Yapsie). A significant reduction was
also observed in the incidence of clinical malaria cases
in three sites, primarily as a result of an 81 % drop in
the proportion of P. falciparum-infected febrile patients
(AOR = 0.1, P < 0.001). The proportion of cases infected
with P. vivax decreased less across all age groups
(-46 %), and statistically significantly only in children
under 5 years of age. In the Dreikikir site, no significant
decrease in the proportion of P. vivax cases was detected
in any age group. These findings confirm results from a
cohort study in young children conducted near Dreikikir
which found that LLIN use was associated with a reduc-
tion in both P. falciparum infections and clinical epi-
sodes, while it only reduced P. vivax infections but not
clinical episodes [24].
A relative increase in P. vivax over P. falciparum follow-

ing implementation of malaria control measures confirms
previous observations both from PNG [7, 9, 20, 25] and
elsewhere [26, 27]. The shift in species composition was
observed in both asymptomatic community members and
febrile patients although not to the same degree in all
sites. The differential impact of interventions on the two
parasites species is likely a result of the parasite’s [28] and
potentially the vector’s biology [29].
The ability of P. vivax to relapse from long-lasting

liver stages and the higher probability of gametocytaemia
are most likely key factors. A recent study confirmed
that relapses from P. vivax hypnozoites contribute 80 %
of the burden of malaria infection and clinical episodes
in PNG [30]. In tropical strains, such as the South-West

Pacific Chesson strains, relapses occur rapidly and fre-
quently [31]. Although the majority of hypnozoites may
therefore activate within 12 months of an initial infec-
tion, hypnozoites can survive in the human liver for up
to 3–5 years. As a consequence, P. vivax blood-stage in-
fections detected post-LLIN roll-out are not only due to
new infections from mosquito bites but also due to re-
lapses from hypnozoites established both pre- and post-
LLIN [32]. Gametocytaemia was previously found to be
driven by asexual blood stage parasitaemia, with a 10-
fold increase in parasite density leading to a 1.8-fold and
3.3-fold increase in the odds of carrying P. falciparum
and P. vivax gametocytes, respectively [33]. Reducing
the chance of P. vivax transmission would therefore re-
quire a stronger reduction of P. vivax parasitaemia. Also,
P. vivax gametocytes appear early in an infection, when
asexual densities are still very low [34] and almost all P.
vivax infections are thus thought to be gametocyte posi-
tive [35] hence increasing the probability of transmis-
sion. Previous studies in PNG further found evidence of
earlier biting Anopheles mosquitoes being more likely in-
fected with P. vivax than P. falciparum [29, 36], thus in-
creasing the relative probability of P. vivax transmission
before people retire to bed. This is further aggravated by
the shorter extrinsic incubation period for P. vivax. As
LLINs reduce the biting density as well as the lifespan of
mosquitoes, an equal reduction in lifespan is more likely
to interrupt P. falciparum transmission [37]. As a conse-
quence of the above, particularly indoor vector control
interventions are likely to have less impact on P. vivax
than P. falciparum gametocytaemia and hence on trans-
mission. However, once the pre-LLIN hypnozoite reser-
voir is exhausted, P. vivax prevalence can be expected to
drop in line with reductions in the P. vivax EIR.
The entomological results indicate a significant impact

of LLINs on transmission but a varying effect by species
and study site. In the site with the largest number of
mosquitoes pre- and post-LLIN (Sausi, An. farauti four
in both rounds), only the P. vivax EIR was found to de-
crease after LLIN distribution, while the P. falciparum
EIR increased. The same was observed in Finschhafen,
yet with a small number of mosquitoes post-LLIN (n =

Table 3 Anopheles nightly man biting rate and malaria transmission before and after LLIN distribution

Pre-LLIN Post-LLIN Change

Site Prevalence of infection (%) Monthly EIR Prevalence of infection (%) Monthly EIR MBR

An (n) An MBR P.f. P.v. P.f. P.v. An (n) An MBR P.f. P.v. P.f. P.v. %

Dreikikir 144 7.2 3.4 1.7 7.3 3.7 12 0.8 0 0 -7 -90

Finschhafen 212 9.6 0.5 2.7 1.6 7.9 67 3.0 3.2 0 2.9 0.0 -7 -68

Mumeng 562 28.1 2.2 3.7 18.9 31.5 5 0.3 0 0 -28 -99

Yapsie 127 7.1 2.4 0.8 5.0 1.7 3 0.2 0 0 -7 -98

Sausi 14,436 360.9 0.02 0.2 2.2 23.7 5,979 124.6 0.2 0.04 5.8 1.5 -236 -65

Abbreviations: An Anopheles, P.f. Plasmodium falciparum, P.v., P vivax, MBR man biting rate (bites/person/night), EIR entomological inoculation rate
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67). In the other sites the mosquito sample size post-
LLIN was too limited to draw strong conclusion. How-
ever, more comprehensive entomological data published
by Reimer et al. [38] confirmed the parasite species shift
in Anopheles infections from P. vivax pre-LLIN to P. fal-
ciparum one to two years post-LLIN in Madang prov-
ince and Dreikikir. The different baseline species
composition reported by the two studies for Dreikikir is
likely related to the low number of infected mosquitoes
(two P. falciparum, one P. vivax) caught pre-LLIN in
this study. At the same time, a comparison of results
from remote Yapsie(i) area, where a 1986 survey in three
villages had found 0.4–1.5 % of anophelines (mostly An.
koliensis) to be infected with P. falciparum and 0–1.7 %
with P. vivax [39], confirms the short term impact of
LLINs on both species in areas with well-established
transmission. Interestingly in that site, neither in 1986
nor in 2009 infected were mosquitoes collected in the
central Yapsie station.
Further in-depth entomological and epidemio-

logical investigations over longer periods of time are
needed to clarify the relationship between infections
in mosquitoes and in humans. Sub-microscopic in-
fections in humans may explain part of the differ-
ences in parasite species detected in humans and
mosquitoes [30, 40]. A better understanding is ur-
gently required of when and where (at both macro-
and micro-levels) human-mosquito contacts result in
malaria transmission in order to target both vector
control and vector surveillance. It remains unclear
how well current entomological monitoring practices
capture actual transmission in space and time. A
longer-term follow-up will be required to measure
the full impact of LLINs on P. vivax prevalence, in-
cidence, and transmission.
Few additional morbidity indicators were assessed in

this study, all of which showed a reduction in frequency
(even though not all reached statistical significance) sug-
gesting generally positive health developments. Spleno-
megaly, a syndrome closely associated with chronic
malaria in PNG [41, 42], was less frequent among mal-
aria patients in two sites following LLIN distribution.
The trend in anaemia differed between sites. This study
confirmed previous findings that anaemia is highly preva-
lent in some parts of PNG [17, 43, 44] with pre-LLIN
prevalence of mild to moderate anaemia between 59 and
77 %. The prevalence of anaemia decreased in the gen-
eral population (and in fever patients in Mumeng) post-
LLIN. No statistically significant decrease was found in
Sausi, interestingly the site in which parasite density in
malaria patients remained higher than in the two other
sites with clinical surveillance. However, the aetiology of
anaemia is known to be multi-factorial and a causal link
between LLIN and anaemia is likely to be confounded

by a number of other contributing factors. Manning et
al. [44] for example identified parvovirus B19 infection,
P. falciparum infection, vitamin A deficiency, wasting,
and incomplete vaccination as primary risk factors for
severe anaemia in PNG. As expected, the vast majority
of infections were asymptomatic both pre- and post-
LLIN.
This study was not without limitations. Due to fi-

nancial and operational constraints not all data collec-
tion components (clinical surveillance, household
survey, entomology) could be implemented in all
study sites, thus limiting the extent to which trends
in these indicators can be compared. Household sur-
vey and entomology survey were cross sectional in
nature and the clinical surveillance limited to ap-
proximately three months each round. While this ap-
proach effectively disregards seasonality, pre-LLIN
and post-LLIN assessments were implemented during
the same time of the year in an effort to maximize
comparability. Differences in weather patterns poten-
tially impacting on entomological indicators could not
be reliably investigated due to a lack of detailed wea-
ther records (U.S. National Centers for Environmental
Information; http://www.ncdc.noaa.gov/), but rainfall
data from Madang airport presented by Reimer et al.
[38] indicates no abnormalities in the seasonal fluctu-
ations over the study period. However, as the com-
parison of different entomology datasets from
Dreikikir shows, small differences in data collection
may alter results and care should therefore be taken
when making inferences particularly when measure-
ments are based on small numbers of samples, in this
specific case number of mosquitoes. The design of
this study does not allow establishing a causal link
between the LLIN and the observed health effects.
However, to the best of our knowledge no other im-
portant health interventions were implemented in the
study areas over the course of the two data collection
rounds making it highly probable that much of the
observed reductions in malaria morbidity and trans-
mission is linked to this single intervention.

Conclusions
The distribution of LLIN had distinct effects on P. fal-
ciparum and P. vivax. Higher resilience of P. vivax may
be attributed to relapses from hypnozoites and other
biological characteristics favouring the transmission of P.
vivax. The effect on vector species composition varied
by location which is likely to impact on the effectiveness
of LLINs. The relationship between prevalence, inci-
dence and transmission is a function of several factors,
including many that could not be investigated in the
frame of this study. The findings of this analysis however
clearly show the complexity of these relationships in
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PNG. Heterogeneity in the impact of LLINs across dif-
ferent sites is obvious from the data presented in this
article. Care should therefore be taken when extrapolat-
ing findings generated in a particular site in PNG to the
entire country. In the past, most in-depth malaria stud-
ies in PNG have been conducted in East Sepik (Maprik
area) and Madang provinces (Madang North coast area).
Gathering data from a larger number of locations over
multiple years therefore appears essential to improve our
understanding of the malaria epidemiology in PNG par-
ticularly as some of the observed effect, such as the shift
to P. vivax as the most prevalent Plasmodium spp. infec-
tion, may be transient.
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