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Abstract

For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw out-

put of mass spectrometers is to detect, characterise, identify, and quantify peptides. The ini-

tial steps of detecting and characterising features in raw data must overcome some

considerable challenges. The data presents as a sparse array, sometimes containing bil-

lions of intensity readings over time. These points represent both signal and chemical or

electrical noise. Depending on the biological sample’s complexity, tens to hundreds of thou-

sands of peptides may be present in this vast data landscape. For ion mobility-based LC-

MS analysis, each peptide is comprised of a grouping of hundreds of single intensity read-

ings in three dimensions: mass-over-charge (m/z), mobility, and retention time. There is no

inherent information about any associations between individual points; whether they repre-

sent a peptide or noise must be inferred from their structure. Peptides each have multiple

isotopes, different charge states, and a dynamic range of intensity of over six orders of mag-

nitude. Due to the high complexity of most biological samples, peptides often overlap in time

and mobility, making it very difficult to tease apart isotopic peaks, to apportion the intensity

of each and the contribution of each isotope to the determination of the peptide’s monoisoto-

pic mass, which is critical for the peptide’s identification. Here we describe four algorithms

for the Bruker timsTOF Pro that each play an important role in finding peptide features and

determining their characteristics. These algorithms focus on separate characteristics that

determine how candidate features are detected in the raw data. The first two algorithms deal

with the complexity of the raw data, rapidly clustering raw data into spectra that allows isoto-

pic peaks to be resolved. The third algorithm compensates for saturation of the instrument’s

detector thereby recovering lost dynamic range, and lastly, the fourth algorithm increases

confidence of peptide identifications by simplification of the fragment spectra. These algo-

rithms are effective in processing raw data to detect features and extracting the attributes

required for peptide identification, and make an important contribution to an analytical pipe-

line by detecting features that are higher quality and better segmented from other peptides
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in close proximity. The software has been developed in Python using Numpy and Pandas

and made freely available with an open-source MIT license to facilitate experimentation and

further improvement (DOI 10.5281/zenodo.6513126). Data are available via ProteomeX-

change with identifier PXD030706.

Author summary

The primary goal of mass spectrometry data processing pipelines in the proteomic analy-

sis of complex biological samples is to identify peptides accurately and comprehensively

with abundance across a broad dynamic range. It has been reported that detection of low-

abundance peptides for early-disease biomarkers in complex fluids is limited by the sensi-

tivity of biomarker discovery platforms [1], the dynamic range of plasma abundance,

which can exceed ten orders of magnitude [2], and the fact that lower abundance proteins

provide the most insight in disease processes [3]. As mass spectrometry hardware

improves, the corresponding increase in amounts of data for analysis pushes legacy soft-

ware analysis methods out of their designed specification. Additionally, experimentation

with new algorithms to analyse raw data produced by instruments such as the Bruker tim-

sTOF Pro has been hampered by the paucity of modular, open-source software pipelines

written in languages accessible by the large community of data scientists. Here we present

several algorithms for simplifying MS1 and MS2 spectra that are written in Python. We

show that these algorithms are effective to help improve the quality and accuracy of pep-

tide identifications.

2. Introduction

The task of a feature detector in an analytical pipeline is to sift through raw points and find the

characteristic pattern of a peptide. Once a peptide feature is detected, the attributes that are

important for its identification must be determined.

Most commonly, feature detection of mass spectrometry data has been designed to utilise

three dimensions: intensity (the unit-less intensity dimension being a proxy for abundance),

mass-over-charge (m/z) and retention time [4]. The timsTOF mass spectrometer [5] adds the

dimension of collisional cross section (CCS). This extra dimension gives an opportunity to

separate peptides that are isobaric but have different collisional cross-sectional area (CCS).

Peptide features in timsTOF raw data are thus represented in four dimensions: m/z, retention

time, intensity, and CCS. While the added mobility dimension adds considerable information

about the peptides’ unique characteristics, it results in much more data to process; a typical

sample analysis using a 20-minute LC gradient generates 1.3 billion MS1 and 37 billion MS2

raw intensity readings.

Commonly used free-to-download tools for processing timsTOF data include MaxQuant

[6], MSFragger [7, 8], Biosaur [9], and recently AlphaPept [10]. Biosaur and AlphaPept are in

addition open-source software. These tools have established ecosystems around them and, to

varying degrees, offer a means by which modules can be developed to interface with and

extend them. As MaxQuant and MSFragger are closed source, it is not possible to propose

code adjustments to improve performance, and contributions of feature extensions to the core

modules are not possible. To understand the implementation details of Biosaur and Alpha-

Pept, the source code is available to study, but for MaxQuant and MSFragger a description of
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the algorithm in prose form from the paper must be relied upon, which may be open to ambi-

guity or misunderstanding of important details.

In setting out to develop ideas for new acquisition modes and experimenting with new

ideas that leveraged the timsTOF’s sensitivity, we perceived a shortage of raw data processing

tools that had the following characteristics:

1. Open-source code published on a modern code sharing platform such as GitHub, Bit-

Bucket, or GitLab, so anyone with coding skills could inspect the details of the algorithm

implementation, to understand the inner workings and perhaps to offer improvements to

the implementation.

2. Open and well-documented inter-module interfaces designed for programmatic consump-

tion and ingestion, taking modern payload formats such as JSON, to facilitate a plug-and-

play architecture in which add-ons could be developed for alternative data processing, or

extensions to the processing pipeline.

3. Implemented in a popular, accessible language such as Python and distributed as packages

that can be installed and version-managed with standard tools for the language environ-

ment, such as conda or pip in the case of Python.

Existing software tools that are freely downloadable but lack one or more of these character-

istics contribute to the processing of data but forego the opportunity to help progress the

understanding of data processing algorithms, which means:

• Writing add-ons for customised workflows involves spending valuable effort writing code

for parsing or generating files that are not intended for programmatic interfaces. For exam-

ple, MaxQuant’s table text files [11] are textual representations of results tables that are more

suited to human consumption than programmatic consumption and cross-linking.

• The pace of improvement in the processing of data is limited by the capacity of the original

authors to make improvements.

Our aim was to address these issues by developing an open source timsTOF data processing

pipeline from scratch, offering a software foundation that facilitates collaboration in the con-

duct of further research, covering topics including signal processing, feature detection and seg-

mentation, peptide identification, performance optimisation, peptide quantification, and

protein inference.

3. Results

The high-level steps involved in identifying peptides from the raw instrument database are

shown in Fig 1. The completeness of the peptide identifications produced depends on the pre-

cision of the preceding steps; from detecting features in the raw data, to determining the char-

acteristics of those features, to extracting the fragment ions associated with the precursor ions

and presenting those characteristics to a peptide database search.

The following sections 4.1 to 4.4 describe four algorithms we developed to simplify the

complexity of the MS1 and MS2 spectra derived from the raw data and to improve the quality

of peptide identifications.

3.1 Finding peptide features in raw data

During acquisition, the instrument selects precursor ions for fragmentation based on their

intensity. The windows selected for fragmentation in each frame are called isolation windows:

small regions in the plane formed by the m/z and mobility dimensions. As a precursor ion
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elutes and increases in intensity, the instrument will select it for fragmentation multiple times.

This results in multiple isolation windows across several frames. These isolation windows are

used to schedule fragmentation events, where all ions in a region of m/z and mobility in a spec-

ified frame are fragmented with an elevated collision energy to produce MS2 spectra for that

isolation region.

In complex samples, an intense precursor ion will likely have other precursor ions in its

vicinity. If these nearby precursor ions are within the same band of mobility, they will be co-

fragmented with the instrument-selected precursor ion and thus generate chimeric fragment

spectra that can be used for additional peptide identification, albeit with more difficulty [12].

In our current implementation for data-dependant acquisition, the isolation windows are

used to seed regions in which to look for peptide features, as features outside this region will

remain unidentifiable. To form a window in the m/z and mobility plane for each precursor,

the width in m/z and the begin and end of the scan dimension of its isolation windows is

extended in each dimension–by the isolation window’s scan breadth in the mobility dimension

to allow for determination of the precursor’s apex, and by 1 Da in the m/z dimension in case

the monoisotopic peak for the precursor was not contained by the isolation windows, as

shown in Fig 2. From this extended window in the m/z and mobility plane, a cuboid is formed

by extending the window in the retention time dimension. The frames from the precursor’s

isolation windows are extended forward and back in time by the user-specified base peak

width (a characteristic of the chromatography gradient and configured from empirical obser-

vation) to ensure the precursor ion’s apex in retention time can be determined.

In the next section we describe how each precursor cuboid is resolved into one or more fea-

tures, each with their constituent isotopic peaks.

3.2 Resolving spectra with intensity descent

The precursor cuboid defined with the approach described in 4.1 significantly reduces the pep-

tide feature search space to a relatively tiny subset of the 4D raw data space. Within this

reduced space however, more than one peptide feature may be present when two or more pep-

tides have similar collisional cross section and m/z, and their elutions overlap in retention

time. It is known that whether a peptide coelutes with other peptides has a greater effect on the

likelihood of its identification than other attributes, such as its abundance [13]. To determine

the peptide’s identification, it’s crucial that the raw points within the cuboid be resolved to the

isotopic peaks of the one or more precursors it might contain.

Fig 3A shows an example of the raw intensity readings from a precursor cuboid in the m/z

dimension. For each ion there are many individual intensity readings; to facilitate feature

deconvolution, these individual readings must be resolved to a single m/z value for each ion

and its intensity.

Fig 1. The high-level flow of the pipeline steps to process raw timsTOF data and identify peptide sequences.

https://doi.org/10.1371/journal.pone.0271025.g001
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In the m/z dimension, the intensity readings for each isotope of an ion form a Gaussian dis-

tribution [14]. To deconvolve them, the spectra are scored by their fit to theoretical isotopic

patterns for assumed charge states to find a probabilistic match. This task is simplified if the

spectra is resolved to its significant ions, in a process called peak detection.

Approaches that use the first- and second-derivative zero crossings of smoothed raw data

[15], and Kalman filters [16] to extract ion chromatograms have proven successful. More

Fig 2. Formation of the precursor cuboid from the isolation windows recorded by the instrument for each precursor ion selected for fragmentation. Note

the points shown are from all the frames in which this precursor was selected.

https://doi.org/10.1371/journal.pone.0271025.g002
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recently, the centWave [17] is a peak detection algorithm that uses a continuous wavelet trans-

form [18, 19] (CVT) applied to regions of interest. These approaches analyse ion intensity

peaks in the m/z dimension through retention time, however they do not cater for the addi-

tional dimension of mobility.

To determine a single pair of m/z and intensity values for each precursor ion and its iso-

topes, a common approach is to create bins of fixed m/z width, find the intensity-weighted

centroid of each bin, and sum the bin’s intensity. The main problem with this approach is it

creates arbitrary m/z boundaries; the risk for intensity readings to be incorrectly attributed to

an ion, or for an ion’s intensity to be split across a bin boundary is high [20].

As our objective is to perform feature segmentation in m/z, retention time, and mobility

without eroding the instrument’s precision, we chose to develop a fast and simple peak detec-

tion algorithm based on intensity-seeded binning, which we call ‘intensity descent’. The

approach uses the intensity of each ion as a guide to determine which intensity readings belong

together in the same peak. The idea is similar to the ‘bucketing’ approach described in [15].

First, the algorithm looks for the most intense point within the spectral region of interest

(in this case, the precursor cuboid’s extent in the m/z dimension) and gathers the points within

a fixed window either side, finding the intensity-weighted centroid in the m/z dimension and

summing the intensity values to determine the total intensity for the ion. The window width is

determined at a particular m/z by calculating three standard deviations of a Gaussian distribu-

tion based on the instrument’s resolution (for the timsTOF we use 40,000 [5]), using the full

width at half magnitude (FWHM) method.

Fig 3. Resolving raw points to isotopic peaks. (A) Raw MS1 spectra within a precursor cuboid defined by a range of m/z, RT, and collisional cross-section

values. (B) Comparing ms1 spectra before and after intensity descent for a selected peak within the precursor cuboid. The 3σ bounds on each side are shown;

the raw points within these bounds were summed and centroid with intensity weighting to form the single peak shown underneath. (C) Comparing the

complete ms1 spectra for a selected precursor cuboid, before and after intensity descent.

https://doi.org/10.1371/journal.pone.0271025.g003
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# find 3sigma for a specified m/z
def calculate_peak_delta(mz):

delta_m = mz / INSTRUMENT_RESOLUTION # FWHM of the peak
sigma = delta_m / 2.35482 # std dev is FWHM / 2.35482
peak_delta = 3 � sigma # 99.7% of values fall within +/- 3 sigma
return peak_delta

Having been summed and centroided, the points within the window are removed from the

spectra, and the next most intense point is found. The process repeats until there are no points

remaining to process in the region of interest. Fig 3B shows an example of a single peak within

the precursor cuboid’s spectra and the raw points that were gathered to form it, and Fig 3C

shows the spectra before and after intensity descent for the whole precursor cuboid.

To resolve the simplified peaks into series of isotopic peaks for candidate features, the pre-

cursor cuboid’s simplified spectrum is presented to the deconvolution algorithm in the Python

ms_deisotope package [21]. This function returns a set of proposed features derived by taking

peaks as candidate isotopic peaks for a particular charge state, along with a score that indicates

the quality of the proposed isotopic peak series against the BRAIN theoretical model of tryptic

peptides [22, 23].

Each panel in Fig 4 shows a feature proposed for the precursor cuboid spectra. In each

panel, the coloured rectangles show the envelope of the feature, encompassing the isotopes

and their intensities. The feature’s monoisotopic peak, and its charge state, are highlighted.

The features up to a configurable maximum number that were scored above a specified thresh-

old (also configurable) are added to a list of features obtained from all the precursor cuboids in

the run to be rendered as an MGF file and searched against a database of tryptic peptides.

The monoisotopic peak of each proposed feature is analysed to find its extent in the mobil-

ity and retention time dimensions, by constraining the cuboid’s points in the m/z dimension

to the peak’s ±3σ limits, as shown in Fig 5A.

To determine the monoisotopic peak’s extent in the mobility dimension, we collect all its

points and group them by their scan number and sum their intensity, flattening the points to

the mobility dimension by summing the points that occur on the same scan. We chose a

Savitzky-Golay filter [24] for its speed and effectiveness to smooth the points, and we use the

peakutils Python package [25] to find the valley on either side of the peak, thus determining

the monoisotopic peak’s extent in the mobility dimension, as shown in Fig 5B.

Having determined the extent of the monoisotopic peak in the m/z and mobility dimen-

sions, the dimension-flattening procedure is repeated to determine the extent of the peak in

retention time, as shown in Fig 5C.

The intensity of each isotope is calculated by summing the most intense point in the peak

and the most intense point in the frame on either side. The intensity of the feature is the sum

of the intensities of the first three isotopes. This method provides a robust measure of the fea-

ture’s intensity, as it is not determined by the intensity of a single isotopic peak.

We previously mentioned that the peak of an ion in the m/z dimension conforms to the

curve of a Gaussian distribution. We confirm the monoisotopic peak’s Gaussian nature by fit-

ting a Gaussian curve to the points of the peak in the m/z dimension and calculate the R-

squared deviation of the observed and expected distribution. For this peak we can see in Fig

5D the peak is indeed a close fit to a Gaussian distribution, with an R-squared value of 0.9

compared to a Gaussian distribution.

On completion of these steps, the MS1 attributes of the feature required for searching

against a peptide library have been determined: the monoisotopic m/z, the charge state, the

feature’s intensity, and its apex and extent in both mobility and retention time. These attri-

butes are included in the MGF’s header for each feature.
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Fig 4. A set of proposed features derived from the simplified spectra for a precursor cuboid.

https://doi.org/10.1371/journal.pone.0271025.g004
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In this section we have introduced a method for resolving the isotopic peaks and determin-

ing some key attributes for the identification of a peptide feature contained in the precursor

cuboids defined in 4.1. By constraining the challenge of feature detection in the vastness of the

raw data space to thousands of much smaller precursor cuboids that can be processed in paral-

lel, the complexity of segmenting individual peptides and their isotopic peaks is significantly

reduced, thus increasing the confidence in the feature attributes presented to the subsequent

peptide identification steps.

3.3 Correcting intensity readings in saturation

The timsTOF uses a high-gain electron multiplier called a microchannel plate (MCP) detector

to count ions striking it on their descent from the top of the flight tube. MCP detectors pro-

duce a current of electrons when an incident ion forces zero or more electrons in the surface

of the plate to be emitted and cascaded into subsequent plates in a multiplying effect [26]. A

10-bit, 5x109 samples/second analog-to-digital converter (ADC) [27] converts the current pro-

duced by the MCP detector to determine a measure of ion intensity, a proxy for relative ion

abundance.

An MCP detector operating at high gain can appear to be saturated when many ions strike

it in a short time interval. The electrons being ejected do not have sufficient time to be replen-

ished before the next incident ion arrives. This can occur when the ion density is high, such as

for ions in high abundance or ions in close proximity [28]. The effect of saturation is that

dynamic range for these high abundance ions is reduced.

Fig 5. Resolution of a monoisotopic peak. (A) Zooming-in on the monoisotopic peak of proposed feature number 1. The dotted blue lines either side

of the peak show the ±3σ limits at the peak’s m/z. (B) The points in the monoisotopic peak collapsed to the mobility dimension. There are two peaks

quite close together in the mobility dimension. The marked peak is the closest to the centre of the fragmentation event. The blue dotted lines show the

valleys that have been determined on each side of the highlighted peak. (C) The points in the monoisotopic peak collapsed to the retention time

dimension. (D) A zoomed-in view of the feature’s monoisotopic peak in the m/z dimension.

https://doi.org/10.1371/journal.pone.0271025.g005
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Detector saturation is common in many types of mass spectrometer design, including TOF

instruments [29]. To address this situation in the timsTOF, a mass-dependent correction with

base points and linear interpolation between the base points is used. The default corrections

were determined by Bruker experimentally but are adjustable in the instrument configuration.

The effects of detector saturation can be observed by plotting the raw intensity values by m/

z, as shown in Fig 6A for a typical run of a Yeast-HeLa-E.coli mixture. The limits of the detec-

tor and the instrument’s nonlinear discrete extrapolation of intensity readings are visible. In

Fig 6C the empirical distribution function of the raw intensity shows the nonlinearities when

intensity is higher than about 3000. Fig 6B shows an enlarged view of intensities around the

3000 mark. It is also evident that for the 550–1100 m/z range there is nonlinear intensity

extrapolation between 2400 and 2600 intensity. The implication of detector saturation for pep-

tide feature detection and the correct determination of isotopic peak height ratios is that some

more intense points are in saturation and may not represent a true reading of the ion’s relative

Fig 6. Effects of saturation on indicated intensity across the m/z range. (A) Raw data from analysis of the Yeast-

HeLa-E.coli mixture, showing the nonlinearities in the readings where the detector is saturated. (B) Enlargement of the

raw data intensity range. (C) The empirical cumulative distribution of the raw points, showing that more than half the

raw points are affected by saturation.

https://doi.org/10.1371/journal.pone.0271025.g006
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intensity. This in turn affects the calculation of the feature’s intensity and peptide

quantification.

Bilbao et al. reported that detector saturation can affect mass accuracy and dynamic range,

and they proposed an algorithm based on an averagine peptide model of isotopic peak intensi-

ties to adjust for the effect [30]. Our approach to adjusting for detector saturation is to employ

the Valkenborg theoretical model of peak height ratios for tryptic peptides [31] to improve the

determination of the monoisotopic peak’s intensity when it is comprised of points that are in

saturation. We have taken the raw intensity value of 3000 as an indication that a reading was

in saturation. When isotope 0 (i.e. the monoisotopic peak) is comprised of at least one point

above the saturation threshold, the model is used to infer what the intensity should be for a

peptide of its monoisotopic mass, based on the intensity of the closest isotope in the series that

does not include points in saturation. An example of this approach is shown in Fig 7, where

the first four isotopic peaks comprised points in saturation. In this example, the intensity of

the first isotopic peak that was not comprised of points in saturation (peak index 4) was used

to infer the intensity of the next isotopic peak (peak index 3), and that peak’s intensity to infer

the next peak, and so on until the monoisotopic peak is reached. The figure shows the differ-

ence between raw intensity including saturated readings, and the inferred intensity using the

intensity of the first non-saturated isotopic peak.

We have found that monoisotopic peak intensity saturation affects about 5% of identified

peptides in 200ng samples of Yeast-HeLa-E.coli mixture. Of all the detected features where the

monoisotopic peak was in saturation, the third isotope (index 2) was most commonly used to

infer the intensity (the distribution is shown in Fig 8). This might be explained by the intensity

of second isotopic peak (index 1) usually being of similar or greater intensity than the monoi-

sotopic peak. Therefore, if the monoisotopic peak is in saturation, the second isotopic peak

will usually also be in saturation.

When isotopic peak intensity is calculated by taking the top three points nearest the apex of

the feature’s peak in retention time, the maximum intensity of a peak without saturation is 3 x

3000 = 9000. The ranges of isotopic peak height ratios predicted by the theoretical model for

tryptic peptides vary according to the isotope index and the peptide’s monoisotopic mass; the

model does not predict peak height ratios for all isotopes across the same range of

Fig 7. Using the theoretical model of tryptic peptide peak height ratios to infer isotope intensities from the first non-saturated

isotope.

https://doi.org/10.1371/journal.pone.0271025.g007
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monoisotopic mass. For example, as shown in Fig 9, the minimum monoisotopic mass range

predicted by the model for the seventh isotope (index = 6) is 1550 Da. Therefore, when the sev-

enth isotope is the first unsaturated isotope, the model can only be applied to peptides with

monoisotopic mass greater than 1550 Da.

Fig 9. The maximum inferred intensity of the monoisotopic peak depending on which isotope is used to infer its intensity.

https://doi.org/10.1371/journal.pone.0271025.g009

Fig 8. The distribution of isotope index used to infer the intensity of the monoisotopic peak.

https://doi.org/10.1371/journal.pone.0271025.g008
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In the Yeast/HeLa/E.coli mixtures analysed, only 0.03% of features had a monoisotopic

peak that could not be inferred because all the detected isotopes had points in saturation, and

0.01% of features could not be inferred because of their monoisotopic mass and the number of

their isotopes that included points in saturation were outside the model’s applicable range. For

higher load samples, where the detector is overloaded to a much greater extent, many more

features would have a monoisotopic peak that contains points in saturation. Our approach to

correcting the monoisotopic peak’s intensity by inference could facilitate the recovery of highly

saturated data.

Consistent with findings reported by Bilbao et al. [30], in the example shown, we observed

a modest improvement of dynamic range in the identified features that had a monoisotopic

peak with at least one point in saturation and then corrected, as shown in Fig 10. Correcting

for saturation improved the dynamic range of features, increasing from 0.97 orders of magni-

tude without correction to 1.14 orders of magnitude with correction.

In addition to points in saturation affecting the calculation of a monoisotopic peak’s inten-

sity, Bilbao et al. [30] reported that correction for intensity saturation also improved mass

accuracy. To gauge the effect of intensity saturation on mass accuracy in timsTOF data, we

removed points in saturation prior to intensity-weighted centroiding the m/z of isotopes, and

found that mass error of identified peptides slightly increased (Fig 11) by an average of

0.064 ppm.

We conclude that the instrument’s extrapolation of intensity values for peaks in saturation

is effectively correcting shifts in m/z due to saturation.

Fig 10. Dynamic range of identified features with their monoisotopic peak in saturation with and without correction for saturation.

https://doi.org/10.1371/journal.pone.0271025.g010
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To determine the effect correcting for detector saturation on peptide quantification, we

analysed ten technical replicates of a Yeast and UPS2 mixture, and compared the mean

detected protein concentration with ten technical replicates of Yeast and UPS1 mixture. The

UPS1 mixture comprises 48 human proteins of diverse molecular weight and present in the

same concentration of 5 pmoles of each protein. The UPS2 mixture [32, p. 2] comprises the

same 48 human proteins, arranged in six groups of different concentrations, ranging from

50,000 fmol to 0.5 fmol of each protein. When we compare the ratios of observed protein

quantity in UPS2 relative to its quantity in UPS1, we should expect to see an improvement in

the correlation between the observed protein ratios and the expected protein ratios when

intensity correction is applied to peptides in saturation. In the UPS2 sample we observed

17.7% of monoisotopic peaks were affected by saturation, while in the UPS1 sample 9.2% of

monoisotopic peaks were affected. The difference of affected monoisotopic peaks is expected

because of the varying concentrations in the UPS2 experiment. The Top3 method as described

in [33] was used to determine protein abundance. It was observed that 64.1% of the proteins

identified in the UPS2 experiment had at least one of their top-3 peptides adjusted for satura-

tion, while for the UPS1 experiment 47.7% of the proteins identified had their top-3 peptides

adjusted. This means that correction for saturation plays a significant role in protein quantifi-

cation determination with the Top3 method, as the most intense peptides used for the calcula-

tion are most likely to have monoisotopic peaks comprising saturated points.

The same experiments were analysed with MaxQuant (Version 1.6.17.0). To compare our

feature detection with MaxQuant’s, the features detected by MaxQuant as stored in its APL

Fig 11. ECDF of mass error for identified peptides with and without correction for saturation.

https://doi.org/10.1371/journal.pone.0271025.g011
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(Andromeda peak lists) files were rendered as MGF files and searched with Comet and Perco-

lator against the same Yeast-UPS1-UPS2 FASTA database that we used to search our MGFs.

The ratios of abundance for the proteins found in common by our method and MaxQuant in

both UPS1 and UPS2 samples are shown in Fig 12. For proteins with the same concentration

in UPS1 and UPS2 and therefore having an expected log10 ratio of zero, no bar is shown. For

those proteins that are not affected by saturation, the bars for ‘with saturation correction’ and

‘without saturation correction’ are the same height.

For proteins with monoisotopic peaks affected by saturation, in most cases our approach to

correct the intensity yields a better alignment with the expected abundance ratio between

UPS2 and UPS1. For the proteins of 50 pmoles concentration in UPS2, MaxQuant had a better

alignment with the expected ratio. For the proteins with 5 pmoles in UPS2, our approach had

better alignment with the expected ratio than MaxQuant for three of the four proteins

(P04040, P63165, QO6830). For the protein P12081 with 0.5 pmoles in UPS2, our ratio was

more accurate than MaxQuant.

In the previous two sections we have focussed on methods we have developed to determine

the attributes of precursor ions in MS1 spectra. Another critical step in the identification of

peptides is the resolution and characterisation of their fragment ions, as it is by analysing the

Fig 12. Comparison of intensity ratios for proteins detected in the Yeast+UPS1 and Yeast+UPS2 experiments by our method and

MaxQuant. A protein abundance ratio is shown if it meets all criteria for comparison: (i) at least three peptides for the protein were

found, (ii) the protein was found by our method in at least one technical replicate of UPS1 and at least one of UPS2, (iii) the protein was

found by MaxQuant in at least one technical replicate of UPS1 and at least one of UPS2, and (iv) the protein was found by both our

method and MaxQuant.

https://doi.org/10.1371/journal.pone.0271025.g012
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components of a peptide produced by fragmentation that we gain confidence in the identifica-

tion. In the next section, we discuss a method we developed to simplify complex fragment

MS2 spectra.

3.4 Simplifying ms2 spectra with mass defect windows

Collision-induced fragment ions result from the cleavage at amide bonds when the precursor

ions collide with molecules of the non-reactive gas. The fragment ion spectra in the timsTOF

are generally more complex than lower-energy collision-induced disassociation (CID) mass

spectrometers [34], and this fact provides motivation for exploring ways to simplify the spectra

using prior knowledge.

It is known that all isotopes have a mass defect, the phenomenon where each isotope

releases different binding energy when it forms its nucleus [35]. The mass defect of a molecule

is defined as the difference between its exact mass (i.e., the sum of the atomic masses of constit-

uent atoms) and its integer mass (i.e., the sum of the integer masses of the constituent atoms)

[36]. Relative to the reference mass of Carbon-12, the mass defect may be positive or negative.

Mass defects have many useful applications, particularly in the analysis of high resolution

mass spectra [37]. Mann first quantified the phenomenon for mass spectrometry applications

by calculating peptide mass from sequence databases for peptides up to 2 kDa [38], identifying

areas where peptide masses must lie and areas where they cannot, which he labelled ‘forbidden

zones’. More recent analysis reported that mass defects observed in tryptic peptides and their

modifications are slightly narrower than earlier described [39, 40].

Nefedov et al. [41] extended the idea and computed reference tables for all theoretically pos-

sible tryptic peptides up to 3 kDa at a resolution of 0.001 Da. They found gaps in the mass

dimension in which peptides cannot fall, and ‘quiet’ regions where a peptide rarely falls. This

knowledge can be used in a simple way to reduce the complexity of MS2 spectra and help to

facilitate fragment ion extraction through the reduction of the number of points. By knowing

that these points are likely chemical or electronic noise and not signal from peptides, we can

remove those that exist in the gaps between mass defect windows. We used this phenomenon

to simplify the fragment spectra for each feature in the MGF we generated for the features pro-

posed in the deconvolution step. Although mass defect windows can also be applied to MS1

data, the most benefit is gained when using them to filter MS2 data; the task of fragment ion

deconvolution is much more challenging due to the presence of co-fragmented peptides and

noise.

To resolve fragment spectra, the MS2 raw points contained by the bounds of the fragmenta-

tion event in the mobility and retention time dimensions were extracted (Fig 13). In the m/z

dimension we did not apply bounds, as the m/z of a fragment ion may be below or above its

precursor ion. Using the same procedure as for MS1 ion resolution, we collapsed these raw

MS2 points to the m/z dimension and performed intensity descent to simplify the spectra.

As for MS1 spectra, we used the deconvolute_peaks function from the ms_deisotope pack-

age but with different settings appropriate to MS2 deconvolution to propose likely features

and determine their monoisotopic m/z, isotopes and charge state from the theoretical model

of tryptic peptides. The fragment ions in the MGF expected by crux’s comet function is the sin-

gly protonated mass, so to the neutral mass from the deconvolution step the Hydrogen proton

mass of 1.00727647 Da was added. To apply filtering by mass defect windows, a fragment ion

was removed if its neutral mass did not sit within the bounds of a mass defect window. In this

sample a 21% reduction in fragment ions was observed when filtering was applied.

The mass defect windows were implemented in Python as bins of mass ranges, generated as

follows:
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def generate_mass_defect_windows(mass_defect_window_da_min,
mass_defect_window_da_max):

bin_edges_l = []
for nominal_mass in range(mass_defect_window_da_min,

mass_defect_window_da_max):
mass_centre = nominal_mass � 1.00048
width = 0.19 + (0.0001 � nominal_mass)
lower_mass = mass_centre—(width / 2)
upper_mass = mass_centre + (width / 2)
bin_edges_l.append((lower_mass, upper_mass))

return bin_edges_l

Each fragment ion was assigned to a bin according to its neutral mass. Those ions that were

not assigned to a bin were removed. Even intense ions can be removed in this process, as can

be seen in Fig 14, which shows a magnified portion of the neutral mass axis for the fragment

ions before and after filtering by mass defect windows.

To assess whether more confident identifications were achieved with mass defect window

filtering applied to the fragment ions of each feature, two MGF files were prepared for the

same features detected in a run. One MGF has mass defect window filtering applied to the

fragment ions, and the other MGF did not. Both MGFs were searched against a FASTA data-

base with crux comet and percolator, and the score from percolator was compared for each

identification in common. Identifications with q-value greater than 0.01 were removed to

reflect a 1% FDR. A significant time reduction for rendering or search of the MGF was not

observed when mass defect window filtering was applied, nor was there an increase in the

number of unique peptides identified. However, of the peptide sequences identified in both

MGF files, Fig 15 shows the identification is more confident when the fragment ion list is sim-

plified by removing ions that are not within a mass defect window. For peptide sequences

identified both with and without mass defect window filtering, an average 10.4% improvement

in percolator score was observed with filtering applied. As the filtering is implemented in a few

Fig 13. The raw MS2 points associated with an example precursor cuboid.

https://doi.org/10.1371/journal.pone.0271025.g013
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Fig 14. An enlarged segment of the neutral mass axis showing some examples of fragment ions being removed if they did not

occupy a mass defect window.

https://doi.org/10.1371/journal.pone.0271025.g014

Fig 15. Comparison of the score from percolator for identified features with and without mass defect window

filtering.

https://doi.org/10.1371/journal.pone.0271025.g015
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lines of Python code with little computational cost, we believe the benefit in peptide identifica-

tions clearly makes it a worthwhile inclusion in our processing steps.

In the previous sections we have presented techniques for resolving and simplifying MS1

and MS2 spectra to improve the quality of peptide features. In the next section we discuss how

applying these techniques in combination can achieve higher quality peptide identifications.

3.5 Comparing feature detection with MaxQuant

To compare our feature detection approach with MaxQuant, we used MaxQuant version

1.6.17 to process the same sample. We converted MaxQuant’s APL files to an MGF file and

used Crux Comet and Percolator with the same parameters and FASTA file that we used for

our own pipeline. MaxQuant achieves a higher Percolator score on average than our identifica-

tions, suggesting that MaxQuant does a better job at resolving and deconvolving fragment ions

(Fig 16A). Further work on our processing would involve tuning our fragment spectra decon-

volution. However, for the features found in common, our mass accuracy is higher than identi-

fications from MaxQuant (Fig 16B).

4 Discussion

In this work, we described our approach to the fundamental challenges in processing 4D tim-

sTOF data: how do we find features, distinguish them from noise, deal with their signal com-

plexity, and determine their monoisotopic peak. We have shown that intensity descent is an

effective method to simplify spectra in MS1 and MS2, and how it considers the resolving

power of the timsTOF. We have seen that when the instrument selects a precursor ion for frag-

mentation, there are often other viable features in the vicinity, often overlapping, and through

deconvolution we can extract additional features apart from the instrument-selected precursor

that are worthy of including in the database search of tryptic peptides.

Our approach for addressing the issue of detector saturation improves the dynamic range

of the features extracted and yields a better alignment with the expected ratio of protein

Fig 16. Comparing feature score and mass accuracy for features found by ours and MaxQuant. (A) The percolator score for peptide

sequences identified in common. (B) The mass error ppm for the peptide sequences identified in common.

https://doi.org/10.1371/journal.pone.0271025.g016
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abundance in UPS1 and UPS2. Overall, this correction for intensity saturation of the monoiso-

topic peak in peptides translates to better quantification of proteins compared with not

correcting.

Unlike the results reported by Bilbao et al. on a Agilent 6224 TOF MS [30], we did not observe

an improvement in the mass accuracy of peptide identifications by correcting for saturation, sug-

gesting that the extrapolation performed by the timsTOF firmware when saturation occurs is deal-

ing with the saturation effect on m/z readings without detriment to the mass accuracy.

We have built upon the work by Mann [38] and Nefedov et al. [41] to show that MS2 spec-

tra can be simplified through filtering of fragment ions using mass defect windows. Although

using our test data we only found a small benefit of peptide identification confidence reported

by Percolator, we believe that the small computational cost of the filtering makes it worthy of

inclusion in the data processing.

Finally, we have shown that these approaches collectively result in an improvement in mass

accuracy compared to MaxQuant. We believe this finding proves our original hypothesis: that

these techniques in combination achieve a better peptide identification result than what is

achieved without them.

A guiding principle in conducting this research was to embrace the ion mobility dimension

provided by the timsTOF on an equal footing with the m/z and retention time dimensions, a

feature we felt was neglected in other open-source processing tools for the timsTOF. Our algo-

rithms achieve lower mass error, more dynamic range, and higher peptide identification confi-

dence. By making available the source code in the popular and accessible Python language,

and leveraging other open-source tools such as Comet and Percolator, our contribution is an

experimental sandbox for feature detection. Our aim is to encourage experimentation with

and improvement of these techniques, and to gain more insight into the detailed program-

matic steps involved with identifying peptide sequences from raw timsTOF data.

5 Materials and methods

5.1 Sample preparation

5.1.1 Proteome benchmark dataset. Commercial tryptic digests of S.cerevisiae (Yeast,

Promega, #V746A), human K562 cells (Promega, #V695A) and E.coli (MassPREP standard,

Waters, #186003196) were reconstituted in 2% ACN/0.1% FA to final concentration of 0.1 μg/

ul. To generate the hybrid proteome samples, purified peptides from each of the three species

were combined in different proportions as previously described [42] and as follows: sample

YHE211 consisted of 30% w/w Yeast (3 μg), 65% w/w Human (6.5 μg) and 5% w/w E.coli
(0.5 μg); sample YHE114 consisted of 15% w/w Yeast (1.5 μg), 65% w/w Human (6.5 μg) and

20% w/w E.coli (2 μg); sample YHE010 consisted of 0% w/w Yeast (0 μg), 100% w/w Human

(6.5 μg), and 0% w/w E.coli (0 μg). Ten replicates of each proteome mixture were subjected to

LC-MS/MS analysis on a timsTOF Pro mass spectrometer.

5.1.2 Dynamic range benchmark dataset. UPS1 and UPS2 standards (Sigma-Aldrich)

were combined with commercial intact Yeast protein (Promega, #V7341) by mixing 50 μg of

Yeast protein with 3.2 μg of UPS1 or USP2 subjected to enzymatic digestion with Trypsin

Gold (Promega, 1 μg) for overnight at 37 degrees Celsius using the FASP digestion method

[43]. Lyophilised peptides were reconstituted in 2% ACN and 0.1% FA. Ten replicates of each

peptide mixture were subjected to LC-MS/MS analysis on a timsTOF Pro mass spectrometer.

5.2 LC-MS methods

The digested proteome mixtures were separated by reverse-phase chromatography on a C18

fused silica column (i.d. 75 μm, o.d. 360 μm × 25 cm length, 1.6 μm C18 beads) packed into an
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emitter tip (IonOpticks, Australia) using a nanoflow HPLC (M-class, Waters). The HPLC was

coupled to a timsTOF Pro mass spectrometer (Bruker Daltonics, Bremen) using a Captive-

Spray source. Peptides were loaded directly onto the column at a constant flow rate of 400 nL/

min with buffer A (99.9% Milli-Q water, 0.1% FA) and eluted with a 20-minute linear gradient

from 2% to 34% buffer B (99.9% ACN, 0.1% FA).

The timsTOF Pro was operated in PASEF mode using Compass Hystar 5.1 and otofControl

settings were as follows: Mass Range 100 to 1700m/z, 1/K0 Start 0.85 V�s/cm2 End 1.3 V�s/cm2,

Ramp time 100 ms, Lock Duty Cycle to 100%, Capillary Voltage 1600V, Dry Gas 3 l/min, Dry

Temp 180˚C, PASEF settings: 4 MS/MS scans (total cycle time 1.27sec), charge range 0–5,

active exclusion for 0.4 min, Scheduling Target intensity 24000, Intensity threshold 2500.

5.3 Mass spectrometry analysis

The raw data was extracted from the instrument database and processed with our bespoke soft-

ware for feature detection. For peptide identification and protein inference we used Crux

Comet and Percolator. The mass tolerance for the initial search was 20 ppm; the search follow-

ing mass recalibration was 4.5 ppm. Settings were a maximum of 2 missed cleavages, a bin tol-

erance of 0.02 Da for fragment ions, a bin offset of 0, and a default peak shape. The MH

+ peptide mass range for analysis was 700–5000 Da.

The FASTA database was created for the Yeast/HeLa/E.coli proteome mixtures by combin-

ing databases for each proteome from UniProtKB [44–46]. The UPS1 and UPS2 FASTA data-

base was downloaded from Sigma [47].

The mass spectrometry proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE [48] partner repository with the dataset identifier PXD030706 and

10.6019/PXD030706.

5.4 Software

The software was written in Python 3.8. The key libraries used were AlphaTims [49] for load-

ing the raw data, Pandas 1.3.1 for data filtering and interface file input/output, scipy 1.6.1 and

numpy 1.19.5 for signal processing, ms_deisotope 0.0.22 for spectra deconvolution, and Ray

1.5.2 for parallel processing. We used comet and percolator from crux 4.0 for searching the

detected features against a FASTA peptide database.

We designed the software to implement distinct steps and to integrate with each other using

file-based interfaces, usually Pandas dataframes serialised to the filesystem as feather files. The

Feather format (https://arrow.apache.org/docs/python/feather.html) was used for its performance

on large tables due to its columnar serialisation strategy, and for file portability between Python

and R. Much of the bulk processing of samples to prove the algorithms was done on 48-core

AWS EC2 memory- and compute-optimised instances running Ubuntu 20.04. As we aim to

make this software accessible on commodity hardware, later validation work was performed on a

PC with a 12-core Intel i7 6850K processor and 64 GB of memory running Ubuntu 20.04.

Readers are encouraged to browse the source code in the GitHub repository (DOI 10.5281/

zenodo.6513126) for a detailed understanding of the algorithms and implementation

approach. The Jupyter notebooks developed to generate the figures in this paper are also avail-

able in the repository.
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