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B-cell acute lymphocytic leukemia (B-ALL) is the most common childhood malignancy and is a rare leu-
kemia in adults.1-4 B-ALL subtypes are distinguished by characteristic structural variants and mutations,
which can correlate with responses to treatment.2-5 Cytogenetic and genomic analyses combined with
expression profiling have identified the existence of up to 23 subtypes.4,6 Subtype assignment can
extend and refine the current standards of risk stratification, and current standard of care incorporates
some molecular classification to identify patients at higher risk.7,8 For instance, detection of BCR-ABL1
(Philadelphia (Ph) chromosome) indicates high-risk disease, and treatment can be modified to include an
ABL1-targeting tyrosine kinase inhibitor such as imatinib,3 and ETV6-RUNX1 fusions can indicate a lower
risk of relapse.7-9 Next-generation sequencing of RNA (RNA-seq) has been used to identify fusion genes,
quantify gene expression, and perform variant calling to identify driver mutations.9,10 Although gene
expression quantification is particularly useful for identifying molecular subtypes, there is currently no pub-
licly available software for subtype classification with RNA-seq.

Here we present ALLSorts: a B-ALL gene expression classifier that attributes samples to 18 subtypes
previously defined by Gu et al.4 ALLSorts has a novel hierarchical design that offers broader group clas-
sifications if more specific subtypes cannot be ascertained. Additionally, ALLSorts can attribute multiple
subtypes to samples.11 When applied to both pediatric and adult cohorts, ALLSorts demonstrated high
accuracy and was able to classify previously undefined samples. ALLSorts is open source and publicly
available at https://github.com/Oshlack/ALLSorts.

ALLSorts is a pretrained machine learning classifier that uses RNA-seq data to attribute B-ALL samples
to 18 known subtypes. We developed ALLSorts by training a logistic regression classifier on a B-ALL
dataset consisting of 1223 samples (supplemental Methods).4,6 ALLSorts uses an expression matrix for
classification but can also accept FASTQ/FASTA or BAMs for conversion into this form. ALLSorts
applies various processing steps to the data that are then input to a set of hierarchically organized
logistic regression classifiers. Phenocopies are grouped into a meta-subtype with their mutational coun-
terparts (Figure 1). These 5 meta-subtypes are as follows: ZNF384 group, KMT2A group, Ph group,
ETV6-RUNX1 group, and high ploidy signature group (High Sig). The classifier first determines a
sample’s meta-subtype and then undertakes a more focused classification between the nested subtypes.
The ZNF384-like and KMT2A-like subtypes contained too few training samples to confidently train a dis-
criminator so default to their meta-subtype. This study was approved by the Royal Children’s Hospital
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(RCH) Human Research Ethics Committee and the Peter Mac (PM)
Human Research Ethics Committee and was performed in accor-
dance with the Declaration of Helsinki.

The outputs from ALLSorts for each sample are the subtypes with
predicted probabilities. There are also 2 visualizations for validation
and exploration of unclassified samples. The first visualization shows
the sample’s probability of being a subtype relative to the predefined
subtype threshold (Figure 2A). The second visualization, termed
waterfall plots, compares the maximum subtype probability for each
sample to the probabilities of samples known to belong to that sub-
type (Figure 2B).

The trained classifier was first applied to held-out test sets from the
training cohorts (supplemental Table 5). ALLSorts was found to
have an overall accuracy of 92% (Figure 2C). However, classifica-
tion performance was unbalanced between subtypes. The best per-
formance was for subtypes with a small number of clearly defined
features, which were often partners in fusion genes. The highest lev-
els of misclassification occurred for the subtypes with larger collec-
tions of features, especially the High Sig group. However, falling
back to meta-subtypes in these cases, results in high accuracy. For
example High Sig meta-subtype can be used with an accuracy of
93%. In addition, both Ph/Ph-like and ETV6-RUNX1/ETV6-
RUNX1–like saw misclassifications to their phenotypic counterparts
(Figure 2C). These observations highlight the utility of the novel hier-
archical architecture in providing important classifications that can
be explored and validated with complementary analysis or assays.

To validate ALLSorts on independent data, we applied it to 195 sam-
ples across 2 cohorts of pediatric and adult B-ALL from the RCH
and PM, which displayed clear batch effects (supplemental Figure 5).
These datasets have some previously defined subtype classifications
from various combinations of fusion calling, karyotyping, genomic

sequencing, or gene expression classification with an earlier machine
learning approach.9

The initial accuracy of the classifier was 79%, assuming that all pre-
vious subtypes were correct but not including 74 (38%) previously
unclassified samples. However, ALLsorts was able to newly classify
61 (82%) of these (Figure 2D). Forty-six of these new classifications
were evaluated to be plausible using fusion calling,12-14 karyotyping,
and genomic sequencing for variant calling. Ten samples were
reclassified to a new subtype, of which 8 matched the previous
meta-subtype label. There were 15 (7.7%) previously labeled sam-
ples, which ALLSorts assigned as unclassified. Six of these had
tumor purities of less than 10%.

A full list of samples that had new classifications is provided, with
any causative variants found (supplemental Table 7). Of these 86
samples, 63% had a plausible explanation that the ALLSorts classifi-
cation was correct at least to the meta-subtype level, 8% were
incorrect, 20% remained ambiguous in terms of evidence support-
ing or dismissing plausibility of the call, and 9% were defined as
having low tumor purity (less than 10%). We found high accuracy
of classification for tumor purities above 20% (supplemental Figures
6 and 7).

One unique feature of ALLSorts is its ability to classify samples into
more than 1 subtype. The training cohorts included 117 samples
that were previously described as having multiple subtypes based
on both gene expression analysis and cytogenetics. Without specifi-
cally training ALLSorts to recognize samples exhibiting multiple sub-
types, these samples were used to investigate the capacity for
multilabel classification.

We found the probability of getting at least a single subtype correct is
86.31%, and 90.5% if including meta-subtypes. However, we only
predicted both subtypes 26% of the time (supplemental Table 4).
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Figure 1. Overview of the ALLSorts classification architecture. In blue are the meta-subtypes that represent classes that have convergent or overlapping signals

contained in their nested subtypes. Green nodes are terminal subtypes. Red nodes exist in the hierarchy, but classification currently terminates at the parent node because

of a lack of training samples. CRLF2(non–Ph-like) is not included in this classification as its identification is better suited to alternate analysis. IGH-IL3 is also not included

given only a single case was identified across all cohorts.
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This implies that multiple label classification with ALLSorts can add
further value of a classifier with little cost in performance. In the future,
as further manual labeling of multilabel samples becomes available,
these multilabel subtypes could be explicitly trained for.

In this study, we present ALLSorts, a B-ALL subtype classification
tool that can precisely attribute samples to 18 subtypes and 5
meta-subtypes according to their RNA-seq measurements. This tool
has been trained and validated with a combined cohort of more
than 2300 samples and is offered for public use through Github.
One novel contribution of ALLSorts is a hierarchical architecture
representing subtypes and their phenocopies within a meta-
subtype. Additionally, ALLSorts can also classify samples into more
than one subtype.

A key component of this study was testing the predictions of the
software across validation cohorts to verify the robustness of the
classifier. We found that the overall accuracy in the combined inde-
pendent cohort was between 84% and 92% (supplemental Table
3). ALLSorts has the ability to retrain the classifier as more samples
become available, which will allow classification of subtypes that
currently have relatively low numbers of samples, such as BCL2/
MYC. Although gene counts are clearly useful in determining the
subtype, a more refined method that uses nuanced aspects of the
data such as transcript quantification could provide increased per-
formance. Complementary analysis methods such as fusion detec-
tion should be used in conjunction with ALLSorts for a broader
picture. However, we clearly demonstrate that ALLSorts is capable
of high classification accuracy across an extensive set of subtypes.

In summary, ALLSorts is an accurate, comprehensive, and freely
available classification tool for determining subtypes of B-ALL.
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