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Stimulus-dependent differences in signalling
regulate epithelial-mesenchymal plasticity and
change the effects of drugs in breast cancer cell
lines
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Abstract

Introduction: The normal process of epithelial mesenchymal transition (EMT) is subverted by carcinoma cells to
facilitate metastatic spread. Cancer cells rarely undergo a full conversion to the mesenchymal phenotype, and instead
adopt positions along the epithelial-mesenchymal axis, a propensity we refer to as epithelial mesenchymal plasticity
(EMP). EMP is associated with increased risk of metastasis in breast cancer and consequent poor prognosis. Drivers
towards the mesenchymal state in malignant cells include growth factor stimulation or exposure to hypoxic conditions.

Methods: We have examined EMP in two cell line models of breast cancer: the PMC42 system (PMC42-ET and
PMC42-LA sublines) and MDA-MB-468 cells. Transition to a mesenchymal phenotype was induced across all three cell
lines using epidermal growth factor (EGF) stimulation, and in MDA-MB-468 cells by hypoxia. We used RNA sequencing
to identify gene expression changes that occur as cells transition to a more-mesenchymal phenotype, and identified
the cell signalling pathways regulated across these experimental systems. We then used inhibitors to modulate
signalling through these pathways, verifying the conclusions of our transcriptomic analysis.

Results: We found that EGF and hypoxia both drive MDA-MB-468 cells to phenotypically similar mesenchymal states.
Comparing the transcriptional response to EGF and hypoxia, we have identified differences in the cellular signalling
pathways that mediate, and are influenced by, EMT. Significant differences were observed for a number of important
cellular signalling components previously implicated in EMT, such as HBEGF and VEGFA.
We have shown that EGF- and hypoxia-induced transitions respond differently to treatment with chemical inhibitors
(presented individually and in combinations) in these breast cancer cells. Unexpectedly, MDA-MB-468 cells grown under
hypoxic growth conditions became even more mesenchymal following exposure to certain kinase inhibitors that
prevent growth-factor induced EMT, including the mTOR inhibitor everolimus and the AKT1/2/3 inhibitor AZD5363.

Conclusions: While resulting in a common phenotype, EGF and hypoxia induced subtly different signalling systems in
breast cancer cells. Our findings have important implications for the use of kinase inhibitor-based therapeutic interventions
in breast cancers, where these heterogeneous signalling landscapes will influence the therapeutic response.
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Introduction
Epithelial mesenchymal transition (EMT) is the direc-
tional process where sessile, polarised epithelial cells
alter the expression of key adhesion and regulatory
molecules and gain the ability to survive and migrate as
single cells. EMT is a normal process that occurs early
in development to generate the primary mesenchyme,
and later in the ectoderm to form muscle, bone, nerve
and connective tissues [1]. In development, EMT is
transient, and the phenotypic shift is followed by the re-
verse transition (MET) at the target site [1,2]. Metastasis
is now recognized to have many elements in common
with developmental EMT, such as single cell dispersal,
increased migratory and invasive potential, and gene
expression changes [2-5]. When these transitions occur
in cancer, however, a hybrid/metastable phenotype is
reached after the carcinoma undergoes a subtle EMT,
rather than full mesenchymal conversion [6-8]. We use
the term epithelial mesenchymal plasticity (EMP) for
phenotypic flux of cancer cells along the EMT-MET axis,
as they shift between organized, polarized, sessile epithe-
lial cells and more individual and motile mesenchymal
cells, facilitating metastatic spread [5,6,9,10].
Specific support for the importance of EMP in breast

cancer (BrCa) pathogenesis comes from the observations
that BrCa stem cells (BCSC) exhibit a mesenchymal
phenotype [5,11-13]. BCSC exhibit dramatically en-
hanced malignant/metastatic properties compared to
their non-BCSC counterparts, and can regenerate a het-
erogeneous tumour cell population [14,15]. They overex-
press CD44, have low expression of the luminal marker
CD24 (CD44hiCD24lo/-), and have a transcription profile
resembling EMT-transformed cells [13,16]. Basal sub-
types of BrCa, which have a poor prognosis, exhibit in-
creased EMT marker expression [17]. The links between
EMT, BCSC, and basal breast cancer therefore place
EMP at the mechanistic core of the most malignant cells
found in clinical BrCa. Further to this, in breast cancer
patients EMT correlates with adverse prognosis. An
EMT signature was found to predict delayed relapse
using available on-line data in 4767 breast cancer tumour
samples [18]. In multiple studies, poor patient outcomes
have been shown to be correlated with the altered expres-
sion of various protein markers of EMT development,
including increased vimentin [19], loss of certain epithelial
cytokeratins [20], loss of E-cadherin and gain of N-cadherin
[21]. Additionally, EMT can be induced in patient breast
cancers in response to standard chemotherapies [22] and
hormonal therapies [23], suggesting a potential role for
EMT in treatment resistance.
EMT is known to be controlled by a set of transcription

factors including SNAI1/2, ZEB1/2, and other basic helix-
loop-helix factors, which coordinate programs of gene ex-
pression during EMT (reviewed in [24,25]). Demonstrating

the importance of these pathways in treatment outcome,
work by a number of groups has shown that over-
expression of SNAI1/2, or TWIST1 in breast cancer cells
results in both EMT and chemoresistance [26-28]. The
activity of these transcription factors is controlled through
a number of signalling pathways that sense changes to the
cellular environment and initiate cascades of signalling that
result in transcriptional activation or repression. The stim-
uli that trigger these regulators to induce EMT vary. Signal-
ling through EGFRs is a well-established driver of breast
cancer progression [29,30], and EGF is also known to
stimulate EMT in some cells [3,31-35]. Hypoxia has been
shown to induce EMT through HIF1a activation of TWIST
in a variety of cell lines [36,37], and through SNAI1 in
hepatocellular carcinoma [38]. Furthermore, dysregulated
signalling through pathways such p38 MAPK [39] and
PI3K-Akt [28,40] has been implicated in EMP regulation.
Because such signalling pathways are often druggable, they
represent important targets for novel therapeutics. For ex-
ample, considerable interest has been generated in recent
years by classes of kinase inhibitors that are able to modu-
late cellular signalling and interrupt oncogenic signalling.
This motivates the question: if multiple stimuli are able to
trigger the more aggressive mesenchymal phenotype in can-
cer cells, do the responses to these stimuli converge upon
common signalling elements, or do they achieve similar
phenotypic outcomes through distinctly different molecular
pathways? The answer to this question has clear implica-
tions for the design of molecular targeted therapies, as well
as for managing the fundamental heterogeneity of breast
cancer.
We have employed two human BrCa cell line models of

stable (PMC42) and dynamically induced (MDA MB 468)
EMP. PMC42-LA is an epithelial subline derived from the
vimentin+, E-Cadherin− parental PMC42-ET cells [41,42].
PMC42-LA cells demonstrate heterogeneity where ap-
proximately 90% of the cells are E-cadherin+ while the
remaining 10% lack E-cadherin and are vimentin+.
PMC42-LA cells undergo a marked EGF-induced EMT
[3,42,43]. PMC42-ET cells also undergo EGF-driven EMT,
however the change in expression of mesenchymal
markers is reduced due to higher basal expression of
markers such as vimentin [3,42]. When compared to other
BrCa cell lines [44], both PMC42-ETcells and the LA sub-
line exhibit a “Basal B” (mesenchymal) transcriptome,
clustering together despite their EMP differences, and
irrespective of EGF treatment (E Tomaskovic-Crook &
T Blick, unpublished observation). MDA-MB-468 cells
have a “Basal A” transcriptome [44] indicating mixed lu-
minal/basal attributes, and although predominantly epithe-
lial and E-cadherin+, they lack α-catenin and tight junction
protein 1 (TJP1, or ZO-1). About 5% of these cells are
vimentin+ and they display intermediate invasiveness [45].
MDA-MB-468 cells also exhibit a marked EGF-regulated
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EMT, as well as hypoxia-driven EMT (2% O2) [42,46,47].
MDA-MB-468 xenografts exhibit distinct zones of mesen-
chymal transition, one at the stromal periphery and the
other at the interface with the central necrosis common in
this xenograft model [48,49].
These models provided an opportunity to investigate

both differential lineage-specific cellular responses to
the same EMT-promoting stimulus as well as differential
responses to varied EMT promoting stimuli in the same
cell line. By observing the transcriptional changes in
PMC42 cells and in MDA-MB-468 cells under different
stimuli, we were able to identify patterns of disruption
that are distinct to each stimulus as well as common to
all. These observations have clear implications for the
therapeutic benefit of pharmaceutical manipulation of
these pathways during cancer progression. We tested
this notion using drugs targeting these key pathways and
demonstrated clear differences in the extent to which
different drugs are able to block mesenchymal transition
induced by different triggers. The divergence of signalling
for EMP regulation between EGF and hypoxia that we
characterise here is of therapeutic importance, particularly
bearing in mind associations in breast cancer patients
between EMT, poor prognosis and treatment resistance.

Materials and methods
Cell Lines
PMC42-ET (ET) cells were derived from a breast cancer
pleural effusion by Dr. Robert Whitehead, Ludwig Institute
for Cancer Research, Melbourne, Australia, with appropri-
ate institutional ethics clearance (Institutional Review
Board of the Peter MacCallum Hospital, Melbourne) and
informed consent of the patient. The PMC42-LA (LA) sub-
line was derived further from the parental PMC42- ET cells
by Dr. Leigh Ackland, Deakin University, Melbourne,
Australia [50-53]. MDA-MB-468 cells originally from the
ATCC were transferred from the Lombardi Cancer Center,
Washington, DC, USA.

Immunofluorescence staining of cells
PMC42-LA and PMC42-ET cells were cultured in RPMI
1640 medium with 10% FBS. MDA-MB-468 cells were
cultured in DMEM with 10% FBS. The cell lines had all
tested negative for mycoplasma infection. Cells were
seeded in 384 well flat bottom microtiter plates (#3712,
Corning Life Sciences) and allowed to adhere overnight
at 37°C/5% CO2. The next day, where indicated in the text,
human EGF (#8916, Cell Signaling Technology) was added
to the cells at a final concentration of 10 ng/mL. After
72 h the cells were fixed with 3.7% formaldehyde in PBS
for 10 minutes, then washed with Tris-buffered saline
(TBS). The cells were incubated with a blocking solution
of 0.3% Triton X-100 (Sigma-Aldrich) and 5% sterile
filtered goat serum (Sigma-Aldrich). Next, cells were

incubated overnight at 4°C with mouse anti-vimentin
antibody (V6630, Sigma-Aldrich), diluted 1:1600 in
TBS with 1% BSA (Sigma-Aldrich) and 0.05% Tween-20
(Sigma-Aldrich). Where indicated, a rabbit anti-phospho-
ERK1/2 antibody (#4370, Cell Signaling Technology) was
also included at a dilution of 1:200. The cells were washed
three times for 5 min with washing buffer (1xTBS with
0.05% Tween-20) then stained with an Alexa-594 conju-
gated goat-anti mouse antibody (115-585-146, Jackson
ImmunoResearch) diluted 1:200 in TBS with 1% BSA and
0.05% Tween-20. To stain the nuclei of the cells, Hoechst
33342 (Sigma-Aldrich) was included at a concentration of
3 μg.mL−1. When the pERK1/2 primary antibody was
included, an Alexa-488 conjugated goat-anti rabbit antibody
(#4412, Cell Signaling Technology) diluted 1:1000 was
included in the secondary antibody mix. The cells were stained
for 2 hours then washed 3 × 5 minutes with washing buffer.
The plates were imaged on a Perkin Elmer Operetta

using a 10X/0.4 NA air objective and the appropriate
excitation and emission filters. Excitation time and in-
tensity were set to avoid overexposed pixels in the mea-
sured images. Acquired images were analysed using
Perkin Elmer Harmony 3.5 software. Cell nuclei were
segmented using the Hoechst images, and the nuclear
masks were expanded to cover the cytoplasm of the
cells. The mean and total fluorescence intensities of
vimentin and phospho-ERK were measured within the
masked areas, using image data from the corresponding
fluorescently labelled secondary antibodies. Cells were
then classified as vimentin+or vimentin− using a decision
tree classifier. The decision tree classifier used the mean
and total vimentin intensities of the cells to determine
thresholds that maximised the separation of the cell
populations between unstimulated wells, and stimulated-
cell control wells (16 positive and 16 negative control
wells were included for each plate). The number of cells
imaged, the percent vimentin+ cells and the average
phospho-ERK intensity per cell were then calculated for
each well. The percent inhibition was calculated as
100*(1-(x-mean(xpos))/(mean(xneg) – mean(xpos)), where x
indicates the measured variable and mean(x) indicates the
mean of the measured variable x among the positive or
negative control wells. The dose response curves of the
inhibitors tested for the different cell lines and measured
variables were fitted and plotted in GraphPad Prism 6.
Cooperativity between inhibitors tested in combinations
were calculated according to the Median effects method
[54] using the CalcuSyn software (Biosoft).

Kinase inhibitor treatment of cells
Kinase inhibitors were purchased from Selleck Chemicals
and were diluted in DMSO then added to the cells at
the concentrations indicated within each figure. For de-
termining IC50 values across the range of kinase inhibitors,
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compounds were serially diluted 1:2 to produce eleven con-
centrations, with the highest concentration being 10 μM.
The final concentration of DMSO in the wells was 0.5%.
Positive and negative control wells were included for each
plate where the cells were treated with 1 uM of Erlotinib
(Selleck Chemicals) or 0.5% DMSO, respectively. For the
hypoxia-treated cells, cells grown under normoxic conditions
were used as negative controls. The cells were grown in a
humidified atmosphere at 37°C/5% CO2 for 72 h. Hypoxia-
treated cells were grown in a hypoxic chamber at 37°C/5%
CO2 with 1% O2 for 72 h.

Transcript abundance data
A detailed description of the transcriptome analysis is
given elsewhere (Tomaskovic-Crook E, Philip G, Blick T,
van Denderen BJW, Haviv I, Thompson EW: RNA Se-
quencing of Induced Epithelial-Mesenchymal Transition
in Breast Cancer Cell Lines, in preparation). Briefly, an
epithelial-to-mesenchymal transition was induced for
PMC42-LA and -ETcell lines through EGF stimulation, and in
MDA-MB-468 cells through EGF stimulation or growth under
hypoxic conditions. All treatments were applied for 72 h, then
RNA was collected from unstimulated and stimulated cells,
and mRNA abundances were measured using RNASeq.
Transcript abundance data were compared between un-

stimulated and stimulated conditions described above: PMC42-
ET −/+EGF, PMC42-LA −/+EGF, MDA-MB-468 −/+EGF,
MDA-MB-468 −/+HPX. Three ‘inter-model’ comparisons were
also performed, between: PMC-42-ET versus PMC-42-LA with
and without EGF, andMDA-MB-468 HPX versus EGF stimula-
tion. These comparisons are arranged such that they are
consistent with a ‘general EMT’ process, as classified by vimen-
tin (VIM) up. Sequence alignment was performed using
TopHat and differential analysis was performed using CuffDiff.
Transcript abundances and test statistics were imported into
the MATLAB scripting language (R2012b) for subsequent
analysis and to generate heat map plots.

Pathway analysis
Kyoto Encyclopedia for Genes and Genomes (KEGG) maps
were downloaded and gene lists were extracted from asso-
ciated KGML files. For the over-representation analysis
(ORA), all maps annotated as signalling pathways or sys-
tems were included. The expected and observed numbers
of differentially expressed mRNA transcripts (q-value <
0.01) were compared using a χ2-test within each condition
comparison as outlined above. A Bonferoni correction was
applied, such that the estimated p-values were multiplied
by 22 (the number of signalling pathways tested).

Druggable target and protein-protein interaction
networks
Protein interaction networks provide a wider coverage of
molecular interactions than are captured by canonical

signalling pathways. The Bionet R package [55] was used
to compute the top-scoring network in each experiment.
First we downloaded the set of human protein interactions
provided by the PINA2 website [56] and extracted the
network corresponding to proteins encoded by transcripts
measured in our MDA-MB-468 experiments (transcripts
for which we have no data were excluded from the
network). Both the network and the p values from the
differential expression analysis were passed to the Bionet
package, and we used the runfastheinz function to gener-
ate the top scoring network for EGF and hypoxia-induced
EMP. Networks were exported in the simple interaction
format (.sif ) for analysis in Cytoscape 3.1 [57].
The two resulting networks, based on differential ex-

pression induced by EGF and Hypoxia, were merged
using the Advanced Network Merge functions in Cytos-
cape, which we also used to calculate node degree. Data
on drugs or compounds and their known targets (and
where available their mechanism of action) was down-
loaded from the Drugbank Database (v3.0) [58] and
mapped onto our network using the gene name attri-
butes associated with both drug targets and proteins.
These data were used to identify druggable proteins
within each network. Nodes were then ranked by their
degree within this resulting network and druggable
nodes selected for further analysis.

Results
Induced epithelial-to-mesenchymal transitions promote a
similar cellular phenotype, but act through cell-line and
stimulus-specific signalling mechanisms
The stimulation of PMC42-LA and MDA-MB-468 cells
with EGF, or growth of MDA-MB-468 cells under hypoxic
conditions (HPX) each promoted EMT as indicated by an
increased proportion of vimentin + cells (red fluorescence;
Figure 1b & f, c & g, d & h). Unstimulated PMC42-ET cells
express vimentin (Figure 1a), thus increases in the number
of vimentin+ cells with EGF stimulation (Figure 1e) are
relatively small, consistent with our previous reports on
EMT within this cellular system [40,41].
Examining changes in transcript abundance that oc-

curred with the phenotypic EMT (Figure 1a-h) consistent
differences were observed for several transcripts that con-
tribute to the canonical mesenchymal phenotype (Figure 1
& j). Transcripts for VIM were significantly increased in
all models of induced EMT, including EGF-stimulated
PMC42-ET cells, while several other regulatory/signalling
components implicated in EMT [13,59-61] (further details
in Additional file 1: Table S1) showed consistent changes
with various degrees of significance (Figure 1i). A num-
ber of transcripts encoding cellular signalling compo-
nents implicated in EMT also showed large changes
between some of the experimental models as detailed
in the sections below.
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The mRNAs of transcription factors (TFs) implicated
in EMT was also examined and only FOSL1 (also known
as FRA1) showed significant increases in transcript
abundance across all models of induced EMT (Figure 1j).
TFs known to play a role in EMT including ETS1, SOX9
and ZEB1 showed consistent increases in transcript
abundance, while FOXO4, KLF8 and the epithelial TF
GRHL2 were consistently reduced; however, not all of
these changes were statistically significant (Figure 1j).
Conversely, several well-studied TFs which drive EMT,
such as SNAI1 and TWIST1, showed vastly different
expression profiles between differing cell lines and differ-
ing stimuli, while ZEB2 and SNAI2 were not reliably de-
tected within the MDA-MB-468 cells, nor were FOXC2
and GSC detected across all cell lines tested (Figure 1j).
Furthermore, normalised count data suggest that the
mammary stem cell TF SOX9 was much more abun-
dantly expressed in the MDA-MB-468 cells, while
TWIST1 and ZEB1 had much higher transcript counts
in the PMC42 sublines (Additional file 2: Figure S1).
These results indicate that a phenotypically-similar

EMT process was induced across these different cell
lines and stimuli, with consistent changes in the tran-
scripts which mediate these canonical changes, such as
VIM, CD44, CDH1 and CDH2. However, variation in
the differential abundance patterns observed for specific
EMT-implicated TFs suggests that these similar pheno-
typic behaviours are associated with different regulatory
mechanisms.

Pathway analysis highlights alternative signalling
mechanisms which contribute to EMT
To identify signalling pathways likely to be affected by
the transcriptional changes associated with each model

of induced EMT, we first assessed the mRNA transcripts
that responded within each model and then mapped
these to KEGG pathways. EGF stimulation of PMC42-
ET cells led to significant (q-value < 0.05) changes in
abundance for 238 transcripts (Table 1). This was the
lowest number across all of our in vitro models of EMT,
consistent with PMC42-ET cells being relatively mesen-
chymal in the unstimulated state (Figure 1a). The EGF-
and HPX-stimulated MDA-MB-468 cells had significant
changes in abundance for 3155 and 3716 transcripts,
respectively, indicating a much greater response than the
EGF- stimulated PMC42-ET or PMC42-LA cells (Table 1).
The number of transcripts with differential abundance for
the stimulated MDA-MB-468 cells was of a similar magni-
tude to the inter-model comparisons between PMC42-ET
and -LA sublines in the presence or absence of EGF (3261
and 2938, respectively; Table 1). These inter-model com-
parisons also show that the number of transcripts with a
significantly different abundance between the PMC42-ET
and -LA sublines decreased with EGF stimulation,
suggesting a potential convergence of phenotypes.
Next we examined the putative signalling effects of

these altered transcript abundances, performing an over-
representation analysis to identify intracellular signalling
pathways that may have been perturbed (p-value < 0.05)
by concerted changes to numerous signalling compo-
nents during induced EMT. Eleven signalling pathways
showed some evidence of dysregulation (p < 0.05) within
at least one model of induced EMT (Table 1). The PI3K-
Akt signalling pathway was the only pathway that
showed perturbation of components across all models of
induced EMT (Table 1); however, after further correcting
for multiple hypothesis testing, the EGF-stimulated
PMC42-LA cells remained as the only experimental

Figure 1 Stimulation of PMC42-ET and PMC42-LA cells with EGF, or stimulation of MDA-MB-468 cells with EGF or growth under hypoxic conditions
(HPX) promotes a mesenchymal phenotype. (a-h) Fluorescence images of stimulated and unstimulated cells labelled with DAPI (blue) and anti-vimentin
(red). Scale bar represents 10 μm. Changes in mRNA transcript abundance between stimulated and unstimulated cells for (i) EMT markers and
(j) EMT-implicated transcription factors. Note the use of alternative colour-bars to indicate statistically significant (**; q-value < 0.05; red-green)
and non-significant (brown/orange-teal) changes in abundance. Grey squares indicate mRNA transcripts that were not reliably detected – normalised
count data are shown in Additional file 2: Figure S1.
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system showing significant transcriptional dysregulation
of PI3K-Akt signalling components. The results shown
in Table 1 support the observation that although a
phenotypically-similar EMT is induced (Figure 1e-h & 1i),
as extensively characterised in previous reports by us and
others [3,41-43,46-48], there are differences in the molecular
mechanisms that drive these phenotypic changes (Figure 1j).
Both the HIF-1 signaling pathway and Rap1 signaling

pathway showed very strong transcriptional perturbations
within EGF or HPX-stimulated MDA-MB-468 cells, and
there was also evidence of HIF-1 signaling pathway dysreg-
ulation between EGF and HPX-stimulated MDA-MB-468
cells (Table 1). Strong dysregulation of Hippo, Hedgehog
and TGF-beta signalling components was observed with
EGF induced EMT within the PMC42-LA cells, and in the
absence of EGF, components of the Wnt signalling path-
way showed strong differences in transcript abundance
between the PMC42-ET and PMC42-LA sublines (Table 1).
To identify common signalling elements across these

different pathways we examined the frequency of compo-
nents. Changes in mRNA transcript abundance of signal-
ling proteins which were present within at least six of the
11 KEGG maps are shown in Figure 2a. Three proteins
were found across seven pathways, encoded by: MAPK1,
MAPK3 and PRKCA (Figure 2a; see membership matrix
at right). Within six of the maps, the next most com-
mon proteins were encoded by: AKT1, AKT2, AKT3,

MAP2K1, MAP2K2, PIK3CA, PIK3CB, PIK3CD, PIK3CG,
PIK3R1, PIK3R2, PIK3R3, PIK3R5, PRKCB, PRKCG, and
RAC1 (Figure 2a). The prevalence of MEK1/2-ERK1/2 and
PI3K-Akt across these KEGG maps likely reflects the role of
these signal transducers in the integration of numerous up-
stream signals.

Systems-level computational analysis identified putative
drug targets to alleviate signalling pathway dysregulation
that occurs with induced EMT
As described earlier, EGF stimulation and hypoxic tumour
environments are both thought to be clinically-relevant
drivers of breast cancer progression in vivo. Thus, we focussed
our analysis towards elucidating the convergent and divergent
alterations to intracellular signalling which may encompass
therapeutic targets for controlling EMT within MDA-MB-
468 cells as a model of triple-negative breast cancer (TNBC).
To motivate drug target selection several analyses were per-

formed and their results are described together below. First,
transcripts showing similar or divergent patterns of differential
expression between the EGF- and HPX-stimulated MDA-
MB-468 cells were extracted (Additional file 3: Figure S2a &
b, respectively). Components of the dysregulated signalling
pathways (Table 1) are shown in Figure 2b & c. Transcripts
that changed in the same direction across all models of
induced EMT (including known EMT markers) are also
shown in Additional file 4: Figure S3. Next, transcript

Table 1 Different signalling pathways are dysregulated between the models of in vitro induced EMT

differential
analysis
between:

Cell Lines PMC42-
ET

PMC42-
LA

MDA-MB-
468

MDA-MB-
468

PMC42-ET vs.
PMC42-LA

PMC42-ET vs.
PMC42-LA

MDA-MB-
468

Conditions +EGF vs.
Unstim.

+EGF vs.
Unstim.

+EGF vs.
Unstim.

+HPX vs.
Unstim.

Unstim. +EGF +HPX vs
+EGF

number of
differentially
expressed
transcripts

238 591 3155 3716 3261 2938 1626

KEGG
signalling
pathway/
system:

PI3K-Akt 0.015 0.000 0.030 0.005 0.153 0.559 0.943

HIF-1 0.952 0.244 0.002 0.002 0.982 0.732 0.000

Rap1 0.562 0.014 0.000 0.000 0.175 0.075 0.742

Hippo 0.173 0.000 0.022 0.085 0.004 0.297 0.996

Wnt 0.015 0.371 0.038 0.071 0.002 0.455 0.534

MAPK 0.214 0.044 0.312 0.680 0.360 0.634 0.768

Hedgehog 0.977 0.000 0.999 0.939 0.217 0.093 0.993

TGF-beta 0.029 0.000 0.215 0.328 0.053 0.632 0.694

Ras 1.000 0.169 0.259 0.022 0.120 0.065 0.783

Phosphatidyl-
inositol

0.796 0.833 0.238 0.049 0.753 0.923 0.893

cAMP 0.992 0.639 0.242 0.017 0.983 0.756 0.201

The first row shows the number of mRNA transcripts with a significant (q-value < 0.05) difference in abundance between the specified cell lines or conditions. Subsequent
rows show the estimated p-value for enrichment of elements within KEGG pathways without correction for multiple hypothesis testing. KEGG maps related to signal
transduction with a significant (p-value < 0.05) enrichment in at least one comparison are shown (for a complete list please refer to Additional file 8: Table S2). Values in
bold are statistically-significant following a Bonferroni correction for multiple hypothesis testing (adjusted p-value < 0.05; n = 22 ‘signalling pathway’ KEGG maps), p-value
entries greater than 0.10 are in grey.
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Figure 2 (See legend on next page.)
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abundance data were mapped onto an experimentally
verified protein-protein interaction network and signalling
components that could be targeted by drugs, inhibitors or
antagonists were ranked by the relative level of dysregula-
tion to their local interactome (Table 2).
These results are discussed below with a schematic

diagram showing the role of proteins and functional re-
lationships between signalling components, within the
context of a broader intracellular signalling network
(Figure 3). These results were used to motivate pharma-
cological targeting of several points within the dysregu-
lated intracellular signalling network to examine the
efficacy of blocking EMT, as indicated within Figure 3.
Given the use of EGF within our experimental models

of in vitro induced EMT (Figure 1), kinase inhibitors
against EGFR/HER were included as a positive control.
The local interaction neighbourhoods of EGFR and
ERBB2 were amongst the most dysregulated (Table 2);
however, this may reflect the numerous feedback mecha-
nisms which have previously been elucidated for EGFR
signalling [62-64]. Alternative ligands for EGFR (TGFA,
AREG and HBEGF) show significant changes in tran-
script abundance, suggesting that autocrine/paracrine
signalling mechanisms may be activated, with HBEGF
showing particularly strong differences between EGF
and HPX stimulation (Figure 3).
Activation of EGFR is known to drive signalling

through both PI3K-Akt and MEK-ERK [65], and these

signal transduction cascades also appear to be key inte-
grators across all of the dysregulated signalling pathways
(Table 1; Figure 2a). Together with further details below,
and the results of our pathway analysis, this motivated
our experimental screening to focus upon different
classes of kinase inhibitors targeting PI3K/mTOR, AKT
and MEK1/2 as indicated (Figure 3).
Some of the strongest transcriptional changes with

induced EMT were observed for integrin subunits and
corresponding ECM components (Figure 3), and these
changes would be expected to influence the formation
and regulation of focal adhesion sites. Members of the
Src kinase family play an important role in transducing
signals from focal adhesion sites [66] to regulate Ras
signalling, and the interactomes of both LYN and FYN
are relatively enriched for disrupted binding partners, as
is the homolog ABL1 (Table 2). Induction of FYN by
PI3K/Akt signalling has previously been implicated as a
key mediator of cell invasiveness [40]. LYN has also been
identified as an important driver of phospho-tyrosine sig-
nalling to induce invasiveness within basal subtype breast
cancers, although that study reported a relatively low level
of activated LYN within the MDA-MB-468 cell line [67].
Pharmacological modulation of PI3K/mTOR was par-

ticularly attractive for this model of in vitro induced
EMT, as MDA-MB-468 cells are known to carry an
inactivating mutation in the PIP3-phosphatase PTEN
[68]. Regulatory Class IA PI3K subunits stabilise the

(See figure on previous page.)
Figure 2 Numerous signalling components showed significant differences between EGF and HPX mediated EMT. Heat maps for: (a) mRNA
transcripts for signalling components which are present across at least six perturbed signalling pathway KEGG maps (Table 1); (b, c) mRNA
transcripts with significant (q-value < 0.05) differences in mRNA transcript abundance within at least one PMC42 cell line condition comparison,
and differences in mRNA transcript abundance going in (b) the same, or (c) different directions for EGF or HPX-stimulated MDA-MB-468 cells
compared to unstimulated, with a significant difference in transcript abundance between the EGF- and HPX-stimulated MDA-MB-468 cells.
Membership within KEGG maps that are listed in Table 1 is shown at right (black box). Note the use of alternative colour-bars to indicate
statistically significant (**; q-value < 0.05; red-green) and non-significant (brown/orange-teal) changes in abundance.

Table 2 Signalling pathway components showed variable levels of transcriptional disruption to their local interactome

Rank HGNC symbol degree Rank HGNC symbol degree Rank HGNC symbol degree

1 HSP90AA1 164 11 PIK3R1 66 21 ERBB2 42

2 HSP90AB1 132 12 VCP 59 22 TGFBR1 41

3 EGFR 122 13 CALM1 58 23 HSPA1A 39

4 MYC 99 14 TUBB 57 24 RAC1 38

5 GSK3B 84 15 LYN 49 25 PIN1 37

6 FYN 76 16 JUN 48 26 NFKB1 37

7 ABL1 70 17 GAPDH 47 27 CDK6 35

8 PRKACA 68 18 FOS 45 28 MAPK3 35

9 PRKCA 67 19 CREBBP 45 29 TK1 34

10 CDK1 67 20 TUBA1A 42 30 PSMA7 34

mRNA transcripts encoding proteins for which there are drugs, inhibitors or antagonists available (through DrugBank v3.0), ranked by degree within a
protein-protein interaction network of differentially expressed transcripts. Degree reflects the number of interaction partners (for the encoded protein) which
show significant changes in transcript abundance.
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catalytic subunits to inhibit PI3K activity in the absence
of upstream signals [69,70], and PIK3R1 (p85α) was sig-
nificantly downregulated with EGF- or HPX-stimulation,
although PIK3R2 (p85β) was increased, particularly with
EGF stimulation (Figure 3). Furthermore, when consider-
ing disruption to the local interactome PIK3R1 was highly
ranked, suggesting a greatly reduced threshold for signal-
ling through PI3K, particularly under conditions where
HPX is driving EMT.
Given the evidence for signalling through PI3K as

described above, it was interesting to note changes in
transcript abundance for the AKT scaffolding compo-
nents Hsp90 and Cdc37 (Figure 3) with the HSP90AA1
and HSP90AB1 local networks showing the greatest de-
gree of disruption (Table 2). Vivanco et al. demonstrated
that GSK3B is an important downstream effector of
AKT signalling [70], which also showed a high degree of
disruption to the local interactome. Furthermore, AKT3

transcript abundance increased significantly under hyp-
oxic conditions (Figure 3).
Increased signalling activity through MEK1/2-ERK-1/2

is the canonical downstream response to EGFR stimula-
tion over many cell types [64,71], and activation of EGFR
signalling induces a large number of feedback mecha-
nisms to further modulate pathway activity [63]. This is
consistent with the observation that MAPK3 (ERK1)
showed some degree of disruption to its local interactome
(Table 2), and with the notion that the MEK1/2-ERK-1/2
axis is a key integrator of dysregulated signalling pathways
across the various models of induced EMT. It is possible
that under conditions where key signalling proteins have
been disrupted (e.g. an inactivating mutation in PTEN),
some of these feedback mechanisms may lead to aberrant
signalling. We examined differentially expressed genes
with a previously identified transcriptional signature for
MEK pathway activation [72] and found many of these

Figure 3 Differences in signalling component transcript changes between EGF and hypoxia induced EMT. Changes in transcript abundance
(legend top right) for selected intracellular signalling components, within a schematic representation of the signalling network interactions
between encoded proteins. Note the use of alternative colour-bars to indicate statistically significant (**; q-value < 0.05; red-green) and
non-significant (brown/orange-teal) changes in abundance. Kinase inhibitors within the families selected for screening (described in text;
shown in purple) are listed in Table 3.
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transcripts were significantly upregulated within the EGF
or HPX-stimulated MDA-MB-468 cells (Additional file 5:
Figure S4a).

EGF- and HPX-stimulated MDA-MB-468 cells show different
responses to pharmacological inhibition of MEK-ERK and
PI3K/Akt signalling
As detailed above, systems-level analysis of the mRNA
transcript abundance changes that occurred with induc-
tion of EMT identified several signalling molecules that
were likely to have dysregulated activity, and may play a
role in promoting the mesenchymal phenotype. To inves-
tigate the potential for therapeutic intervention against
these signalling components, a panel of kinase inhibitors
(Table 3) was tested to determine the concentrations at
which the fraction of vimentin+ cells or cell count was re-
duced by 50% (IC50 concentrations).
The majority of inhibitors tested on EGF-stimulated

PMC42-ET cells were efficacious at reducing cell count;
however, nearly every inhibitor tested had an IC50 for re-
ducing the number of vimentin+ cells well above
pharmacologically relevant concentrations (Table 3a-e),
thus off-target effects are likely.
As expected, the panel of EGFR kinase inhibitors

(Table 3a) were very effective at blocking EGF-induced
EMT and cell growth in the PMC42-LA and MDA-MB-
468 cells, and with the exception of lapatinib, the IC50

values for inhibition of vimentin expression are 8–10
fold lower than the corresponding IC50 values for reduc-
tion of cell count. Reduced levels of vimentin expression
correlated with the ability of these compounds to inhibit
the phosphorylation of ERK1/2 over a range of concentra-
tions (Additional file 6: Figure S5), demonstrating the
importance of the EGFR/MEK/ERK canonical pathway
and its associated networks in promoting EMT-associated
phenotypic changes. The EGFR kinase inhibitors also ap-
peared to have an effect on HPX-stimulated MDA-MB-
468 cells, although IC50 values for HPX-stimulated cells
were all higher than corresponding IC50 values for EGF-
stimulated cells. In particular, inhibition of the HPX-in-
duced vimentin response in MDA-MB-468 cells occurred
at drug concentrations >10-fold higher than required for
inhibition of ERK phosphorylation, indicating that the
MEK/ERK pathway may be less important for EMP and the
regulation of vimentin expression under hypoxic growth
conditions. This effect may also be due to drug resistance
mechanisms as discussed below. EGFR kinase inhibitor-
mediated reductions in cell count for both EGF- and HPX-
stimulation were generally observed at concentrations an
order of magnitude greater than the effects on vimentinex-
pression, indicating that our treatments are affecting EMT
at relevant concentrations, while reduction in cell viability
at higher concentrations may be caused by off target effects.
Hypoxia-treated MDA-MB-468 cells were exposed to a

small molecule inhibitor of HIF1α accumulation and gene
transcriptional activity, CAY10585, to determine whether
this could reduce the induction of EMT in these cells. At
concentrations below 1 μM CAY10585 did not have a sig-
nificant effect on the number of vimentin+ cells; however,
the number of vimentin− cells was potently reduced, sug-
gesting this may have a deleterious effect upon the cell
population with an epithelial phenotype (Additional file 7:
Figure S6).
Although EGF stimulation further increased the

mRNA transcript abundance of EMT markers (Figure 1i)
the inability of EGFR inhibitors to reduce the fraction
of vimentin+ PMC42-ET cells (Table 3a) suggests that
the unstimulated mesenchymal phenotype of these
cells is maintained through EGFR-independent signal-
ling mechanisms.
Inhibitors targeting the MEK1/2 (Table 3b) and Src-

family kinases (Table 3c) showed a similar response profile
to the EGFR inhibitors with potent blocking of vimentin
expression within the EGF-stimulated cells. For MEK inhib-
itors the IC50 values for inhibition of vimentin expression
tended to be lower than the corresponding IC50 values for
cell count, and within MDA-MB-468 cells the IC50 values
were again higher with HPX stimulation than EGF stimula-
tion (Table 3b). A similar effect was seen for inhibition of
phospho-ERK1/2 (data not shown). A previously reported
mRNA transcript signature for ‘compensatory resistance’ to
AZD6244 (Additional file 5: Figure S4b) [72] shows some
agreement with the observed efficacy of this MEK inhibitor
(Table 3b). The EGF-stimulated PMC42-LA cells had
the lowest IC50 for AZD6244 in reducing the fraction
of vimentin+ cells by several orders of magnitude, and
many of the AZD6244 resistance signature genes showed
a decrease in transcript abundance relative to unstimu-
lated PMC42-LA cells (Additional file 5: Figure S4b). Al-
though the profile of this signature was very similar
between EGF- and HPX-stimulated MDA-MB-468 cells,
several of the transcripts showed a greater degree of up-
regulation with hypoxia, in agreement with the reduced
efficacy of AZD6244 within hypoxia-stimulated MDA-
MB-468 cells (Table 3b). For most Src family inhibitors
within EGF-stimulated MDA-MB-468 cells the values
for IC50 of vimentin+ cells were lower than the IC50

values for cell count. Conversely, within EGF-stimulated
PMC42-LA cells and HPX-stimulated MDA-MB-468 cells
the IC50 for cell count is lower for most Src family inhibi-
tors (Table 3c).
Within EGF-stimulated PMC42-LA cells GDC-0941

and GSK2126458 were the only PI3K/mTOR inhibitors
(Table 3d) with pharmacologically relevant IC50 values
for reduction of vimentin+ cells, although most inhibi-
tors were capable of reducing cell growth. The PI3K/
mTOR inhibitors were much more efficacious within the
MDA-MB-468 cells, and many of the tested compounds
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Table 3 Targeted Inhibition of signalling molecules show differential effects between EGF- and hypoxia-induced EMT

Cell line: PMC42-ET PMC42-LA MDA-MB-468

Stimulus: EGF HPX

Measured IC50 for: Biochemical assay
(published data from
compound vendors)

% vimentin-
positive cells
(μM)

Cell count
(μM)

% vimentin-
positive cells
(μM)

Cell count
(μM)

% vimentin-
positive cells
(μM)

Cell count
(μM)

% vimentin-
positive cells
(μM)

Cell count
(μM)

Targets: Compound name

Erlotinib (Tarceva) EGFR (2 nM) >25 15.04 0.18 16.42 0.14 16.42 5.71 >25

Lapatinib (GW572016) EGFR (10.2 nM), HER2
(9.8 nM)

>25 2.46 0.57 1.65 4.32 2.99 1.96 1.44

a) HERs/EGFR Vandetanib (Zactima) VEGFR2 (40 nM),
VEGFR3 (110 nM),
EGFR (500 nM)

>25 1.84 0.57 1.57 0.50 3.77 - -

Gefitinib (Iressa) EGFR (33 nM) >25 5.78 0.26 1.48 0.25 2.31 6.62 6.27

TOVOK (Afatinib) Irreversible binder.
EGFR (0.5 nM),
HER2 (14 nM)

>25 1.24 0.02 0.96 0.03 0.26 2.38 1.01

AV-412 EGFR (43 nM), HER2
(282 nM)

>25 0.33 0.05 0.32 0.05 0.54 >25 0.06

U0126 MEK1 (70 nM), MEK2
(60 nM)

>25 >25 1.38 >25 0.38 8.74 4.99 >25

SL 327 MEK1 (180 nM), MEK2
(220 nM)

>25 16.43 1.43 >25 >25 12.56 >25 0.03

b) MEK-1/2 PD 198306 MEK (8 nM) >25 1.36 0.34 2.50 0.46 0.97 1.7 2.94

AZD6244 (Selumetinib) MEK1 (14 nM) >25 >25 0.06 >25 1.38 13.71 >25 >25

CI-1040 (PD-184352) MEK (1–1.3 nM) >25 3.27 0.16 1.40 0.19 2.00 4.7 6.33

PD0325901 MEK (0.33 nM) >25 >25 <0.02 >25 <0.02 2.77 4.17 0.06

PD173955-Analogue 1 c-Src (9 nM) >25 5.94 >25 6.28 1.70 3.40 6.55 >25

Saracatinib (AZD0530) Src (2.7 nM) >25 0.75 0.94 0.50 >25 6.35 >25 0.72

c) Src family Bosutinib (SKI-606) Src (1.2 nM), Abl (1 nM) >25 1.40 0.23 1.17 0.25 1.05 1.19 0.54

Dasatinib (BMS-354825) Src (0.8 nM), Abl (0.6 nM) >25 0.04 0.76 <0.02 0.64 5.59 >25 0.04

PD173952 Src (8 nM), Lck (5 nM),
FGFR1 (100 nM)

>25 0.35 1.61 0.23 0.10 0.25 - -

PIK-90 PI3K (α 11 nM, β 350 nM,
γ 18 nM, δ 58 nM)

>25 16.35 >25 16.36 3.26 >25 >25 <0.02

ZSTK474 PI3K (α 17 nM, β 53 nM,
γ 6 nM)

>25 0.83 >25 2.11 0.21 0.72 2.35 >25

GDC-0941 PI3K (α 3 nM, β 33 nM,
γ 75 nM, δ 3 nM)

>25 0.46 8.67 1.18 1.27 1.79 4.69 4.88
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Table 3 Targeted Inhibition of signalling molecules show differential effects between EGF- and hypoxia-induced EMT (Continued)

BEZ-235 (NVP-BEZ235) p110 (α 4 nM, β 75 nM,
γ 5 nM, δ 7 nM)

>25 0.06 >25 >25 0.02 0.05 0.05 3.43

d) PI3K/mTOR PI103 DNA-PK (2 nM), mTORC1
(20 nM), PI3K-C2b
(26 nM), p110 (α 8 nM,
β 88 nM, γ 150 nM,
δ 48 nM)

15.18 0.32 >25 1.82 0.38 0.88 1.22 1.04

GNE-493 PI3K (α 3.4 nM, β 12 nM,
γ 16 nM, δ 16 nM)

>25 1.11 >25 12.09 0.29 1.45 0.99 6.41

GSK2126458 (HYR-582) Ki: P110 (α 0.019 nM,
β 0.13 nM, γ 0.06 nM,
δ 0.024 nM), mTORC1
(0.18 nM), mTORC2
(0.3 nM)

>25 0.02 6.69 0.62 <0.02 0.08 0.29 0.74

GNE-490 PI3K (α 3.5 nM, β 25 nM,
γ 5.2 nM, δ 15 nM)

>25 2.16 >25 2.23 0.93 1.25 12.68 >25

LY294002 PI3K (α 0.5 uM,
β 0.97 uM, γ 0.57 uM)

>25 14.86 >25 12.12 4.18 13.22 >25 >25

GSK690693 Akt1 (2 nM), Akt2
(13 nM), Akt3 (9 nM)

>25 >25 >25 8.32 >25 3.31 >25 >25

A-674563 Ki: Akt1 (11 nM), PKA
(16 nM), CDK2 (46 nM),
ERK2 (260 nM)

>25 0.48 0.17 0.76 0.65 0.25 2.83 0.60

Akt-i-1 Akt1 (4.6 μM) >25 >25 >25 >25 >25 6.46 >25 12.30

e) Akt Akt-i-1/2 Akt1 (58 nM), Akt2
(210 nM)

>25 >25 >25 >25 >25 2.82 >25 4.79

AT7867 Akt1 (32 nM), Akt2
(17 nM), Akt3 (47 nM),
PKA (20 nM)

>25 2.63 >25 0.24 >25 2.95 >25 4.57

AZD5363 Akt1 (3 nM), Akt2
(8 nM), Akt3 (8 nM),
ROCK2 (56 nM)

>25 >25 >25 >25 0.63 >25 >25 >25

Merck-22-6 Akt1 (138 nM), Akt2
(212 nM)

>25 4.27 >25 1.48 >25 0.46 >25 0.55

MK-2206 Akt1 (8 nM), Akt2
(12 nM), Akt3 (65 nM)

>25 5.62 >25 3.16 >25 1.86 >25 9.77

Inhibition of vimentin expression and cell counts by a selection of kinase inhibitors. Shown are the IC50 values (where the fraction of vimentin positive cells, or the cell count, was reduced by 50% compared to the
controls). Concentrations are specified in μM units.
Inhibitors have been grouped according to the kinases they target. The dose–response curves for selected kinase inhibitors are shown in Figure 4. For reference, the IC50 values of each compound measured in
biochemical assays with purified enzymes are included.
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Figure 4 (See legend on next page.)
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had a lower IC50 value for the reduction of vimentin+

cells compared to the reduction in cell count.
In contrast to PI3K/mTOR inhibitors, the majority of

compounds targeting Akt kinases (Table 3e) were only
capable of reducing cell count, with A-674563 and
AZD5363 the only inhibitors with a pharmacologically
relevant IC50 value for vimentin+ cells across any of the
cell lines and conditions. Unexpectedly, some Akt inhibi-
tors and mTOR inhibitors were observed to increase the
fraction of vimentin+cells and the relative cell density,
particularly within HPX-stimulated MDA-MB-468 cells
(Figure 4h & k).
The observation that several classes of inhibitors were

efficacious within EGF-stimulated MDA-MB-468 cells,
but had little effect under hypoxic growth conditions,
supports the conclusion from the transcriptome analysis
that the phenotypically similar EMT processes induced
with EGF or hypoxia are driven by different signalling
mechanisms. Furthermore, given differences observed
between the EGF- and HPX-induced transcriptional pro-
files, particularly for signalling ligands where the recep-
tor also has strong increases in transcript abundance,
such as HBEGF/EGFR and VEGFA/KDR, we hypothesised
that pro-survival signalling through AKT may mediate the
reduced efficacy of MEK-1/2 inhibitors under hypoxic con-
ditions. Thus, we also applied the AKT1/2/3 inhibitors
GSK690693 or AZD5363 in combination with the MEK1/2
inhibitor AZD6244. The pharmacological efficacy curves
suggest that they provide a synergistic effect to block the
relative fraction of vimentin+ cells (Figure 4m). Further-
more, this effect was not observed with the AKT1 or
AKT1/2 inhibitors tested in combination with AZD6244
(Figure 4p).

Discussion
Transcriptional profiling of two human breast cancer
models indicated that subtly different transcriptional re-
sponses underpinned EMT induced with EGF or HPX
(Figure 1a-h &i). This included variation in the relative
abundance of EMT-implicated transcription factors
(Figure 1j & k), and alternative signalling pathways dys-
regulated by the transcriptional changes (Table 1 & 2;
Figure 2 & 3). A panel of kinase inhibitors were selected
from across the network of disrupted signalling compo-
nents, within which PI3K-Akt and MEK1/2-ERK-1/2 ap-
peared to act as signal integrators. In general, tested
compounds had a much lower potency within our cellular

assays compared to results obtained with purified en-
zymes. This was expected due to effects such as competi-
tion with high levels of intracellular ATP, binding to other
proteins and limited cellular permeability [73].
A range of factors regulate EMP through various signal-

ling pathways [74], and “kinase switching” from the ErbB
axis to FGFR and PDGFR has been associated with EMT
in NSCLC models [75]. We focussed on differences in the
signalling mechanisms associated with EGF- or HPX-
induced EMT within MDA-MB-468 cells as a model of
TNBC (Figure 4). Many drugs that induced a response
within the EGF-stimulated MDA-MB-468 cells, such as
the MEK inhibitor AZD6244 (Figure 4a & b), showed re-
duced efficacy or even pro-proliferative effects within
HPX-stimulated MDA-MB-468 cells. It has previously
been reported that hypoxia can have varied effects across
different kinase inhibitors, and this may be partially medi-
ated by modulation of hypoxia-induced compensatory
mechanisms, such as VEGF signalling [76]. Stark differ-
ences were observed in the responses elicited by some in-
hibitors, including the mTOR inhibitor Everolimus, and
the AKT1/2/3 inhibitor AZD5363 (Figure 4 g & h; j & k).
These divergent responses to pharmacological perturbation
support the conclusion that subtly different signalling
mechanisms are responsible for driving the phenotypically
similar EMT processes that occurred with EGF or HPX
stimulation of MDA-MB-468 cells (Figure 1). Intriguingly,
synergistic effects for blocking EGF-induced EMT were
observed when combining an AKT1/2/3 inhibitor with the
MEK-1/2 inhibitor AZD6244, but not for an inhibitor
which targeted AKT1 alone (Figure 4p), indicating that
AKT1 is not solely responsible for the protective signalling
seen in this system.

Differences in the transcriptional profile and
pharmacological responsiveness between EGF- and
hypoxia-induced EMT
We saw differences in the transcript abundance and/or
regulation of several well-studied TFs previously associ-
ated with EMT in breast cancer [77-79] (Figure 1j). Rela-
tively large (although not statistically significant) changes
in transcript abundance for TWIST1 under HPX condi-
tions are consistent with its reported regulation by HIF1
[36,37,80], as are the increases for ZEB1 [80] (Figure 1j).
Failure to detect SNAI2 transcripts within the MDA-MB-
468 cells data was consistent with one previous report
[81]; however, increases in SNAI2 mRNA abundance

(See figure on previous page.)
Figure 4 Hypoxia- and EGF-induced metastatic MDA-MB-468 cells show markedly different responses to pharmacological inhibitors. Pharmacological
dose–response curves showing the fraction of vimentin-positive cells (blue; left axes) and cell-count (red; right axes) in the presence of (a-c) the MEK
inhibitor AZD6244, (d-f) the PI3K inhibitor GDC-0941, (g-i) the AKT1/2/3 inhibitor AZD5363 (j-l) and the mTOR inhibitor Everolimus. (m-o) pharmacological
inhibition of vimentin with a combination of MEK-1/2 (AZD6244) and AKT1/2/3 (AZD5363) inhibitors at varying concentrations. (p) pharmacological
inhibition of vimentin with a comination of MEK-1/2 (AZD6244) and AKT1 (Akt-i-1) inhibitors at varying concentrations.
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following EGF stimulation of MDA-MB-468 cells have
been reported together with enrichment at sites of in vivo
EMT [48]. This discrepancy may reflect the different prov-
enance of MDA-MB-468 cells in Belgium and Australia,
or alternatively, SNAI2 transcripts may be expressed at
sufficiently low levels that they approach the signal-to-
noise ratio of our RNA-Seq protocol. Our previous study
showed that treatment of MDA-MB-468 cells with HPX
caused a non-significant increased at different time points
in SNAI2, TWIST1 and ZEB2, and a significant increase
in ZEB1 [42]. The dominant role of ZEB1 in the current
study is also consistent with our previous observations
that PMC42-ET cells have significantly higher levels of
ZEB1 and SNAI2 than PMC42–LA cells, and that ZEB1
and SNAI2 were both increased in PMC42-LA cells after
EGF treatment [41,42]. ZEB1 appears to be a downstream
integration point for EMT regulation [41], and is subject
to complex regulation at multiple levels [82,83]. This dif-
ferential control between EMT scenarios may have clinical
utility in allowing selective inhibition of EMT mechanisms
involved in tumour progression, whilst leaving critical
physiological processes unperturbed to reduce toxicity.
Numerous transcripts showed differences in abundance

between EGF- and HPX-mediated EMT (Figure 2 & 3),
and some of the altered signalling components likely con-
tributed to the variable drug efficacy. The multidrug
resistance-promoting P-glycoprotein (ABCB1) had a large
increase in transcript abundance within hypoxia-stimulated
MDA-MB-468 cells (2.6-fold increase, q-value = 0.029; for
EGF-stimulation 1.6 fold increase, q-value = 0.36), which
may have reduced the efficacy of several kinase inhibitors
[76,84,85].
The ability of EGFR inhibitors to block EMT in HPX-

stimulated MDA-MB-468 s (albeit at higher concentra-
tions than in EGF-stimulated MDA-MB-468 s; Table 3a)
suggests that hypoxia-induced EMT may be partially me-
diated by paracrine/autocrine EGFR signalling. This is
supported by the observation that transcript abundances
for several EGF ligands were significantly increased with
HPX stimulation, as was EGFR itself (Figure 3). This could
drive paracrine/autocrine EGFR signalling to promote
EMT, although it should be noted that EGF was present
within the culture media and this would also drive some
EGFR signalling. HB-EGF mediated activation of EGFR is
an important driver of MDA-MB-231 cell invasiveness,
particularly for brain metastases [86]. A similar role has
been described for autocrine TGFβ signalling in promot-
ing EMT [82], and it is interesting that modulators of
TGFB signalling showed significant changes in tran-
script abundance, including: THBS1 (Figure 1i), INHBA,
TGFBR2 (Figure 2b), INHBB and BMP4 (Figure 2c).
Many of the ‘HIF-1 signalling’ transcripts with large dif-

ferences in abundance between EGF- and HPX-stimulated
MDA-MB-468 cells were known transcriptional targets of

HIF-1, such as SERPINE1, VEGFA, and EDN1. Al-
though it is not included within the KEGG HIF-1 sig-
naling pathway, DDIT4 is a known HIF-1-responsive
transcript (HIF-1 responsive RTP801) which can modulate
mTORC1 through the RHEB inhibitors TSC1/TSC2.
Other HIF-1 target genes necessary for metabolic adapta-
tion to hypoxic growth also showed large differences, in-
cluding HK2, LDHA, PFKFB3, and SLC2A1 (Figure 2b).
These differences likely reflect stabilisation of HIF-1α
under hypoxic growth conditions, although many of the
metabolism-associated HIF-1 targets also had increased
transcript abundance with EGF stimulation (Figure 2b).
This may be mediated by MEK1/2-ERK1/2 signalling
through MKNK2 to eIF4E, influencing HIF-1α translation.
Pre-clinical studies have observed such effects with
hypoxia-induced EMT [39] and this may contribute to the
deleterious effect of VEGFR inhibitors [87].
Assuming that increased abundance of SOX9 mRNA

(Figure 1i) contributes to increased transcription factor
activity, this driver of mammary stem cell behaviour
likely promotes EMT (Figure 1a–h). The increase in
SOX9 transcript abundance was only significant within
the HPX-stimulated MDA-MB-468 cells (Figure 1i), al-
though SOX9 also showed strong differences in tran-
script abundance (q-value < 0.05) between the ET and
LA sublines (Figure 2c). SOX9 has been linked to clin-
ical chemoresistance in colorectal cancer [88], an affect
which may be partially mediated by EMT changes. Fur-
thermore, cancer stem cell markers are negative pre-
dictive markers for the efficacy of everolimus in
treating TNBC [89], and this may underpin the failure
of everolimus to block EMT within hypoxia-stimulated
MDA-MB-468 cells (Figure 4 k).

Pathway convergence on PI3K-Akt and MEK1/2-ERK1/2
The presence of PI3K-Akt and MEK1/2-ERK1/2 com-
ponents across multiple signalling pathways (Figure 2a)
is consistent with the role of these evolutionarily-
conserved modules in the integration of various extra-
cellular stimuli [90]. As detailed above, PI3K-Akt and
MEK1/2-ERK-1/2 are well-known effectors of EGFR
signalling [65] and other receptor tyrosine kinases
[69,90], and signalling through these pathways can in-
duce a variety of feedback mechanisms [63]. Even
within breast cancer cell lines that do not over-express
HER2, such as triple negative MDA-MB-231 cells,
EGFR-induced signalling through PI3K/Akt is thought
to be involved in mediating EMT [31], while several
other studies implicate MEK1/2-ERK1/2 signalling as
an important driver [91]. The relatively high frequency
of PI3K-Akt and MEK1/2-ERK1/2 may, simply reflect
their relatively well-studied nature, however, leading to
inclusion across numerous KEGG maps.
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Activation of MEK-ERK signalling and promotion of signalling
through ERK2 may contribute to EMT development in
hypoxia
Recent evidence has indicated that ERK2 (MAPK1) sig-
nalling is central to EMT, activating DEF-motif tran-
scription factors such as FOSL1 (FRA1) and ZEB1/ZEB2
[92,93]. Although increases in ERK2 (MAPK1) transcript
abundance were not significant with EGF or HPX stimu-
lation, there were corresponding decreases in ERK1
(MAPK3) transcript abundance that were significant
within hypoxia-stimulated MDA-MB-468 cells (Figure 3).
The altered ratio of transcripts may have led to ERK2
becoming the dominant isoform, while activation of Ras
under stimulated conditions drives signalling though
MEK-1/2 (Additional file 5: Figure S4a) to phosphorylate
ERK2. Kinome profiling of TNBC tumours suggests that
ERK2 is activated compared to control tissue, while
ERK1 activity remains unchanged [94], and it is tempting
to speculate that the hypoxic tumour environment drives
in vivo ERK2 activation. FOSL1 was one of the few tran-
scripts significantly upregulated across all our models of
induced EMT and ZEB2 was not expressed within MDA-
MB-468 cells (Figure 1j), suggesting ZEB1 and FOSL1
may be sufficient to mediate this transformation.

Clinical Implications
Oncogenic mutations of Ras are important drivers of
malignant behaviour within melanoma and pancreatic
cancers, and although such activating mutations are
relatively rare within breast cancer, overexpression of
Ras mRNA and protein has been demonstrated [95].
Our data show a strong increase in transcript abundance
for RRAS2 (Figure 3), consistent with reports that
RRAS2 drives PI3K-dependent tumorigenesis and con-
tributes to late stage metastasis in certain lung cancers
[96]. Activation of Ras proteins by a range of growth fac-
tor receptors [97] leads to activation of the Raf-MEK-
ERK [94] and the PI3K-Akt signal transduction cascades,
culminating in the regulation of cellular survival and
proliferation genes [90,98]. Ras is difficult to target
therapeutically [99], although up- and downstream path-
way components may be inhibited [100]. Inhibition of
Src upstream has proved disappointing with response
rates below 10% in unselected TNBCs [101] whereas
downstream B-Raf inhibition is currently unexplored.
The effects of MEK inhibition within breast cancer are

poorly studied in comparison to other cancers, particularly
melanoma and lung cancer. Treatment of MDA-MB-231
and SUM159 cells with the MEK inhibitor AZD6244 has
been shown to reduce c-Myc mRNA transcript and pro-
tein abundance, leading to receptor tyrosine kinase repro-
gramming which drives MEK inhibitor resistance [94].
Breast cancer cell lines sensitive to the MEK inhibitor
selumetinib tend to be a basal subtype with Raf mutations

[102], and a number of MEK inhibitors are in early clinical
trials across solid tumour types, although information on
breast cancer responsiveness is still scarce [103]. A phase
II clinical trial for the MEK inhibitor CI-1040 in chemo-
therapy pre-treated metastatic breast cancer showed no
major effects, although one patient developed stable dis-
ease [104]. The lack of frequent mutations within the core
Ras-Raf-MEK axis, but the potential for cross-talk with a
plethora of pathways intrinsic to breast cancer progres-
sion, may mean that the potential of MEK blockade lies in
treatment combinations to overcome resistance. This is
borne out by pre-clinical studies which have shown MEK
inhibition has the potential to enhance sensitivity of breast
cancer xenografts to HER2 blockade [105] and anti-
estrogen treatment [106]. Furthermore, studies with breast
cancer cell lines have shown that MEK inhibition also
increases sensitivity to EGFR blockade [107], and reversed
the effects of IGF-1R overexpression in promoting prolif-
eration [108].
Combination therapies with PI3K inhibition have been

shown to enhance the effect of MEK inhibition within
basal subtype breast cancer cells by alleviating the com-
pensatory activation of PI3K/AKT that occurs with MEK
inhibition [109]. We observed that a combination of
MEK1/2 and AKT1/2/3 inhibitors had synergistic effects
in blocking vimentin induction within our in vitro model
of EGF-induced EMT (Figure 4m). It should be noted,
however, that when EMT was induced with hypoxic
growth conditions this combination of kinase inhibitors
promoted an increase in the relative fraction of mesen-
chymal cells (Figure 4n) demonstrating the importance
of elucidating the detailed effects of pathway manipula-
tion in this area before proceeding to clinical studies.
Depletion of AKT3 has previously been reported to
sensitize TNBC cell lines, including MDA-MB-468 cells, to
the pan-Akt inhibitor GSK690693 [110] and The Cancer
Genome Atlas Project (TCGA) data show that AKT3 is up-
regulated in 28% of TNBCs [110,111]. The observation that
inhibitors targeting AKT1 (Figure 4p) or AKT1/2 (data not
shown) did not have a combinatorial effect with MEK1/2
inhibition suggests that AKT3 mediates sufficient signal
transduction to provide functional compensation during
inhibition of AKT1 and AKT2. This specific possibility re-
mains to be tested.

Conclusions
In this report we have studied the mRNA transcript pro-
file across several models of induced EMT to identify
common dysregulated signalling components that may
contribute to development and maintenance of the
metastatic phenotype. Given the putative role for EGF
signalling and hypoxia in mediating tumour progression
in vivo, our analysis focussed on the differences between
these stimuli in promoting EMT within MDA-MB-468
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cells as a model of triple negative breast cancer. A num-
ber of kinase inhibitors were targeted at different points
across the network of dysregulated signalling components,
and the alternative stimuli were associated with variation
in the efficacy of kinase inhibitors at blocking induction
of EMT. A combination of AKT1/2/3 and MEK1/2
inhibitors was shown to have synergistic effects on block-
ing the induction of EMT in vitro. The effects of simultan-
eously blocking these important signalling pathways are
likely to be deleterious to many different cell types;
however, using novel targeted drug delivery mechanisms
that are under development it may be possible to apply
this combination therapy for the clinical treatment of
EMT within TNBC. Furthermore, with further compara-
tive study the differential control of EMT by alternative
driver molecules we have identified may allow a selective
effect to be exerted on pathogenic EMT processes whilst
leaving physiological processes intact, thereby minimising
toxicity to patients.
We have demonstrated that hypoxic conditions funda-

mentally change the way breast cancer cells respond to
drugs and compounds in various stages of development
for treatment of breast cancer. The role of HIF1 in
promoting a mesenchymal phenotype has been well ex-
plored [4,11,36,37], as has the role of hypoxia in promot-
ing drug resistance components [76,84,85]. Perhaps most
importantly, our data also indicate that under hypoxic
conditions some therapeutic interventions may shift cells
into an even more aggressive, mesenchymal phenotype.
This highlights the vital importance of evaluating novel
drug targets under a more-representative range of stimuli
and conditions that mimic the heterogeneity of environ-
mental conditions tumours are exposed to in situ. While
attention has recently been drawn to the problem of
genetic heterogeneity in breast cancer tumours, our study
indicates that extra-cellular conditions, such as those we
have explored here to stimulate EMT, can induce diver-
gent molecular states even on a common genetic back-
ground, resulting in altered drug sensitivity and response.
Given the hypoxic conditions commonly prevalent in the
core of solid breast tumours, these findings have clear
clinical implications for both treatment, and the drug
development process.

Additional files

Additional file 1: Table S1. Provenance of EMT-associated transcripts
in Figure 1j. References which describe the role of transcripts listed
Figure 1j in promoting EMT.

Additional file 2: Figure S1. mRNA abundance data of selected
targets with comparison to published data sources for selected
transcription factors. (a) changes in mRNA transcript abundance (for
Figure 1i & 1j transcripts) between specified cell lines and conditions (at
top), with the mean count value (normalised to counts-per-million; CPM)
of the compared conditions overlaid. Note the use of alternative color-bars to

indicate statistically significant (**; q-value < 0.05; red-green) and non-significant
(brown/orange-teal) changes in abundance. Black squares indicate mRNA
transcripts that were not reliably detected. (b) Differential transcript abundance
within and between the in vitro models of induced EMT for Blick Basal B
discriminator transcripts [13]. Note the use of alternative color-bars to indicate
statistically significant (**; q-value < 0.05; red-green) and non-significant (brown/
orange-teal) changes in abundance. Black squares indicate mRNA transcripts
that were not reliably detected. (c) Relative transcripts abundances for EMT
implicated TFs (from Additional file 2: Figure S1a) within the Heiser data [112].
MDA-MB-468 cells are highlighted (cyan). (d) Relative transcripts abundances
for EMT implicated TFs (from Additional file 2: Figure S1a) within the Neve data
[44]. MDA-MB-468 cells are highlighted (cyan). Unstimulated MDA-MB-468 cells
(Figure 1 & Additional file 2: Figure S1a) have a relatively high abundance of
SOX9 and a relatively low abundance for FOXA2, FOSL1 SNAI2, TWIST1, ZEB1,
ZEB2, in agreement with the both the Heiser et al. [112] (Additional file 2:
Figure S1c) and the Neve et al. [44] (Additional file 2: Figure S1d) studies.

Additional file 3: Figure S2. Changes in abundance for selected
mRNA transcripts. Heat maps (legend at left) showing changes in transcript
abundance between the specified conditions (at top) for specified transcripts
where there is a significant difference in abundance between EGF and HPX
stimulated MDA-MB-468 cells, with (a) divergent or (b) consistent changes
between EGF and HPX stimulated MDA-MB-468 cells. Targets have been
clustered by expression pattern and are ordered accordingly.

Additional file 4: Figure S3. Changes in abundance for selected
mRNA transcripts. Transcripts with consistent differential transcript
abundance across all condition comparisons, and their membership
across all KEGG maps (at right).

Additional file 5: Figure S4. Components of transcriptional signatures
for MEK signalling activation (at top) and compensatory resistance to
AZD6244 (at bottom). To examine the hypothesis that signalling through
MEK is implicated in these models of induced EMT, we examined
changes in the abundance of genes previously classified as
‘transcriptional signatures’ for MEK pathway activation and AZD6244
sensitivity [72]. A large number of transcripts within the MEK signalling
activation signature showed increased transcript abundance in the EGF
stimulated PMC42-ET and PMC42-LA cells, with most of the changes not
being statistically significant. Although changes in transcript abundance
for components of the MEK signalling signature are less consistent within
the stimulated MDA-MB-468 s, there were more transcripts showing a
significant (q-value < 0.05) increase in abundance suggesting that
signalling through MEK1/2 is active. Examining mRNA transcripts which
have been associated with compensatory resistance to AZD6244, the EGF
stimulated PMC42-LA cells show a number of transcripts with decreased
abundance. For the EGF and HPX stimulated MDA-MB-468 cells a number
of these transcripts show increased abundance, with more than half
showing a statistically significant (q-value < 0.05) increase in abundance
within MDA-MB-468 cells grown under hypoxic conditions. It is interesting to
note that the PMC42-ET and –LA subline comparison showed the weakest
signature for MEK signalling activation, and the strongest signature for
AZD6244 resistance, regardless of EGF stimulation. The AZD6244 resistance
signature shows relatively good agreement with our inhibitor screen results
(Table 3), such that EGF stimulated PMC42-LA cells are susceptible to
AZD6244, the inhibitor is slightly less efficacious within EGF stimulated
MDA-MB-468 cells, and MDA-MB-468 cells grown under hypoxic conditions
are not affected by AZD6244.

Additional file 6: Figure S5. Inhibition of ERK phosphorylation shows
good correlation with the inhibition of vimentin-positive cells within EGF
and HPX induced EMT. Pharmacological response curves for the MEK-1/2
inhibitor CI-1040, showing the %inhibition of vimentin (blue), %inhibition of
phospho-ERK-1/2 (green) and reductions in cell count (red). (a) Note that
there is good correlation between the inhibition of vimentin and phospho-
ERK over a range of concentrations for EGF stimulated MDA-MB-468 cells.
(b) For MDA-MB-468 cells grown under hypoxic conditions, inhibition of
phospho-ERK shows a similar response; however, inhibition of vimentin
expressing cells only occurs at relatively high concentrations of phospho-ERK,
suggesting the activation of compensatory signalling mechanisms.

Additional file 7: Figure S6. Within hypoxia-treated MDA-MB-468 cells,
inhibition of HIF1α with the small molecule inhibitor CAY10585 or
transfection with siRNA targeting HIF1α caused a large decrease in the
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number of vimentin-negative cells. Hypoxia-treated MDA-MBA-468 cells
were treated with the small molecule inhibitor of HIF1α activation and
nuclear accumulation, CAY10585, or vector/negative-control (DMSO).
Relative to the DMSO treated cells, CAY10585 caused no significant change
in the cell count of vimentin+ cells; however, there was a profound reduction
in the number of vimentin− cells. To ensure that the effect is target-related, an
siRNA targeting HIF1α was tested, together with a scrambled siRNA/
negative-control. Relative to the scrambled siRNA treatment, the HIF1α siRNA
caused a small increase in the number of vimentin+ cells; however, there was
a much larger reduction in the number of vimentin− cells, in concordance
with the inhibitor data. The transfection of siRNA into MDA-MB-468 cells was
performed as a reverse transfection. Lipofectamine 2000 (Life technologies,
0.25 uL per well) and siRNA (final concentration 40 nM) were separately
diluted into 25 uL of Opti-MEM (Life technologies) and incubated for 5
minutes. The solutions were then combined and incubated for 15 minutes at
room temperature. To this mixture, 8,000 cells diluted into 100 uL of DMEM
with 10% FBS, and the combined mixture was seeded in a 96 well assay plate
(Corning, #3603). To other wells, 8,000 MDA-MB-468 cells were seeded without
any siRNA or transfection reagent. The plates were incubated over night at
37C/5% CO2. The next day, media in the transfected wells were replaced with
fresh media. HIF1a inhibitor (CAY10585, sc-205346, Santa Cruz biotechnology)
was diluted in DMSO (0.5% final concentration) and added to the untrans-
fected cells at the concentrations indicated in the figure. As a control, cells
were treated with 0.5% DMSO. All siRNA and inhibitor reactions were
performed in triplicate. The cells were incubated in a hypoxia chamber
(1% O2) for 72 h, before being fixed with 3.7% formaldehyde for 15 minutes.
The cells were then stained for Vimentin, imaged and analysed as previously
described. The siRNAs used were HIF1a siRNA (sc-35561, Santa Cruz
Biotechnology) and scrambled control siRNA (sc-37007, Santa Cruz
Biotechnology).

Additional file 8: Table S2. Estimated p-values for enrichment of
elements within KEGG signal transduction maps without correction for
multiple hypothesis testing. Signaling pathway KEGG maps which are
over-represented (p-value < 0.05) for transcripts which show differential
expression across at least one of the specified conditions are listed in
Table 1.
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