

The Walter and Eliza Hall Institute of Medical Research ABN 12 004 251 423 1G Royal Parade Parkville Victoria 3052 Australia T +61 3 9345 2555 F +61 3 9347 0852 www.wehi.edu.au

Research Publication Repository http://publications.wehi.edu.au/search/SearchPublications

This is the author's peer reviewed manuscript version of a work accepted for publication.

Publication details:	Fairley JL, Wicks I, Peters S, Day J. Defining cardiac involvement in idiopathic inflammatory myopathies: a systematic review. <i>Rheumatology</i> 2021 61(1):103-120.	
Published version Is available at:	https://doi.org/10.1093/rheumatology/keab573	

This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Rheumatology following peer review. The definitive publisher-authenticated version is available online at: https://doi.org/10.1093/rheumatology/keab573

Copyright © 2021 Oxford University Press

Page 1 of 44

Rheumatology

2		
3 4 5	1	Defining cardiac involvement in idiopathic inflammatory myopathies: a
6 7 8	2	systematic review
9 10 11	3	Jessica L Fairley (MBBS) ^{1,2} , Ian Wicks (MBBS, PhD, FRACP) ^{1,3,4,} , <u>Stacey Peters (MBBS,</u>
12 13	4	FRACP) ⁵ *, Jessica Day (MBBS, PhD, FRACP) ^{1,3,4} *
14 15 16	5	¹ Department of Rheumatology, Royal Melbourne Hospital, Parkville, VIC 3050, Australia.
17 18 19	6	² School of Public Health and Preventive Medicine, Monash University, Melbourne VIC 3004
20 21 22	7	Australia.
23 24 25	8	³ Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052 Australia.
26 27 28	9	⁴ Department of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia.
29 30 31	10	⁵ Department of Cardiology, Royal Melbourne Hospital, Parkville, VIC 3050, Australia.
32 33	11	* These authors contributed equally to this work
34 35 36	12	Corresponding Author: Dr. Jessica Day, Department of Rheumatology, Royal Melbourne
37 38 39	13	Hospital, 300 Grattan Street, Parkville, Victoria, Australia 3050. Tel: 61-3-9342 7634; Fax: 61-
40 41 42	14	3-9342-8780; Email: <u>day.j@wehi.edu.au</u>
43 44 45	15	
45 46 47		
48 49		
50 51		
52		
53 54		
55		
56		
57 58		
59 60		© The Author(s) 2021. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For permissions, please email: journals.permissions@oup.com

3 4 5	16	Abstract
6 7	17	Objective: Recent advances in cardiac magnetic resonance imaging (CMR) and other
8 9 10	18	diagnostic techniques have made it easier to identify subclinical cardiac inflammation and
11 12	19	dysfunction in the idiopathic inflammatory myopathies (IIM). Herein, we systematically
13 14 15	20	review the literature regarding cardiac involvement in IIM.
16 17 18	21	Methods: We searched Medline and EMBASE from 1990-2020 using keywords related to
19 20	22	IIM and cardiac disease. We included English language studies in adults with any immune-
21 22 23	23	mediated, inflammatory muscle pathology.
24 25 26	24	Results : We identified 10425 potentially relevant abstracts, of which 29 were included.
27 28	25	Most frequently these included patients with polymyositis or dermatomyositis without
29 30 31	26	symptomatic myocarditis. Five categories of cardiac investigation were used in these
32 33	27	patients: cardiac enzyme testing, electrocardiography (ECG), transthoracic
34 35 26	28	echocardiography (TTE), CMR and nuclear medicine testing. Patients with clinical
37 38	29	myocarditis had universally abnormal cardiac troponin levels and ECG. Elevated cardiac
39 40	30	troponin T was more common than troponin I (cTnI) and may correlate with disease activity,
41 42 43	31	whereas cTnI was more specific for cardiac involvement. Non-specific ECG changes were
44 45	32	common. The major finding on TTE was abnormal ejection fraction. Gross systolic
46 47 48	33	dysfunction was unusual, but subclinical systolic dysfunction was reported in several
49 50	34	studies. Abnormal diastolic function was common and may be associated with disease
51 52 53	35	duration. Late gadolinium enhancement (reflecting regional necrosis or scar) and abnormal
54 55	36	myocardial mapping parameters (reflecting myocardial inflammation, fibrosis and oedema)
56 57 58	37	were frequently identified on CMR, suggesting significant subclinical myocardial pathology
50 59 60	38	(despite typically normal ejection fraction).

1		
2 3 4	39	Conclusion: Abnormal cardiac investigations are commonly found in asymptomatic IIM
5 6 7	40	patients, which has potential prognostic and treatment implications.
8 9 10	41	Key words: myositis, cardiac involvement, cardiac investigation, troponin,
11 12 13	42	echocardiography, cardiac magnetic resonance imaging
14 15 16	43	Key Messages
17 18 10	44	Cardiac involvement is a comorbidity of idiopathic inflammatory myopathies, but has no
20 21	45	clear consensus definition.
22 23 24	46	Transthoracic echocardiography and cardiac MRI may reveal abnormalities in
25 26	47	asymptomatic patients.
27 28 29	48	• Further data are required to understand clinical and prognostic implications of these
30 31	49	abnormalities.
32 33 34	50	
35 36		
37 38		
39 40		
41 42		
43		
44 45		
46		
47 48		
49		
50 51		
52		
53		
54 55		
56		
57 58		
59		
60		

2	
J ∧	
4 7	
5	
6	
7	
8	
9	
10	
11	
12	
12	
11	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
7J 77	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
22	
56	
57	
58	
59	
60	

51 Introduction

52 Idiopathic inflammatory myopathies (IIM) are a heterogeneous group of autoimmune diseases characterised by chronic muscle inflammation. In adults, IIM encompasses 53 polymyositis (PM), dermatomyositis (DM), immune-mediated necrotising myopathy 54 55 (IMNM), anti-synthetase syndrome (ASyS), overlap myositis and inclusion body myositis (IBM). Recent advances include the discovery of myositis-specific antibodies (MSA) which 56 provide insight into clinical subsets of IIM(1). Profound disability owing to muscle weakness 57 58 is common in these patients(2), however the most common causes of death are malignancy 59 and internal organ involvement(3, 4). 60 Clinically apparent cardiac involvement is present in up to 9% of IIM patients in the Euromyositis registry(5). Recognised cardiac involvement in IIM is heterogeneous, including 61 62 heart failure(6), conduction defects(7), arrhythmias(7), and inflammatory infiltrates(8). Autopsy studies in IIM have demonstrated myocarditis (diffuse interstitial mononuclear 63 64 inflammatory cell infiltrates, similar to skeletal muscle infiltrates), coronary artery disease, myocardial ischaemia, conduction system abnormalities, small vessel disease and 65 replacement fibrosis(8, 9). Typically, inflammatory infiltrates are thought to respond to 66 67 immunosuppressive therapy and so this finding may alter treatment decisions. However, 68 asymptomatic patients with subclinical cardiac involvement may go unrecognised(3).

Advances in diagnostic techniques especially cardiac magnetic resonance imaging (CMR)
have made it easier to identify these patients(10), although the implications of these
findings are poorly understood. To our knowledge, the literature regarding cardiac
involvement in IIM has not been systematically reviewed since 2012(6). Accordingly, we
performed this systematic review to summarise current knowledge about subclinical or

4

undiagnosed cardiac involvement in IIM.

1 2 3 4	75	Methods
5 6 7	76	MEDLINE and EMBASE were searched electronically from 1990 to August 2020. We used
8 9 10	77	keywords and MeSH terms related to myositis and cardiac involvement (Supplementary
10 11 12 13	78	Figure S1, available at <i>Rheumatology</i> online). We hand-searched articles from reference lists
13 14 15	79	for additional studies of potential relevance. One author (JF) screened abstracts for
16 17	80	potential relevance, with assistance from additional author (JD). If consensus was not
18 19 20	81	reached, a third author (IW) was consulted. One author (JF) performed data extraction,
20 21 22	82	which was reviewed by two authors (JD and SP). This review protocol was not registered.
23 24 25 26	83	Inclusion/Exclusion Criteria
20 27 28	84	We included English language clinical trials or observational studies investigating any form
29 30 31	85	of cardiac involvement in IIM in adults. We only included case series of 10 or more patients.
32 33	86	We excluded case reports, reviews, comment or letters to the editor.
34 35 36 37	87	Population
38 39	88	We included studies involving symptomatic and asymptomatic patients with IIM, excluding
40 41 42	89	non-inflammatory causes of myopathy. We included necrotising myopathies (e.g. statin-
43 44	90	associated myositis) only when patients were demonstrated to have immune-mediated
45 46 47	91	disease, as evidenced by the presence of MSA, specific use of the terms "immune-
48 49	92	mediated" or "autoimmune" myopathies, or immunosuppressive treatments. We excluded
50 51 52	93	studies involving muscular dystrophy, metabolic myopathies, mitochondrial myopathies and
53 54	94	non-immune causes of necrotising myopathies.
55 56 57 58 59	95	Diagnostic Modalities

5

We included all forms of investigation for cardiac involvement, including cardiac enzyme
testing, electrocardiography (ECG), echocardiography, CMR and nuclear medicine.

99 Our primary outcome was any prespecified measure of cardiac involvement including
100 clinical characteristics and investigation results. We extracted whatever variables and
101 investigation results were presented, most commonly frequency of abnormalities and
102 average values. We extracted demographic data and clinical profile including disease
103 subtype and manifestations. When available, we extracted data regarding mortality, quality
104 of life, and serologic profiles.

105 Statistical Analysis

Outcomes

The heterogeneity of included studies in terms of study design, investigative technique,
reporting of investigation results and patient populations precluded meta-analysis. As such,
we have provided a qualitative synthesis of data extracted. All data extracted are available
within this manuscript, or the Supplementary Material, available at *Rheumatology* online.

110 Risk of Bias Estimation

Risk of bias assessments were performed using the National Heart, Lung and Blood Institute quality assessment tool for Observational Cohort and Cross-Sectional Studies. Each domain was identified as present, absent or unclear. Studies were deemed "Low" risk of bias if all criteria were present, "Moderate" risk of bias if up to two criteria were absent and up to two criteria were unclear, or "High" risk of bias if more than two criteria were absent and/or more than two criteria unclear. Risk of bias assessments were performed by one author (JF) with uncertainties addressed by an additional author (JD).

1 2		
2 3 4	118	Results
5 6 7	119	Description of included studies
8 9 10	120	Our search identified 10425 studies, of which 3033 were removed as duplicates, and 7201
11 12	121	excluded for other reasons(Figure 1). One hundred and eighty-six publications were
13 14 15	122	reviewed, and 157 excluded (Figure 1), resulting in 29 studies being selected for inclusion
15 16 17	123	(Table 1). These studies included predominantly patients with PM or DM(11-32), with or
18 19	124	without overlap or connective tissue-disease (CTD)-associated IIM(11, 13-16, 20, 23, 31), or
20 21 22	125	ASyS(13, 14, 16, 33). Other primary diagnoses included IMNM(13, 14, 16, 23), IBM(13, 17,
23 24	126	23, 34), malignancy-associated(20), statin-induced myositis(30) and immune-mediated
25 26 27	127	myositis not otherwise specified(18, 23, 35).
28 29 30	128	All studies were observational, involving relatively small numbers of patients (range 11-123).
31 32	129	Presence of concomitant cardiovascular risk factors, including hypertension, were variably
33 34 35	130	reported (Table 1). The majority of studies examined screening investigations in unselected
36 37	131	IIM patients(12, 16-18, 20, 22, 25, 26, 29, 31, 32, 34, 35) or specifically IIM patients without
38 39 40	132	clinical evidence of cardiac disease(6, 11, 15, 19, 21, 23, 24, 27, 28, 30). Two studies selected
40 41 42	133	patients with IIM and elevated cardiac troponin T levels (cTnT)(13, 14). Two studies included
43 44	134	patients with confirmed myocarditis(33, 36). For clarity, we separated the results of general
45 46 47	135	"screening" investigations in patients with confirmed or suspected myocarditis from other
48 49	136	studies. All studies were assessed as being of moderate or high risk of bias (supplementary
50 51 52	137	Table S1, available at <i>Rheumatology</i> online).
53 54 55	138	Five main investigative methods were used to define cardiac involvement; cardiac enzyme
56 57 58	139	testing(11, 12, 15-19, 30, 34, 37-39), ECG (including ambulatory monitoring)(12, 13, 20, 22,

140 25-27, 29, 31, 34, 37), transthoracic echocardiography (TTE)(12, 15, 21, 22, 24-26, 28, 29,

7

59

2		
3 4	141	31-35), CMR(13, 14, 18, 19, 23, 33) and nuclear medicine testing(12, 20, 22). Variable
5 6 7	142	definitions of clinically evident cardiac involvement were used, including elevated
7 8 9	143	cardiovascular visual analogue scale (VAS) score(16), a component of the Myositis Disease
10 11 12	144	Activity Assessment Tool (MDAAT)(16, 40).
13 14 15	145	Cardiac Enzymes: cTnl is more specific than cTnT for cardiac involvement
16 17 18	146	Twelve studies measured cardiac enzymes in unselected patients or those without clinical
19 20 21	147	myocarditis(11, 12, 15-19, 30, 34, 37-39)(Table 2).
22 23	148	Elevated cardiac troponin T (cTnT) levels in IIM patients were common (Table 2), correlating
24 25 26	149	with various markers of IIM disease activity/severity. cTnT was associated with
27 28	150	weakness(16), patient-reported muscle disease activity(16), neuromuscular symptom
29 30 31	151	scores(16), reduced patient functioning(15, 16) and CMR evidence of inflammation in the
32 33	152	skeletal muscles adjacent to the scanned myocardium(39). Several studies observed strong
34 35 36	153	correlations between cTnT and creatine kinase (CK)(17, 41, 42) or the creatine kinase iso-
37 38	154	enzyme CK-MB(15, 17, 42). One study demonstrated that 40% (29/73) of patients with a
39 40	155	normal total CK had an elevated cTnT(16). In these cases the abnormal cTnT was not
41 42 43	156	associated with an increased risk of cardiac involvement but rather was associated with
44 45	157	increased muscle weakness(16). Two studies performed serial cTnT measurements(30, 34):
46 47 48	158	one found cTnT levels were stable in IBM patients over time(34). The other noted temporal
49 50	159	discordance between CK and cTnT levels in newly diagnosed IIM (n = 11)(30), with cTnT
51 52 53	160	peaking later and taking longer to normalise following immunomodulation. While this
55 55	161	pattern may reflect subclinical myocarditis(30), elevated cTnT in IIM could arise from
56 57 58 59	162	muscle(15, 17, 42), as cTnT isoforms may be re-expressed in regenerating skeletal

Page 9 of 44

1

Rheumatology

Z	
3	
4	
F	
ر	
6	
7	
8	
0	
9	
10	
11	
10	
12	
13	
14	
1 -	
15	
16	
17	
10	
10	
19	
20	
21	
21	
22	
23	
24	
27	
25	
26	
27	
- <i>i</i> ว0	
ZŎ	
29	
30	
21	
21	
32	
33	
31	
24	
35	
36	
37	
20	
38	
39	
4∩	
10	
41	
42	
43	
11	
44	
45	
46	
17	
4/	
48	
49	
50	
50	
51	
52	
52	
55	
54	
55	
56	
5/	
58	
59	
60	
0.0	

myofibres(43). Numerous studies reported no association between abnormal cTnT and
 cardiac involvement detected using ECG or TTE(15, 34, 42), or CMR(19, 39).

165 Conversely, abnormal cTnI levels were uncommon in unselected IIM cohorts (0-29%)(15, 16, 18, 34, 37, 41, 44) (Table 2). cTnI levels did not differ from healthy controls in one large 166 167 study(44); others reported that IIM patients with raised cTnI levels had abnormalities on 168 other cardiac investigations(34, 37). One study reported that both cTnT and cTnI were associated with increased risk of cardiac involvement (MDAAT cardiac domain), but only 169 170 cTnI was independently associated after adjustment for overall disease activity(16). While the sensitivity of an elevated cTnI for cardiac involvement was lower than cTnT in this study 171 (44% vs. 83%), it had greater specificity (95% vs. 46%) and positive predictive value (62% vs. 172 21%) (16). High sensitivity (97%) and specificity (84%) of cTnI for cardiac involvement was 173 also reported in studies using CMR-confirmed myocarditis(36). NT-pro-brain natriuretic 174 peptide (NT-proBNP) also demonstrated a high sensitivity (95%) and specificity (93%)(36), 175 176 correlating with CMR features of cardiac disease in several other reports(19, 39), although 177 not all(18).

The predictive value of abnormal cardiac enzymes for symptomatic myocardial involvement
is unclear. One study found IIM patients with raised cTnT (82%) and/or cTnI (2.5%) but
without clinical features of cardiac disease remained symptom free over 24.5 months follow
up(11).

182

ECG: non-specific ECG changes are common in IIM

Eleven studies reported ECG findings in patients with IIM(12, 20, 22, 25-27, 29-31, 34, 37).
ECGs were abnormal in 24-85% of unselected IIM patients(20, 22, 26, 29-31) (Table 3), most
commonly demonstrating non-specific ST changes (58-64%) (22, 26, 31). ECG criteria for left

3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
27	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 2

186	ventricular hypertrophy (LVH) were met in 3-22% of PM/DM patients(20, 22, 26, 27, 29, 31),
187	higher than in healthy controls(27). No significant differences were seen in the frequencies
188	of abnormal rhythm(27), repolarisation abnormalities(27) or conduction block(27)
189	compared with healthy controls in one study. A second study showed longer QRS duration
190	and corrected QT interval(QTc) interval in IIM patients than healthy controls(12). Sinus
191	tachycardia was found in 20-36% of IIM patients in small studies(20, 30, 31). One study
192	demonstrated a longer duration of IIM in those with abnormal ECG findings, but this was
193	not adjusted for age(29).
194	Data were mixed from 3 studies examining ambulatory ECG monitoring(12, 22, 29). One
195	reported an increased frequency of supraventricular tachycardia (SVT) in IIM patients
196	compared with healthy controls(12), while two reported abnormalities in 77-78% of IIM
197	patients (PVCs, atrial premature complexes and paroxysmal SVT)(22, 29).
198	Echocardiography: ejection fraction in IIM patients is frequently normal, but
199	subclinical LV systolic dysfunction can be detected using advanced echocardiography
200	techniques.
201	Sixteen studies investigated TTE in IIM patients(12, 21, 22, 24-26, 28, 29, 31-38)(Table 4).
202	Multiple techniques were used and different parameters were measured across the studies.
203	Overt systolic dysfunction was rare, evidenced by a reduction in LV ejection fraction (LVEF)
204	(Table 4). Multiple studies of PM/DM showed normal LVEF or fractional shortening (FS) in
205	most/all patients(22, 31, 32), and no difference in LVEF compared with healthy controls(12,
206	21, 28, 35).

Page 11 of 44

1 2

Rheumatology

3 4	207	However, while LVEF is an important prognostic marker, it cannot identify more subtle
5 6 7	208	degrees of systolic dysfunction. Newer echocardiographic techniques, such as global
8 9	209	longitudinal strain (GLS) which measure local myocardial fibre shortening, are more
10 11 12	210	sensitive at detecting subclinical systolic dysfunction, and have important negative
12 13 14	211	prognostic value in multiple settings(45, 46). Interestingly, subclinical LV systolic dysfunction
15 16	212	was detected in several myositis studies when more sensitive TTE techniques were
17 18 19	213	employed. One study used systolic tissue doppler imaging (TDI) and mitral annular plane
20 21	214	systolic excursion (MAPSE) to demonstrate subclinical reductions in LV systolic function in
22 23 24	215	IIM patients at baseline(24). These abnormalities normalised after 3 months of
25 26	216	corticosteroid therapy(24). Two studies used 2D speckle-tracking GLS, and both reported
27 28 29	217	clear reductions in strain values in IIM patients compared to controls; 57% vs. 21%
30 31	218	(p=0.006), RR =4.9 (95%Cl 1.5-15.8, p=0.006) (35); 47% vs. 3% (p<0.001) (25, 47).
32 33 34	219	RV systolic dysfunction was rarely identified, but one study demonstrated reduced RV
35 36 37	220	systolic TDI (RVS') and tricuspid annular plain systolic excursion (TAPSE) which normalised
38 39	221	after 3 months of corticosteroid therapy(24). Two studies assessed RV GLS, and
40 41 42	222	demonstrated subclinical reductions in RV systolic function (RR = 3.4, 95%CI 1.1-11.7,
42 43 44	223	p=0.04(25, 35).
45 46 47	224	Echocardiography: features of LV diastolic dysfunction are common in IIM and may
48 49 50	225	correlate with disease duration and/or treatment.
51 52 53	226	Echocardiographic parameters indicative of LV diastolic dysfunction were frequently
55 54 55	227	reported in patients with IIM(29) when compared to healthy controls (12, 21, 24, 28).
56 57 58	228	However, in most studies, isolated diastolic measurements were used and few studies
50 59	229	graded patients using a combination of parameters, as recommended by the American

3	
4	
5	
6	
7	
8	
a	
ء 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
27 20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
50 27	
27	
38	
39	
40	
41	
42	
43	
44	
<u>4</u> 5	
75 76	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
22	
56	
57	
58	
59	
60	

230	Society of Echocardiography (ASE)(48). Most studies did not adjust for age, gender or
231	presence of comorbidities, which may influence diastolic function(49). However, one study
232	showed that abnormal E/A and E/E' parameters were associated with age at disease onset,
233	disease duration and female gender(21), and another showed that diastolic parameters
234	significantly correlated with disease duration (but not disease activity scores) in DM(28).
235	The causative role that immunosuppressive therapy might play was explored in only one
236	study, which found that diastolic dysfunction (abnormal E/A and E'), was not present in IIM
237	patients at baseline but was detected after three months of corticosteroid therapy(24).
238	Left and right heart size
239	Structural abnormalities including ventricular and atrial enlargement and hypertrophy were
240	uncommon. Two studies reported larger LA size in IIM patients than controls, although still
241	within normal limits(11, 36). This finding may reflect elevated filling pressures associated
242	with diastolic dysfunction.
243	Pulmonary pressures
244	In general, no studies found evidence of pulmonary hypertension without concomitant lung
245	disease. Two studies reported abnormalities in pulmonary valve doppler, suggestive of
246	pulmonary hypertension(25, 30). However, the echocardiographic techniques used have
247	since been adapted and therefore cannot be easily interpreted.
248	Valvular abnormalities
249	No clinically significant valvular abnormalities were reported, though mild valvular
250	regurgitation was sometimes detected(15, 21, 31).
251	CMR: CMR evidence of subclinical myocardial pathology is common in IIM.

Page 13 of 44

Rheumatology

1 2	
2 3 4	252
5 6 7	253
7 8 9	254
10 11	255
12 13 14	256
15 16 17	257
18 19 20	258
20 21 22	259
23 24	260
25 26 27	261
28 29	262
30 31 22	263
33 34	264
35 36	265
37 38 39	266
40 41 42	267
43 44	268
45 46 47	269
48 49	270
50 51 52	271
53 54 55	272
56 57	273
58 59 60	274

252	CMR enables detailed assessment of cardiac structure and function, as well as tissue
253	characterisation with late gadolinium enhancement (LGE) and myocardial mapping
254	techniques (T1, T2, T2* and extracellular volume(ECV)). Ten studies investigated CMR in IIM
255	patients(13, 14, 18, 19, 23, 33, 36-39)(Table 5). Three studies included patients with IBM(17,
256	34, 38).
257	Two studies documented reduced LVEF in 9/52 (17%) and 2/15 (13%) of IIM patients(37,
258	38); most studies demonstrated normal LVEF(14, 19, 23, 39, 50). The most common finding
259	was presence of LGE suggestive of regional necrosis or scar. Four studies evaluating LGE in
260	IIM patients without known/suspected myocarditis demonstrated LGE in 20-62% of
261	patients(19, 23, 38, 39) and 0% of age- and sex-matched healthy controls(19, 39). Early
262	gadolinium enhancement suggestive of myocardial oedema was detected in 44% of IBM
263	patients in the only study that used this technique(38). One study performed CMR on a pre-
264	selected group of IIM patients with elevated cTnT. The proportion of LGE was similar in IIM
265	patients with a raised cTnT and in unselected IIM patients (7/20, 35%), with no LGE evident
266	in unmatched controls(13). The location of LGE was mostly in a non-ischaemic
267	distribution(14, 23).
268	Elevated T1, T2 and ECV mapping parameters are novel CMR techniques indicating
269	subclinical myocardial oedema, inflammation and fibrosis. All CMR studies using these
270	mapping techniques found abnormalities in IIM patients, indicating subclinical cardiac
271	disease(13, 14, 19, 23, 37, 39).
272	Taken together, the prevalence of LGE and elevated T1, T2 and ECV mapping parameters
273	reported in these studies suggests significant subclinical LV myocarditis in IIM despite

13

normal systolic function.

2	
3	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
2/	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
15	
45	
40	
47	
48	
49	
50	
51	
52	
53	
55	
54	
55	
56	
57	
58	
59	

275

Studies	using	nuclear	medicine
---------	-------	---------	----------

276	Three studies reported different nuclear medicine investigations in IIM (Supplementary
277	Table S2, available at <i>Rheumatology</i> online). One study showed no difference in ^{99m} Tc-PYP
278	(Technetium pyrophosphate) scans between IIM patients and controls(44). Another
279	demonstrated abnormal 99m Tc-PYP uptake in 17/30 (57%) and abnormal 67 Ga uptake in 3/20
280	(15%) of IIM patients(20). This study demonstrated an association between ^{99m} Tc-PYP
281	uptake and frequency and severity of ECG abnormalities (p<0.01)(20). One study found 4/26
282	(15%) PM patients had regional wall motion abnormalities on radionuclide ventriculography
283	(^{99m} Tc-pertechnetate), despite a normal EF(22).

284 Studies including IIM patients with clinical myocarditis

Two studies investigated IIM patients with clinically manifest myocarditis. One study 285 compared 31 IIM patients with and without myocarditis(36), and another reported results of 286 287 cardiac investigations in ASyS patients with myocarditis(33). The prevalence of myocarditis in ASyS was 3.4% (n=12) within the ASyS registry (n=352)(33). cTnI and NT-proBNP levels 288 289 were elevated in myocarditis patients(33, 36); on average 19-fold(33). ECG abnormalities 290 were common: atrial arrhythmias (17%-53.3%), ventricular arrhythmias (76.7%) and conduction block (42%-63.3%)(33, 36). TTE demonstrated reduced LVEF in 58-74% patients 291 with myocarditis and in none without myocarditis(33, 36). In contrast, diastolic dysfunction 292 293 was common in those with (46%) and without (36%) myocarditis(36). CMR demonstrated LGE in 50-64% of those with IIM and myocarditis(33, 36). Antimitochondrial antibody M2-294 295 subtype (AMA-M2) positivity was more common in those with myocarditis (25.8% vs. 3.2%, 296 p<0.05); and AMA-M2 positive patients exhibited more diffuse LGE(36).

1
2
2
Δ
-
5
6
/
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
28
20
20
50 21
22
32
33
34
35
36
37
38
39
40
41
42
72 //2
45
44
45
46
47
48
49
50
51
52
53
54
55
55
50
5/
58
59

297	Discussion
298	This review identified 29 studies describing cardiac involvement in IIM patients. Despite
299	heterogeneity in cardiac investigations and patient populations, common themes emerged
300	(Figure 2). Cardiac enzymes are often abnormal in IIM(11, 15, 17, 41, 42); cTnI appears most
301	specific for cardiac involvement(16, 36), while cTnT elevation is more common, correlating
302	with muscle disease activity(16, 39). Whether cTnT elevations are due to re-expression of
303	foetal cTnT in regenerating myofibres(51) or true myocardial injury remains
304	contentious(52). ECG abnormalities are common(20, 22, 26, 29), particularly ST-T wave
305	changes(22, 26). Typically, TTE studies demonstrate normal LVEF(12, 21, 28, 35), but
306	subclinical systolic dysfunction may be detected using advanced echocardiographic
307	techniques including GLS(25, 35). Importantly, reduced GLS has been shown to be
308	associated with worse outcomes in other conditions(45, 46, 53); further research is required
309	in IIM patients. While abnormal diastolic parameters were commonly reported in IIM
310	patients, the use of only single indices of diastolic dysfunction and lack of adjustment for
311	known diastolic dysfunction risk factors in many cases, make these findings difficult to
312	interpret(12, 21, 24, 28). Whether diastolic dysfunction constitutes the first sign of fibrotic
313	transformation of the myocardium in IIM or results from some other factor such as
314	corticosteroid therapy or comorbid hypertension needs further evaluation. Corticosteroids
315	are associated with diabetes and hypertension, both with clear correlations with heart
316	failure with reduced ejection fraction(54), but there is a paucity of evidence to suggest a
317	direct link between corticosteroids and diastolic dysfunction(55). There was also a high rate
318	of LVH on ECG(20, 22, 26, 27, 29, 31), out of keeping with the proportion of LVH on TTE or
319	CMR. Most studies did not document criteria used to define LVH, which makes this difficult
320	to interpret. Interestingly however, recent studies have suggested that ECG LVH carries

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
50 21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
<u>4</u> 1	
17	
ד∠ ⊿ר	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

1

321 independent negative prognostic information distinct from anatomic LVH, so documenting 322 LVH on ECG in these patients may still be relevant (56, 57). CMR in asymptomatic patients frequently demonstrates possible subclinical LV myocarditis despite normal systolic 323 function, including LGE positivity (suggestive of regional necrosis or scar) and abnormal T1, 324 325 T2 and ECV mapping parameters (suggestive of myocardial inflammation and oedema)(18, 19). 326 327 In patients with overt myocarditis, cardiac enzyme elevation and ECG changes were almost 328 universal(33, 36). The key difference was reduced LVEF on TTE, which is common in those 329 with clinical myocarditis, but uncommon in asymptomatic IIM patients(36). 330 The definition of cardiac involvement in IIM may evolve over time with increasingly sophisticated diagnostic modalities. For example, several TTE studies revealed abnormal 331 diastology in IIM patients(12, 21, 24, 28). However, the diagnosis of abnormal diastology has 332 changed, with the most recent ASE guidelines emphasising the use of multiple 333 334 parameters(48). Generally, early IIM studies used single measurements of diastolic 335 dysfunction, which are difficult to interpret in isolation. The true prevalence of abnormal diastology in IIM may therefore be lower. Likewise, two older studies reported prevalent 336 337 pulmonary hypertension but did not use contemporary parameters, limiting the interpretability of these results(26, 31). Similarly, novel CMR mapping techniques are now 338 339 considered the most accurate markers of myocarditis(58). The Lake Louise Criteria for 340 myocardial inflammation have recently been updated to include mapping techniques(59), 341 but earlier CMR studies did not include these(37, 60). Additional studies using current, 342 comparable TTE and CMR techniques are required to understand these patterns.

Page 17 of 44

1 2

Rheumatology

3 4	343	Our review highlighted the prevalence of abnormal cardiac investigations, particularly CMR,
5 6 7	344	in asymptomatic IIM patients(18, 19). This substantiates other data demonstrating that up
8 9	345	to 50% of PM/DM patients may have "silent" cardiac involvement on CMR(61). Indeed,
10 11	346	asymptomatic abnormalities on CMR may exist in systemic lupus erythematosus, systemic
12 13 14	347	sclerosis and sarcoidosis; up to 40% of whom may have an abnormal CMR(10). The clinical
15 16	348	implications of these findings are unknown and require investigation with longitudinal
17 18 10	349	studies. However, LGE is associated with poor outcomes and increased mortality in systemic
20 21 22	350	amyloidosis(62), hypertrophic cardiomyopathy(63) and dilated cardiomyopathy(64).
23 24	351	Cardiac involvement in IIM has no consensus definition, with multiple different methods of
25 26 27	352	investigation. Due to the poor sensitivity and specificity of most biochemical tests and ECG,
28 29	353	we propose that a diagnosis of cardiac involvement in IIM should be reserved for those
30 31	354	patients with elevated cTnI, subclinical or overt systolic or diastolic dysfunction on TTE or
32 33 34	355	CMR, or tissue abnormalities (including LGE) on CMR. Until we understand more about the
35 36	356	prognostic implications of these findings, we cannot recommend a specific panel of cardiac
37 38 39	357	investigations be performed empirically in asymptomatic patients with IIM. Further data are
40 41	358	required to better understand those IIM patients at highest risk of cardiac involvement,
42 43 44	359	particularly using autoantibody profiles. Some early reports of anti-signal recognition
45 46	360	particle (SRP) myopathies suggested a predilection for myocardial involvement(65, 66).
47 48	361	While this association has not been reproduced in larger studies, some experts still
49 50 51	362	recommend routine cardiac screening in SRP-positive patients(67). AMA positivity has been
52 53	363	associated with increased frequency of cardiac involvement in IIM patients(36) which may
54 55 56	364	precede muscle involvement(68), including risk of arrhythmias and reduced EF(69). An
57 58	365	increased frequency of supraventricular arrhythmias has been identified in patients with
59 60	366	abnormal hepatobiliary enzymes and AMA positivity(70). Furthermore, while we did not

include patients with drug-induced myopathies in this review, patients with immune checkpoint inhibitor (ICI) induced myopathies may have an increased risk of myocarditis (16-32%)(71, 72). Further research is required to understand the factors which predict risk of cardiac involvement in IIM. Several narrative reviews describe cardiac involvement in IIM(73, 74), and possible investigative strategies(75). Previous systematic reviews of this topic are more than 5 years old(6, 76). This review has several strengths. We have provided a current and comprehensive summary of cardiac investigations in patients with a range of inflammatory myopathies. We have included both symptomatic and asymptomatic patients to facilitate screening and diagnostic evaluation of IIM patients. In summarising the results of different investigative modalities, we have provided the clinician with a framework for correlating and comparing results of investigative techniques. However, this review also has limitations. Studies were small, observational in nature and all assessed as being of moderate or high risk of bias. Our subgroup analysis is incomplete due to the lack of data in the literature, particularly around patients with IBM and MSA. Furthermore, we did not include drug-induced myopathies, including ICI-induced myositis. The heterogeneity of the included studies precluded meta-analysis or pooled effect size estimates. Finally, data pertaining to certain subjects may be duplicated(13, 14, 37, 44), but due to differences in study design and because we were unable to perform a meta-analysis, we elected to include all data.

387 Conclusion

1 2		
2 3 4 5 6 7	388	Cardiac involvement in IIM has no consensus definition. cTnI appears to be specific for
	389	cardiac involvement and may have utility in screening these patients for subclinical disease,
, 8 9	390	although more data are needed. ECGs are frequently abnormal but changes are non-specific
10 11 12 13 14 15 16 17 18 19 20 21 22	391	and of uncertain prognostic value. TTE is generally normal, though advanced techniques
	392	including GLS may reveal subclinical disease. Likewise, CMR often reveals myocardial
	393	inflammation and scar, although the clinical significance of these changes in asymptomatic
	394	patients is uncertain. Further research is required to better understand the results and
	395	implications of CMR and advanced TTE techniques in IIM, and particularly their prognostic
22 23 24	396	significance.
25 26	397	
27 28		
29 30		
31 32		
33 34		
35		
36 37		
38		
39 40		
41		
42 43		
44		
45 46		
47		
48 49		
50		
51 52		
53		
54 55		
55 56		
57 59		
58 59		
60		

Funding: No specific funding was received from any bodies in the public, commercial or not-for-profit sectors to carry out the work described in this article.

Conflict of Interest Declaration: The authors have declared no conflicts of interest.

Acknowledgements: IW holds a Practitioner Fellowship from NHMRC (1154325) and
gratefully acknowledges the long term support of the Reid Charitable Trusts. JD holds a John
T Reid Centenary Fellowship from the Walter and Eliza Hall Institute and a Clinical Investigator
Award from the Sylvia and Charles Viertel Charitable Foundation. SP is supported by a
Research Fellowship Grant from Melbourne Health and a Research Training Program
Scholarship from the University of Melbourne.

Author contributions: JF, JD and IW contributed to the conceptualisation of this review. JF,
JD, IW and SP contributed to the development of the methodology/design of this review.
JF, JD and SP contributed to data collection and analysis. We did not handle original data
which required verification. JF, JD, SP and IW contributed. JF, JD and SP contributed to
writing the original draft of this review. JF, JD, IW and SP contributed to writing in the form
of reviewing and editing this review. JD, IW and SP supervised this review. JF, JD, IW and SP
contributed to visualisation and data presentation.

414 Data Availability Statement: The data underlying this article are available in the article
415 and in its online supplementary material.

Figure Legend	
Figure 1	PRISMA Flowchart
Figure 2	Key Points
Table 1	Description of included studies
Table 2	Findings of cardiac enzymes in idiopathic
	inflammatory myopathies
Table 3	Findings of ECG/Holter in idiopathic
	inflammatory myopathies

1 2					
2 3 4		Table 4		Transthoracic echocardiography find	dings in
5		Table F		Cardiac MPL findings in idionathic)
6 7		Table 5		inflammatory myonathios	
8	410			innaminatory myopathies	
9	416				
10					
11 12	417				
12					
14					
15					
16 17					
18					
19					
20					
21					
22					
24					
25					
26					
27 29					
20 29					
30					
31					
32					
33 34					
35					
36					
37					
38 39					
40					
41					
42					
43 44					
45					
46					
47					
48 40					
5 0					
51					
52					
53					
55					
56					
57					
58					
59 60					
00					

418 References

1. Satoh M, Tanaka S, Ceribelli A, Calise SJ, Chan EK. A Comprehensive Overview on Myositis-Specific Antibodies: New and Old Biomarkers in Idiopathic Inflammatory Myopathy. Clin Rev Allergy Immunol. 2017;52(1):1-19. 2. Opinc AH, Brzezinska OE, Makowska JS. Disability in idiopathic inflammatory myopathies: questionnaire-based study. Rheumatol Int. 2019;39(7):1213-20. 3. Torres C, Belmonte R, Carmona L, Gomez-Reino FJ, Galindo M, Ramos B, et al. Survival, mortality and causes of death in inflammatory myopathies. Autoimmunity. 2006;39(3):205-15. 4. Danko K, Ponyi A, Constantin T, Borgulya G, Szegedi G. Long-term survival of patients with idiopathic inflammatory myopathies according to clinical features: a longitudinal study of 162 cases. Medicine. 2004;83(1):35-42. 5. Lilleker JB, Vencovsky J, Wang G, Wedderburn LR, Diederichsen LP, Schmidt J, et al. The EuroMyositis registry: an international collaborative tool to facilitate myositis research. Ann Rheum Dis. 2018;77(1):30-9. Zhang L, Wang G-c, Ma L, Zu N. Cardiac involvement in adult polymyositis or 6. dermatomyositis: a systematic review. Clinical cardiology. 2012;35(11):686-91. 7. Oka M, Raasakka T. Cardiac involvement in polymyositis. Scand J Rheumatol. 1978;7(4):203-8. 8. Haupt HM, Hutchins GM. The heart and cardiac conduction system in polymyositis-dermatomyositis: a clinicopathologic study of 16 autopsied patients. Am J Cardiol. 1982;50(5):998-1006. Denbow CE, Lie JT, Tancredi RG, Bunch TW. Cardiac involvement in polymyositis: a 9. clinicopathologic study of 20 autopsied patients. Arthritis Rheum. 1979;22(10):1088-92. 10. Mavrogeni S, Sfikakis PP, Karabela G, Stavropoulos E, Spiliotis G, Gialafos E, et al. Cardiovascular magnetic resonance imaging in asymptomatic patients with connective tissue disease and recent onset left bundle branch block. International journal of cardiology. 2014;171(1):82-7. 11. Aggarwal R, Lebiedz-Odrobina D, Sinha A, Manadan A, Case JP. Serum cardiac troponin T, but not troponin I, is elevated in idiopathic inflammatory myopathies. Journal of Rheumatology. 2009;36(12):2711-4. 12. Diederichsen LP, Simonsen JA, Diederichsen AC, Hvidsten S, Hougaard M, Junker P, et al. Cardiac Abnormalities in Adult Patients With Polymyositis or Dermatomyositis as Assessed by Noninvasive Modalities. Arthritis care & research. 2016;68(7):1012-20. Huber AT, Bravetti M, Lamy J, Bacoyannis T, Roux C, de Cesare A, et al. Non-invasive 13. differentiation of idiopathic inflammatory myopathy with cardiac involvement from acute viral myocarditis using cardiovascular magnetic resonance imaging T1 and T2 mapping. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance. 2018;20(1):11. 14. Huber AT, Lamy J, Bravetti M, Bouazizi K, Bacoyannis T, Roux C, et al. Comparison of MR T1 and T2 mapping parameters to characterize myocardial and skeletal muscle involvement in systemic idiopathic inflammatory myopathy (IIM). Eur Radiol. 2019;29(10):5139-47. Erlacher P, Lercher A, Falkensammer J, Nassonov EL, Samsonov MI, Shtutman VZ, et al. 15. Cardiac troponin and beta-type myosin heavy chain concentrations in patients with polymyositis or dermatomyositis. Clinica chimica acta; international journal of clinical chemistry. 2001;306(1-2):27-33. 16. Lilleker JB, Diederichsen ACP, Jacobsen S, Guy M, Roberts ME, Sergeant JC, et al. Using serum troponins to screen for cardiac involvement and assess disease activity in the idiopathic inflammatory myopathies. Rheumatology (Oxford, England). 2018;57(6):1041-6. 17. Lindberg C, Klintberg L, Oldfors A. Raised troponin T in inclusion body myositis is common and serum levels are persistent over time. Neuromuscular disorders : NMD. 2006;16(8):495-7.

1		
2 3	467	
4	467	18. Rosenbohm A, Buckert D, Gerischer N, Walcher T, Kassubek J, Rottbauer W, et al. Early
5	468	diagnosis of cardiac involvement in idiopathic inflammatory myopathy by cardiac magnetic
6	469	resonance tomography. Journal of neurology. 2015;262(4):949-56.
7	470	19. Yu L, Sun J, Li J, Dong Y, Zhou X, Greiser A, et al. Early detection of myocardial involvement
8	4/1	by 11 mapping of cardiac MRI in idiopathic inflammatory myopathy. Journal of Magnetic Resonance
9	472	Imaging. 2018;48(2):415-22.
10	473	20. Buchpiguel CA, Roizemblatt S, Pastor EH, Hironaka FH, Cossermelli W. Cardiac and skeletal
11	474	muscle scintigraphy in dermato- and polymyositis: Clinical implications. European Journal of Nuclear
12	475	Medicine. 1996;23(2):199-203.
14	476	21. Lu Z, Wei Q, Ning Z, Qian-Zi Z, Xiao-Ming S, Guo-Chun W. Left ventricular diastolic
15	477	dysfunction early cardiac impairment in patients with polymyositis/dermatomyositis: a tissue
16	478	Doppler imaging study. The Journal of rheumatology. 2013;40(9):1572-7.
17	479	22. Taylor AJ, Wortham DC, Burge JR, Rogan KM. The heart in polymyositis: a prospective
18	480	evaluation of 26 patients. Clinical cardiology. 1993;16(11):802-8.
19	481	23. Khoo T, Stokes MB, Teo K, Proudman S, Basnayake S, Sanders P, et al. Cardiac involvement in
20	482	idiopathic inflammatory myopathies detected by cardiac magnetic resonance imaging. Clin
21	483	Rheumatol. 2019;38(12):3471-6.
22	484	24. Peter A, Balogh A, Szilagyi S, Faludi R, Nagy-Vincze M, Edes I, et al. Echocardiographic
23 24	485	abnormalities in new-onset polymyositis/dermatomyositis. The Journal of rheumatology.
24 25	486	2015;42(2):272-81.
26	487	25. Zhong Y, Bai W, Xie Q, Sun J, Tang H, Rao L. Cardiac function in patients with polymyositis or
27	488	dermatomyositis: a three-dimensional speckle-tracking echocardiography study. The international
28	489	journal of cardiovascular imaging. 2018;34(5):683-93.
29	490	26. Hebert CA, Byrnes TJ, Baethge BA, Wolf RE, Kinasewitz GT. Exercise limitation in patients
30	491	with polymyositis. Chest. 1990;98(2):352-7.
31	492	27. Deveza LMA, Miossi R, De Souza FHC, Shimabuco AY, Favarato MHS, Grindler J, et al.
32	493	Electrocardiographic changes in dermatomyositis and polymyositis. Revista Brasileira de
33	494	Reumatologia. 2016;56(2):95-100.
34 25	495	28. Wang H, Liu H-X, Wang Y-L, Yu X-Q, Chen X-X, Cai L. Left ventricular diastolic dysfunction in
36	496	patients with dermatomyositis without clinically evident cardiovascular disease. The Journal of
37	497	rheumatology. 2014;41(3):495-500.
38	498	29. Gonzalez-Lopez L, Gamez-Nava JI, Sanchez L, Rosas E, Suarez-Almazor M, Cardona-Munoz C,
39	499	et al. Cardiac manifestations in dermato-polymyositis. Clinical and experimental rheumatology.
40	500	1996:14(4):373-9.
41	501	30. Fisher C. Agrawal S. Wong WM. Fahie-Wilson M. Dasgupta B. Clinical observations on the
42	502	significance of raised cardiac troponin-T in patients with myositis of varying etiologies seen in
43	503	rheumatology practice. Clinical rheumatology. 2010:29(10):1107-11.
44 45	504	31. Byrnes TJ. Baethge BA. Wolf RE. Noninvasive cardiovascular studies in patients with
45 46	505	inflammatory myopathy, Angiology, 1991:42(10):843-8.
40	506	32. Mugii N. Someya F. Cardiopulmonary factors affecting 6-min walk distance in patients with
48	507	idiopathic inflammatory myopathies. Rheumatology international, 2018;38(8):1443-8.
49	508	33. Dieval C. Deligny C. Meyer A. Cluzel P. Champtiaux N. Lefevre G. et al. Myocarditis in patients
50	509	with antisynthetase syndrome: Prevalence presentation and outcomes Medicine (United States)
51	510	2015·94(26)·e798
52	511	34. Cox FM. Delgado V. Verschuuren II. Ballieux RF. Bax II. Wintzen ΔR. et al. The heart in
53	512	sporadic inclusion hody myositis: A study in 51 natients, Journal of Neurology, 2010;257(2):447-51
54	512	35 Guerra E. Gelardi C. Canucci A. Gabrielli A. Danieli MG. Subclinical Cardiac Dysfunction in
55	517	Polymyositis and Dermatomyositis: A Speckle-tracking Case-control Study. The Journal of
50 57	514	rheumatology 2017.11/6).815-21
58	212	meanatology. 2017,44(0).013-21.
59		
60		

36. Liu Y, Fang L, Chen W, Zhu Y, Lin X, Wang Y, et al. Identification of characteristics of overt myocarditis in adult patients with idiopathic inflammatory myopathies. Cardiovasc Diagn Ther. 2020;10(3):405-20. 37. Diederichsen LP, Simonsen JA, Diederichsen ACP, Kim WY, Hvidsten S, Hougaard M, et al. Cardiac abnormalities assessed by non-invasive techniques in patients with newly diagnosed idiopathic inflammatory myopathies. Clinical and experimental rheumatology. 2015;33(5):706-14. 38. Rosenbohm A, Buckert D, Kassubek J, Rottbauer W, Ludolph AC, Bernhardt P. Sporadic inclusion body myositis: no specific cardiac involvement in cardiac magnetic resonance tomography. J Neurol. 2020;267(5):1407-13. 39. Xu Y, Sun J, Wan K, Yu L, Wang J, Li W, et al. Multiparametric cardiovascular magnetic resonance characteristics and dynamic changes in myocardial and skeletal muscles in idiopathic inflammatory cardiomyopathy. J Cardiovasc Magn Reson. 2020;22(1):22. Isenberg DA, Allen E, Farewell V, Ehrenstein MR, Hanna MG, Lundberg IE, et al. International 40. consensus outcome measures for patients with idiopathic inflammatory myopathies. Development and initial validation of myositis activity and damage indices in patients with adult onset disease. Rheumatology (Oxford). 2004;43(1):49-54. 41. Lilleker JB, Guy M, Roberts ME, Lamb J, Cooper RG, Chinoy H. Serum muscle damage markers in the idiopathic inflammatory myopathies: Quantifying disease activity and identifying cardiac involvement. Rheumatology (United Kingdom). 2017;56(Supplement 2). Aggarwal R, Lebiedz-Odrobina D, Sinha A, Manadan A, Case JP. Serum cardiac troponin T, but 42. not troponin I, is elevated in idiopathic inflammatory myopathies. The Journal of rheumatology. 2009;36(12):2711-4. 43. Bodor GS, Survant L, Voss EM, Smith S, Porterfield D, Apple FS. Cardiac troponin T composition in normal and regenerating human skeletal muscle. Clin Chem. 1997;43(3):476-84. 44. Diederichsen LP, Simonsen JA, Diederichsen AC, Hvidsten S, Hougaard M, Junker P, et al. Cardiac Abnormalities in Adult Patients With Polymyositis or Dermatomyositis as Assessed by Noninvasive Modalities. Arthritis Care and Research. 2016;68(7):1012-20. 45. Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J. 2016;37(15):1196-207. 46. Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart. 2014;100(21):1673-80. 47. Guerra F, Gelardi C, Capucci A, Gabrielli A, Danieli MG. Subclinical cardiac dysfunction in polymyositis and dermatomyositis: A speckle-tracking case-control study. Journal of Rheumatology. 2017;44(6):815-21. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, 3rd, Dokainish H, Edvardsen T, et al. 48. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17(12):1321-60. 49. Pfeffer MA, Shah AM, Borlaug BA. Heart Failure With Preserved Ejection Fraction In Perspective. Circ Res. 2019;124(11):1598-617. 50. Huber AT, Bravetti M, Lamy J, Bacoyannis T, Roux C, De Cesare A, et al. Non-invasive differentiation of idiopathic inflammatory myopathy with cardiac involvement from acute viral myocarditis using cardiovascular magnetic resonance imaging T1 and T2 mapping. Journal of Cardiovascular Magnetic Resonance. 2018;20(1):11. Bodor GS, Survant L, Voss EM, Smith S, Porterfield D, Apple FS. Cardiac troponin T 51. composition in normal and regenerating human skeletal muscle. Clinical chemistry. 1997;43(3):476-84. 52. Giannitsis E, Mueller C, Katus HA. Skeletal myopathies as a non-cardiac cause of elevations of cardiac troponin concentrations. Diagnosis (Berl). 2019;6(3):189-201.

1		
2		
3	566	53. Stanton T, Leano R, Marwick TH. Prediction of all-cause mortality from global longitudinal
4	567	speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging.
5	568	2009.2(5):356-64
6	569	54 Adamczak DM Oduah MT Kiebalo T Nartowicz S Behen M Pochylski M et al Heart Failure
7	570	with Preserved Election Eraction - 2 Concise Peview Curr Cardiol Rep. 2020;22(0):92
8	570	With Preserved Ejection Flaction-a Concise Review. Curr Cardion Rep. 2020,22(9).82.
9	571	55. Caluir MV, Celik GK, Cilici O, Mudernsogiu III. The effect of high-dose steroid treatment used
10	572	for the treatment of acute demyelinating diseases on endothelial and cardiac functions. Anatol J
17	5/3	Cardiol. 2017;17(5):392-7.
12	574	56. Aro AL, Chugh SS. Clinical Diagnosis of Electrical Versus Anatomic Left Ventricular
14	575	Hypertrophy: Prognostic and Therapeutic Implications. Circ Arrhythm Electrophysiol.
15	576	2016;9(4):e003629.
16	577	57. Pewsner D, Juni P, Egger M, Battaglia M, Sundstrom J, Bachmann LM. Accuracy of
17	578	electrocardiography in diagnosis of left ventricular hypertrophy in arterial hypertension: systematic
18	579	review. BMJ. 2007;335(7622):711.
19	580	58. Kotanidis CP, Bazmpani MA, Haidich AB, Karvounis C, Antoniades C, Karamitsos TD.
20	581	Diagnostic Accuracy of Cardiovascular Magnetic Resonance in Acute Myocarditis: A Systematic
21	582	Review and Meta-Analysis. JACC Cardiovasc Imaging. 2018;11(11):1583-90.
22	583	59. Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, et al.
23	584	Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert
24	585	Recommendations. J Am Coll Cardiol. 2018:72(24):3158-76.
25	586	60. Buckert D. Rosenbohm A. Kassubek J. Ludolph A. Bernhardt P. Early detection of myocardial
20	587	involvement in idionathic inflammatory myopathies detected by cardiac magnetic resonance
27	588	imaging Journal of Cardiovascular Magnetic Resonance 2015.17(SLIPPL 1)
20	589	61 Mayrogeni S. Bratis K. Karabela G. Stavronoulos E. Sfendouraki E. Kolovou G. Myocarditis
30	505	during acute inflammatory myonathies: evaluation using clinical criteria and cardiac magnetic
31	590	reconnection important international journal of cardiology 2012;164(1):o2.4
32	291	62 Paina & Longing SV Nairooz BS, Dethinoni NV, Hakoom A, Bhatti S, et al. Drognostic Value of
33	592	bz. Railia S, Lensing ST, Nailouz RS, Polimien NV, Hakeen A, Bhatti S, et al. Prognostic Value of
34	595	Late Gaudimum Emancement Civik in Systemic Amyloidosis. JACC Cardiovasc imaging.
35	594	
36	595	63. Weng Z, Yao J, Chan RH, He J, Yang X, Zhou Y, et al. Prognostic Value of LGE-CMR in HCM: A
37	596	Meta-Analysis. JACC Cardiovasc Imaging. 2016;9(12):1392-402.
38	597	64. Becker MAJ, Cornel JH, van de Ven PM, van Rossum AC, Allaart CP, Germans T. The
39	598	Prognostic Value of Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging in Nonischemic
40	599	Dilated Cardiomyopathy: A Review and Meta-Analysis. JACC Cardiovasc Imaging. 2018;11(9):1274-
41	600	84.
42 12	601	65. Love LA, Leff RL, Fraser DD, Targoff IN, Dalakas M, Plotz PH, et al. A new approach to the
43 44	602	classification of idiopathic inflammatory myopathy: myositis-specific autoantibodies define useful
45	603	homogeneous patient groups. Medicine (Baltimore). 1991;70(6):360-74.
46	604	66. Targoff IN, Johnson AE, Miller FW. Antibody to signal recognition particle in polymyositis.
47	605	Arthritis Rheum. 1990;33(9):1361-70.
48	606	67. Allenbach Y, Benveniste O. Peculiar clinicopathological features of immune-mediated
49	607	necrotizing myopathies. Curr Opin Rheumatol. 2018:30(6):655-63.
50	608	68. Albavda J. Khan A. Casciola-Rosen L. Corse AM. Paik JJ. Christopher-Stine L. Inflammatory
51	609	myonathy associated with anti-mitochondrial antibodies: A distinct phenotype with cardiac
52	610	involvement. Seminars in arthritis and rheumatism. 2018:47(4):552-6
53	611	69 Maeda MH. Tsuii S. Shimizu I. Inflammatory myonathies associated with anti-mitochondrial
54	612	antibodies Brain 2012:135/6):1767-77
55	612	announes. Diani. 2012,133(0).1707-77. 70 – Kapichi H. Eukuzawa K. Mari S. Satami Kabayashi S. Kiyahi K. Suzuki A. at al. Azti
50 57	614	70. NUTISHI Π, FUKUZAWA N, WUTI S, SALUTHI-NUDAYASHI S, NUCTH N, SUZUKI A, EL AL ATILI-
57 59	014 C15	Initiochondrial IVIZ Antibodies Ennance the KISK of Supraventricular Arrhythmias in Patients with
50 50	615	Elevated Hepatobiliary Enzyme Levels. Internal medicine (Tokyo, Japan). 2017;56(14):1771-9.
60		

1		
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 2 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 3 4 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 3 4 5 6 7 8 9 10 11 12 3 3 4 5 6 7 8 9 0 31 32 33 34 5 6 7 8 9 0 11 2 2 3 3 4 5 6 7 8 9 0 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631	 Anquetil C, Salem J-E, Lebrun-Vignes B, Johnson DB, Mammen AL, Stenzel W, et al. Immune Checkpoint Inhibitor-Associated Myositis, Circulation. 2013;138(7):743-5. Moreira A, Loquai C, Pfohler C, Kahler KC, Knauss S, Heppt MV, et al. Myositis and neuromuscular side-effects induced by immune checkpoint inhibitors. Eur J Cancer. 2019;106:12-23. Mavrogeni S, Sfikakis PP, Dimitroulas T, Kolovou G, Kitas GD. Cardiac and muscular involvement in idiopathic inflammatory myopathies: noninvasive diagnostic assessment and the role of cardiovascular and skeletal magnetic resonance imaging. Inflammation & allergy drug targets. 2014;13(3):206-16. Danieli MG, Gelardi C, Guerra F, Cardinaletti P, Pedini V, Gabrielli A. Cardiac involvement in polymyositis and dermatomyositis. Autoimmunity Reviews. 2016;15(5):462-5. Chen F, Peng Y, Chen M. Diagnostic Approach to Cardiac Involvement in Idiopathic Inflammatory Myopathies. International heart journal. 2018;59(2):256-62. Gupta R, Wayangankar SA, Targoff IN, Hennebry TA. Clinical cardiac involvement in idiopathic inflammatory myopathies: a systematic review. International journal of cardiology. 2011;148(3):261-70.
47 48 49		
50 51 52		
53 54 55 56		
57 58		
59 60		

Table 1: Description of included studies

	Studies of an unselected* population of IIM patients											
Author (Year) Country	N	Characteristics of IIM patients examined	Study design	IIM Criteria	Exclusions	Cardiac Outcome						
Buchpiguel (1996) Brazil	30 IIM	PM (8) DM (14) Malignancy-associated IIM (2) JDM (4) OM (2) Age (mean): 35 years (range 8-59); Female: 77%	Cross- sectional	B&P	NR	ECG, 99mTc-PYP Scintigraphy, Gated blood pool scan.						
Byrnes (1991) USA	13 IIM	PM (7) DM (5) OM (1) Age (mean): 47 years (range 21-78); Female: 77% Disease duration (mean): 47 months (range 1-131) Exertional dyspnoea 15%, cough 15%, orthopnoea 23%, peripheral oedema 15%, syncope 8%, HTN 46%, murmur 31%, ILD 62%	Cross- sectional	B&P	NR	ECG, TTE						
Diederichsen (2015) Denmark	14 IIM 14 HC	PM (8) DM (4) Malignancy-associated IIM (2) Age (mean): 59.5 +/- 18.8 years; Female 57% Disease duration (median): 0.0 years (Range 0-0.5 years) Dyspnoea 57% (NYHA II 37.5%, NYHA III 62.5%), palpitations 21%	Cross- sectional	B&P	ОМ, ІВМ.	cTnl, ECG, Holter monitor (48 hours), TTE, 99mTc-PYP SPECT/CT, CMR						
Diederichsen (2016) Denmark	76 IIM 48 HC	PM (52) DM (24) Age (mean): 60 +/- 11.2 years; Female: 64% Disease duration (mean +/- SD): 9.0 +/- 8.3 years Dyspnoea 57%, palpitations 34%, chest pain 5%, syncope 3%, HTN 71%, diabetes mellitus 13%, hyperlipidaemia 88%	Cross- sectional	B&P	OM, IBM, malignancy-associated IIM.	cTnl, ECG, Holter monitor (48 hours), TTE, 99mTc-PYP Scintigraphy, 99mTc-PYP SPECT/CT						
Erlacher (2001) Austria	39 IIM	PM (22) DM (15) OM (2) Age (mean): 40 +/- 23 years; Female: 90% Disease duration (mean +/- SD): 20 +/- 22 months	Cross- sectional	B&P	NR	cTnT, cTnI, CK-MB, β-type of myosin heavy chain, myoglobulin level						
Gonzalez-Lopez (1996) Mexico	32 IIM	PM (6) DM (26) Age (mean): 44 years (range 16-76); Female: 78% Disease duration (mean): 6 years (range 0.25–23) Cardiac symptoms 6%, HTN 12.5%, ILD 3%	Cross- sectional	B&P	OM, other causes of myopathy, cyclophosphamide therapy.	CK-MB, ECG, Holter monitor (duration not specified), TTE						
Hebert (1990) USA	11 IIM	PM (7) DM (4) Age (mean +/- SD): 46 +/- 16 years; Female: 64% Disease duration (mean +/- SD): 42 +/- 38 months HTN 27%, diabetes mellitus 18%, ILD 36%	Cross- sectional	B&P	OM, inability to exercise.	ECG, TTE, CXR, PFTs, Multistage incremental exercise test						
Lilleker (2018) UK	123 IIM	DM (39) PM (34) ASyS (37) IMNM (8) OM (5) Age (mean +/- SD): 58 +/- 14 years; Female: 66% Disease duration (median, IQR): 4.3 (1.1-10.2) Cardiac involvement 15%	Cross- sectional	B&P	If an alternative explanation for elevations in serum muscle damage markers was known prior to assessment.	cTnT, cTnl, cardiac domain of MDAAT						
Mugii (2018) Japan	23 IIM	DM (12) Amyopathic DM (10) PM (1) Age (median): 60 years (range 27-80); Female: 57% ILD 83%	Cross- sectional	B&P S	JDM, OM, manual muscle test score <4 in extremities, leg discomfort during 6MWT, active myositis.	TTE, Noninvasive impedance cardiography , PFTs						
Rosenbohm (2015) Germany	53 IIM	PM (34) DM (13) MNOS (4) Granulomatous myositis (2) Age (mean, IQR): 55.3 years (45-66); Female: 57%	Cross- sectional	Н	IBM, contraindication for CMR, gadolinium allergy, pregnancy, unknown contraception.	CK-MB, NT-proBNP, CMR						

Taylor (1993) USA	26 IIM	PM (22) DM (4) Age (mean +/- SD): 48 +/- 14 years; Female: 58% Disease duration (mean +/- SD): 31 +/- 41 months Cardiovascular symptoms 62%	Cross- sectional	B&P	ОМ	ECG, Holter monitor (24 hrs), CXR, TTE, Radionuclide ventriculography
	I	Studies of IIM patients	without clinical fe	atures of	cardiac disease	
Author (Year) Country	N	Characteristics of IIM patients examined	Study design	IIM Criteria	Exclusions	Cardiac Outcome
Aggarwal (2009) USA	49 IIM	PM (23) DM (16) OM (10) Age (mean +/- SD): 45.8 +/- 8.8 years; Female: 67% Follow up duration (mean +/- SD): 9.3 +/- 6.5 years	Retrospective	B&P	Renal failure, myocardial ischaemia or damage as determined by clinical exam, ECG, TTE or left heart catheterisation.	cTnl, cTnT, CK-MB
Deveza (2016) Brazil	112 IIM 86 DC	DM (78) PM (34) Age (mean): 48.9 +/- 15.4 years; Female: 71% Disease duration (mean): 5 years (range 2-12) HTN 46%, diabetes mellitus 15%, ILD 33%	Cross- sectional	B&P	Amyopathic DM, OM, malignancy-associated IIM, other causes of myopathy, clinical cardiac disease.	ECG
Fisher (2010) ** UK	11 IIM	PM (5) DM (3) Statin-induced myopathy (2) IBM (1) Age (mean): 70.4 years (range 59-87 years); Female: 73%	Retrospective	B&P	Clinical myocardial involvement defined by history, ECG and/or TTE.	cTnT, ECG
Guerra (2017) Italy	28 IIM 29 HC	PM or DM (numbers not specified) Age (mean): 61.3 +/- 13.1 years; Female: 78.6% Time from diagnosis (median): 44 months (IQR 3-65) Smoking 7%, HTN 60%, diabetes mellitus 7%	Retrospective	B&P	IBM, IMNM, OM, juvenile myositis, significant cardiac disease.	cTnl, TTE
Khoo (2019) Australia	19 IIM	DM (4) PM (4) MNOS (4) IBM (2) IMNM (2) OM (3) Age (mean): 59 +/- 10.3 years; Female: 63% Disease duration (mean): 8.4 years (range 1-25 years) Smoking 16%	Retrospective	н	Known cardiac involvement, coronary artery disease, hypertension or secondary cause of myositis.	CMR
Lu (2013) China	46 IIM 21 HC	PM (11) DM (35) Age (mean): 31.1 +/- 12.1 years; Female: 67% Disease duration (mean): 4.78 +/- 13.19 months ILD 35%	Cross- sectional	B&P	Overt cardiac manifestations, malignancy, overlap syndromes, IBM, >50 years, underlying cardiac disease, severe renal disease, anaemia, HTN, diabetes mellitus, thyroid dysfunction.	TTE
Peter (2015) Hungary	30 IIM HCs	PM (23) DM (7) Age (mean): 42.3 +/- 1.6 years; Female: 90% ILD 37%	Prospective	B&P	Systemic autoimmune disease, malignancy, OM, congenital heart disease, HTN, rheumatic fever, coronary or valvular heart disease, cardiomyopathy, arrhythmias, diabetes mellitus, chronic renal failure, anaemia, AF, severe MR	TTE
Wang (2014) China	51 DM 51 HC	DM (51) Age (mean): 44.06 +/- 11.8 years; Female: 84% Disease duration (mean): 8 months (range 0.3-48 months) ILD 53%	Prospective	B&P	Cardiac disease, diabetes mellitus, HTN, chronic renal failure, other CTD.	TTE
Xu (2020) China	44 IIM 30 HC	IIM (44) Age (mean): 49.0 ± 12.0; Females 50% Disease duration (mean): 0.5 years (range 0.2-2.0 years) HTN 13.6%, diabetes 2.3%	Prospective	ENMC	Other autoimmune/inflammatory disease, pre- existing IIM, known cardiac disease or poorly controlled HTN/DM, contraindications to CMR, GFR <30, CMR with incomplete/poor quality images.	CK-MB, cTnT, NT-pro-BNP, CMR
Yu (2018) China	25 IIM 25 HC	PM (13) DM (12) Age (mean): 50 +/- 13 years; Female: 48% Disease duration (median): 6 months (IQR 2.4-30 months) HTN 28%, hyperlipidaemia 64%, Smoking 24%, ILD 36%	Prospective	ENMC	Known cardiac disease, clinical heart failure, reduced LVEF, contraindications to CMR.	CK-MB, cTnT, NT-proBNP, CMR

Zhong (2018) China	60 IIM 30 HCs	PM or DM (numbers not specified) Age (mean +/- SD): 51.1 +/- 12.6 years; Female: 73% Disease duration: >1y in 41/60 (68%) HTN 27%, hyperlipidaemia 48%, diabetes mellitus 60%, ILD	48% Cross- sectio	nal E	8&P Other autoin associated m disease, valv disease.	nmune disease, OM, IBM, malignancy- nyositis, reduced LVEF, congenital heart ular heart disease or ischaemic heart	BNP, ECG, TTE
		Studies of IIM patients wit	th raised cTnT o	and suspe	cted myocardial in	volvement	
Author (Year) Country	N	Characteristics of IIM patients examined	Study design	IIM Criteria	Cardiac selection criteria	Exclusions	Cardiac Outcome
Huber (2018) France	20 IIM 20 viral myocard 20 HCs	IMNM (7) ASyS (5) OM (2) PM (3) DM (2) IBM (1) Age (mean): 45 +/- 16 years; Female: 40% Dyspnoea 30%, AF or AV block 25%, heart failure 5% chest pain 10%, HTN 15%, diabetes mellitus 10%	Retrospective	С, Н	cTnT > 50ng/mL	Coronary artery disease on angiogram	cTnT, NT-proBNP, CMR
Huber (2019) France	20 IIM 20 HCs	IMNM (7) ASyS (5) PM/DM/OM (8) Age (mean): 54 +/- 18 years; Female: 45% HTN 15%, hyperlipidaemia 25%, diabetes mellitus 10%	Retrospective	Н	cTnT > 50ng/mL	>2 week lapse between CMR and blood test, prior cardiac events.	cTnT, NT-proBNP, CMR
	÷	Studies of IIM p	atients with cli	nical feat	ures of myocarditi	S	-
Author (Year) Country	N	Characteristics of IIM patients examined	Study design	IIM Criteria	Cardiac selection criteria	Exclusions	Cardiac Outcome
Dieval (2015) France	12 ASyS	Age (median): 54 years (range 17-67); Female: 67% Follow-up (median): 11 months (range 0-84) Patients selected from a nation-wide registry of ASy LV and/or RV dysfunction 83%, ICU required 50%, chest pain 25%, normal cardiac exam 67%, relapsing episodes 25%	Retrospective	C	Acute (<72 hours) cardiac symptoms with abnormal cardiac enzymes, CMR or cardiac biopsy in the absence of other causes.		cTnT, cTnI, ECG, TTE, CN
Liu (2020) China	D)31 IIM with myocarditis 31 IIM without myocarditisPM (34), DM (28) Age (mean): 47.2±13.8 years; Female 59.7% Disease duration (median): 3.5 years (range 1.4-9.0 years) myocarditisCase of the		Case-control	EULAR	TnI, ECG and TTE with CMR and/or endomyocardial biopsy as required.	IBM, IMNM, muscular dystrophy, metabolic myopathy, long-term excessive alcohol, GFR <60 mL/min, malignancy, coronary heart disease, flu-like syndrome in the past 6 months.	cTnl, NT-proBNP, CK-MB TTE, CMR
		Studies examin	ning an unselec	ted* coho	rt of IBM patients		
Author (Year) Country	N	Characteristics of IIM patients examined	Study design	IIM Criter	ia Exclusions		Cardiac Outcome
Cox (2010) Netherlands	51 IBM	Age (mean): 67 +/- 9 years; Female: 33% Disease duration (mean): 11 +/- 6 years Cardiac symptoms in 24%	Cross- sectional	ENMC	NR		CK-MB, cTnT, cTnI, ECG,
Lindberg (2006) Sweden	42 IBM	Age (mean): 68.1 +/- 9.5 years; Female: 21% Previous MI 10%; cardiac symptoms 0%	Retrospective	pective C, H Oth abn		es of myocardial damage to explain ardiac enzymes.	cTnT, CK-MB

osenbohm (2020) ermany	20 IBM 20 HC	Age (mean): 61.4 +/- 12 years (IBM); Female 35% HTN IIM 65% (vs. 25% HC), diabetes mellitus 10%	Prospective	ENMC	Contraindication to CMR, pregnancy.	CK, CK-MB, NT-proBNP, TTE, CMR
*unselected with res	spect to the pre	sence or absence of cardiac involvement. ** This study	actively selected for portic regurgitation: A	oatients with elev	rated cTnT but no evidence of cardiac disease.	nch block: hnm – heats ner minute: Bl
Bohan and Peter; C	= clinical; CI = co	onfidence interval; CK = creatine kinase; CTD = connectiv	ve tissue disease; cTn	l = cardiac tropon	in I; cTnT = cardiac troponin T; DC, disease controls; [DM = dermatomyositis; E' = early diast
filling wave on tissue	e doppler imagi	ng; $E/A = early diastolic filling velocity compared to late$	diastolic filling veloci	ty; EDV = end-dia	stolic volume; ESV = end-systolic volume; ECG = elect	rocardiograph; ENMC = European
Neuromuscular Cent body myositis: ICU =	tre; FAC = fractions intensive care	onal area change; GCBPS = gated cardiac blood pool sca unit: IIM = idiopathic inflammatory myopathy: IVIG = int	n; GLS = global longit ravenous immune gl	udinal strain; H, h phulin: IV = left v	iistological, HC, healthy controls; HR = heart rate; HTN entricle: IVH = left ventricular hypertrophy: IVEE = lei	I = hypertension; IBM = sporadic inclus ft ventricular ejection fraction; MDAA
Myositis Disease Act	ivity Assessmer	nt Tool; ug = micrograms; MMF = mycophenolate; MI = r	nyocardial infarction	; MR = mitral regu	urgitation; MTX = methotrexate; MNOS = myositis not	otherwise specified; NR = not reporte
NYHA = New York H	eart Association	Classification; OM = overlap myositis; PM = polymyosit	is; PYP = pyrophosph	ate; RA = right atr	ium; RBBB = right bundle branch block; RR = relative	risk; S' = peak systolic annular velocity
tissue doppler imagi TI CO = diffusing cap	ng; S = Sontheir acity for carbon	ner's; SPECI = single-photon emission computed tomog monoxide.	raphy; SR = sinus rhy	thm; TAPSE = tric	uspidal annulus plane systolic excursion; TR = tricuspi	d regurgitation; ILC = total lung capac

Cardiac Enzym	es	1								
Study	Population			Results			Notes			
		СК	СКМВ	cTnT	cTnl	Other	10105			
Studies of an u	inselected* population	n of IIM patients, or	those without	clinical cardiac diseas	e at inclusion					
Aggarwal (2009)	49 IIM No clinical cardiac disease at inclusion	个 in 59%	个 57%	个 in 64% (n = 28)	个 in 2% (n = 41)	NR	cTnT correlates strongly with CK and CK-MB. Patients with cTnT elevation had no clinical, ECG or TTE evidence of cardiac disease after median 24.5 months follow up. The single patient with raised cTnI was found to have an abnormal TTE.			
Diederichsen (2015)	14 IIM, 14 HC Unselected*	个 in 86% IIM	NR	NR	↑ in 29% IIM	NR	Patients with raised cTnI also had other abnormal cardiac findings.			
Diederichsen (2016)	76 IIM, 48 HC Unselected*	个 in 33% IIM	NR	NR	↑ in 8% IIM	NR	cTnI levels did not significantly differ from HCs.			
Erlacher (2001)	39 IIM Unselected*	NR	个 in 51%	个 in 41%	个 in 2.5%	βMHC 个 in 60%	cTnT, CK-MB, β MHC (but not cTnI) were associated with IIM disease severity scores. No patient had evidence of cardiac involvement on TTE or ECG.			
Fisher (2010)	11 IIM No clinical cardiac disease at inclusion	↑ in 100%	NR	个 in 100%	NR	NR	cTnT peaked after CK. One patient developed myocarditis, confirmed on autopsy.			
Lilleker (2018)	123 IIM Unselected*	↑ in 40% (n = 121)	NR	↑ in 71% (n = 121)	↑ in 10% (n = 121)	NR	Abnormal cTnl has the highest specificity (95%) and positive predictive value (62%) for cardiac involvement.			
Rosenbohm (2015)	53 IIM Unselected*	See note	See note	NR	NR	NT pro BNP 79 pg/mL (38 – 262)	Patients with LGE on CMR had increased CK-MB and CK compared with those without LGE, but equivalent NT pro BNP. Patients with and without early myocardial enhancement had equivalent serum levels of all markers.			
Xu (2020)	44 IIM 30 HC Unselected*	316 U/L (range 79-2202)	20.6 ng/mL (5.3–54.0)	96g/L (range 40- 269)	NR	NT pro BNP 226pg/ml (85– 747)	CMR was used to analysis both myocardium and adjacent skeletal muscle in this study. Skeletal muscle T2 relaxation times correlated positively with cTnT, CK and CK-MB. Conversely NT Pro BNP correlated with myocardial T1, T2 and ECV.			
Yu (2018)	25 IIM No clinical cardiac disease at inclusion	个 in 64%	个 in 68%	个 in 88%	NR	NT pro BNP 个 in 32%	CMR mapping parameters (ECV and native T1) correlated with NT pro BNP but not cTnT or CK.			
Studies of IIM	patients with confirme	ed myocarditis		1		I				
Dieval (2015)	12 ASyS	个 in 100%	NR	↑ in 100%	↑ in 100%	NR				
Liu (2020)	31 IIM with myocarditis 31 IIM without myocarditis**	NR	Higher in those with myocarditis	NR	↑ in 100% of those with myocarditis	NT pro BNP higher in those with myocarditis	NT pro BNP: sensitivity 95%, specificity 93% for cardiac involvement. cTnl: sensitivity 97%, specificity 84% for cardiac involvement. CK-MB: sensitivity of 69%, specificity of 62% for cardiac involvement.			

Cox (2010)	51 IBM Unselected*	↑ in 82%	个 in 82%	个 in 78%	↑ in 2%	NR	The single patient with raised cTnI had a severe cardiomyopathy. No correlation between cTnT or CKMB and pathological ECG or TTE.
Lindberg (2006)	42 IBM Unselected*	Correlates with cTnT	Correlates with cTnT	↑ in 81%	NR	NR	Strong correlation of cTnT with CK and CK-MB. cTnT rlevels remained stable on serial measurements (up to 17 months). No patients had clinical cardiac disease. Thorough cardiac evaluation was not performed.
Rosenbohm (2020)	20 IBM 20 HC Unselected*	↑ in 90%	个 in 55%	NR	↑ in 0% (n = 11)	NT pro BNP 个 in 20%	No correlation between any laboratory values and the presence of LGE on CMR.

* Unselected with respect to the presence or absence of cardiac involvement. *** IIM patients pre-selected for normal cardiac function prior to study. Abbreviations: AF = atrial fibrillation; AR = aortic regurgitation; ASyS = anti-synthetase syndrome; AZA = azathioprine; BBB = bundle branch block; bpm = beats per minute; B&P = Bohan and Peter; C = clinical; CI = confidence interval; CK = creatine kinase; CTD = connective tissue disease; cTnI = cardiac troponin I; cTnT = cardiac troponin T; DC, disease controls; DM = dermatomyositis; E' = early diastolic filling wave on tissue doppler imaging; E/A = early diastolic filling velocity; EDV = end-diastolic volume; ESV = end-systolic volume; ECG = electrocardiograph; ENMC = European Neuromuscular Centre; FAC = fractional area change; GCBPS = gated cardiac blood pool scan; GLS = global longitudinal strain; H, histological, HC, healthy controls; HR = heart rate; HTN = hypertension; IBM = sporadic inclusion body myositis; ICU = intensive care unit; IIM = idiopathic inflammatory myopathy; IVIG = intravenous immune globulin; LV = left ventricle; LVH = left ventricular hypertrophy; LVEF = left ventricular ejection fraction; ug = micrograms; MMF = mycophenolate; MI = myocardial infarction; MR = mitral regurgitation; MTX = methotrexate; MNOS = myositis not otherwise specified; NR = not reported; NYHA = New York Heart Association Classification; OM = overlap myositis; PM = polymyositis; PYP = pyrophosphate; RA = right atrium; RBBB = right bundle branch block; RR = relative risk; S' = peak systolic annular velocity on tissue doppler imaging; S = Sontheimer's; SR = sinus rhythm; TAPSE = tricuspidal annulus plane systolic excursion; TR = tricuspid regurgitation; TLC = total lung capacity; TLCO = diffusing capacity for carbon monoxide. Page 33 of 44

Rheumatology

Table 3. ECG and Holter studies in idiopathic inflammatory myopathies

	Buch (199	Byrn	Died (201	Died (201	Deve	Fishe	Gon: Lope	Hebo	Liu ()	Tayl	Cox
Study	6)	les (1991)	5)	lerichsen 6)	eza (2016)	er (2010)	zalez- 22 (1996)	ert (1990)	2020)*	or (1993)	(2010)
N	30 IIM	13 IIM	14 IIM	76 IIM	112 IIM	11 IIM	32 IIM	11 IIM	31 IIM	26 IIM	51 IBM
Normal	18 (60%)	2 (15%)	8 (57%)	58 (76%)	76 (67%)	6(55%)	15 (47%)	1 (9%)		4 (15%)	39(76%)^
Conduction abnormal	lities			•		•					
Short PR interval	1 (3%)										
1 st degree AV block			3 (25%)	4 (5%)	3 (3%)					4 (15%)	
2 nd degree AV block										1 (4%) ^н	
RBBB	2 (6%)	0 (0%)			1 (1%)			1 (9%)		1 (4%)	
LBBB		0 (0%)			1 (1%)				0 (0%)		
Incomplete BBB											5 (10%)
QRS > 120ms		0 (0%)	1 (7%)	3 (4%)					0 (0%)		2 (4%)
Prolonged QTc			3 (25%)	4 (5%)							0 (0%)
NS conduction					19 (16%)		8 (25%)			4 (15%)	
anomalies											
LAFB									0 (0%)	1 (4%)	
Paced rhythm		1 (8%)									
Rhythm disturbances											
Sinus bradycardia		1 (8%)	0 (0%) ^н	0 (0%) ^н				1 (9%)			
Sinus tachycardia	6 (20%)	3 (23%)				4(36%)					
SVT			4 (29%) ^н	34 (47%) ^н	1 (1%)		3 (13%) ^н		0 (0%)	3 (12%) ^н	
AF/flutter			1 (7%)	1 (1%) ^H	1 (1%)	1 (9%)			0 (0%)		3 (6%)
PAC			19 (0 – 1558)** ^н	15 (0 – 5622)** [⊬]	2 (2%)		6 (26%) ^н				
PVC			31 (1 – 3901)** ^H	11 (0 – 1994)** ⁺	3 (3%)		16 (50%) ^н			18(69%) ^н	
NSVT			0 (0%) ^H	1 (1%) ^H						1 (4%) ^H	
Ischaemic changes											
Q waves/Old MI	1 (3%)	2 (15%)					1 (3%)	1 (9%)	0 (0%)		7 (14%)
Poor R wave		1 (8%)							2 (7%)	3 (12%)	
progression											
Chamber hypertrophy	/										
LVH	1 (3%)	2 (15%)			12(11%)		7 (22%)	1 (9%)		4 (15%)	9 (18%)
RVH					0 (0%)		1 (3%)			1 (4%)	
LAH		1 (8%)			5 (4.5%)			1 (9%)		4 (15%)	
RAH		1 (8%)			0 (0%)			1 (9%)		1 (4%)	

Table 4: Transthoracic echocardiography findings in i	idiopathic inflammatory myopathies
---	------------------------------------

Author (Year)	Population	TTE parameters	Positive findings	Notes
Studies of an unse	elected* population o	f IIM patients, or those with	out clinical cardiac disease	
Byrnes (1991)	13 IIM	2D. Valves. FS. PV dop.	Abnormal PV doppler in 9/12	Abnormal PV doppler can signal pulmonary hypertension but contemporary measures of PH were not performed on this study. Further, 8 patients had parenchymal lung disease on CXR
Diederichson (2015)	15 IIM vs. 15 HC	LA and LV vol. LVEF. MVinf dop. MV TDI.	LA size increased in IIM vs. HC.	Average LA size increased in IIM vs. HC but remained within normal limits. Can signal diastolic dysfunction but in absence of significant changes in MVinf dop and TDI this is non-specific.
Diederichson (2016)	76 IIM vs. 48 HC	LA and LV vol. LVEF. MVinf dop. MV TDI. TV dop.	LA size increased in IIM vs. HC. MV TDI E' increased in IIM vs. HC.	Average LA size increased in IIM vs. HC but remained within normal limits. E' <10msec more prevalent in IIM vs. HC. This, combined with the increased LA size, may represent more diastolic dysfunction in this group though E/E' ratio was not significant between groups.
Gonzalez-Lopez (1996)	32 IIM	MVinf dop.	Abnormal E/A ratio in 11 (42%)	Abnormal E/A may represent some diastolic dysfunction but no control group and no other diastolic parameters measured.
Guerra (2017)	28 IIM* vs. 29 HC	LVEF. TAPSE, RVS' and RV FAC. MVinf dop. MV TDI. LV GLS, RVLS.	LV GLS and RVLS reduced in IIM vs. HC.	Reduction in LV GLS and RVLS in IIM group vs. HC suggestive of subclinical systolic dysfunction, though note absolute values in IIM group are just above the 'normal limits' for strain values. No differences in diastology noted.
Herbert (1990)	11 IIM	2D. LVEF. PV dop.	Abnormal PV doppler in 7/11	Abnormal PV doppler can signal pulmonary hypertension but contemporary measures of PH were not performed in this study.
Lu (2013)	46 IIM* vs. 21 HC	2D. LVEF. MVinf dop. MV TDI. TV dop.	Abnormal E, A, E/A and E/E' in IIM vs. HC.	Abnormal E/A and E/E' suggestive of abnormal diastolic function in IIM vs. controls.
Mugii (2018)	23 IIM	LVEF. TV dop.	None.	
Peter (2015)	30 IIM	2D. LVEF. MVinf dop. MV TDI. RV FAC. MAPSE. TAPSE. TV dop. TV TDI	Reduced LV lateral S' and RV S' and MAPSE/TAPSE returned to normal after 3 months of corticosteroid therapy. Normal E/A and E/E' at baseline became abnormal after 3 months of corticosteroid therapy.	Subclinically reduced LV and RV function noted on TDI at baseline. Reduced MAPSE/TAPSE compared to controls but within normal limits. All systolic parameters returned to normal with corticosteroid therapy at 3 months, suggesting that treatment may improve subclinical myocarditis. Normal diastolic parameters that became abnormal after 3 months of corticosteroid therapy suggestive that corticosteroids may independently cause abnormal diastology.
Taylor (1993)	26 IIM	2D. MV dop, TV dop.	None	Minor abnormalities not reaching clinical significance reported.
Wang (2014)	51 IIM* vs. 51 HC	2D. LVEF. MVinf dop. MV TDI.	Abnormal E/A ratio, E/E' and deceleration time in IIM vs. HC.	Abnormal diastolic parameters in IIM group suggestive of diastolic dysfunction in this group.
Zhong (2018)	60 IIM* vs. 30 HC	2D. LVEF. LA vol. MVinf dop. MV TDI. TAPSE. RVS'. TV dop. LV GLS. RVLS.	Reduced LV GLS and RVLS in IIM vs. HC. Elevated E/E' ratio in IIM vs. HC.	Reduction in LV GLS and RVLS in IIM group vs. HC suggestive of subclinical systolic dysfunction, though note absolute values in IIM group are just above the 'normal limits' for strain values. Elevated E/E' suggestive of abnormal diastology.
Studies including	IIM patients with clin	ical features of myocarditis		
Dieval (2015)	12 ASyS	Parameters not described	Pericarditis in 50%. Reduced LVEF in 58%. Possible pulmonary HTN in 33%. No valvulopathy.	
Liu (2020)	32 IIM* vs. 32 IIM + confirmed myocarditis	2D. FS. LVEF. MVinf dop. MV TDI. PV dop. TV dop.	Abnormal diastolic function in 36% IIM vs. 46% IIM+myocarditis.	Abnormal diastolic function (independent measures not reported) in both groups but higher in IIM+myocarditis group. Significant

			Abnormal LVEF in 74% IIM+myocarditis vs. 0% IIM.	prevalence of LV systolic dysfunction in myocarditis group with no LV systolic dysfunction in IIM group.
Studies of an unsele	ected cohort of IBM	patients		
Cox (2010)	51 IBM	M-mode dimensions. LVEF. MVinf dop. Valves.	Reduced LVEF (<50%) in 4/51. 14/51 had LVH (from M-mode).	No details of 4 patients with reduced LVEF though note that cohort was relatively old (ave age 67) and a significant proportion had underlying cardiovascular disease. 14/51 had LVH on M-mode which can be inaccurate, however 25% of the cohort also had hypertension which can cause LVH. Overall, these are nonspecific findings.
Rosenbohm (2020)	20 IBM vs. 20 HC	2D. FS. Diastology	None	

* IIM patients pre-selected for normal cardiac function prior to study.

Abbreviations: 2D = 2 dimensional measurements; FS = fractional shortening; IIM = idiopathic inflammatory myopathy; LA vol = left atrial volume; LVEF = left ventricular ejection fraction; LV GLS = left ventricular global longitudinal strain; LV vol = left ventricular volumes; MAPSE = mitral annular plane systolic excursion; MVinf dop = mitral valve inflow doppler; MV TDI = mitral valve tissue doppler imaging; PV = pulmonary valve continuous/pulse wave doppler; RV FAC = right ventricular fractional area change; RVS' = Right ventricular systolic velocity; RV GLS = right ventricular global longitudinal strain; TAPSE = tricuspid annular plane systolic excursion; TTE = transthoracic echocardiography; TV dop = tricuspid valve continuous wave doppler; Valves = colour doppler valvular assessment.

Author (Year)	Population	CMR parameters	Positive findings	Notes
Studies of an unselec	ted* population of	IIM patients, or those without	clinical features of cardiac disease	
Diederichson (2015)	15 IIM vs 15 HC	EF, T2	2 IIM with reduced LVEF	
Khoo (2019)	19 IIM*	LGE, T1 mapping	9/19 (47%) with LGE. 7/15 with elevated T1 mapping.	Presence of LGE in 47% and elevated T1 mapping parameters suggestive of subclinical LV necrosis and myocardial edema.
Rosenbohm (2015)	53 IIM	EF, EGE, LGE	Reduced EF in 9/53 (17%). LGE in 33/53 (62%).	Reduced LVEF in 17% and LGE in 62% suggestive of significant undiagnosed cardiac involvement.
Xu (2020)	44 IIM vs 30 HC	EF, volumes, LGE, T1 mapping, T2 mapping, ECV	LGE in 11/44 (25% of IIM patients, 0% HC). Elevated T1, T2 and ECV in IIM	LGE in 25% and elevated mapping parameters in IIM group vs. HC suggestive of subclinical myocardial LV necrosis and myocardial edema
Yu (2018)	25 IIM* vs. 25 HC	EF, volumes, LGE, T1 mapping, ECV	5/25 (20%) LGE in IIM vs. 0/25 controls. Elevated ECV and T1 mapping in IIM vs. controls.	19% LGE and elevated mapping parameters in IIM group vs. HC suggestive of acute myocardial necrosis and edema.
Studies of IIM patier	ts with suspected r	nyocardial involvement	•	
Huber (2018)	20 IIM~ vs 20 AVM vs 20 HC	EF, volumes, LGE, T1 mapping, T2 mapping, ECV	LGE in 7/20 IIM, 0/20 HC, 20/20 AVM. Elevated T1 native, T1 contrast and T2 mapping IIM vs. HC.	IIM patients pre-selected for suspected cardiac involvement with elevated troponin T >50ng/ml (note troponin T not specific). Elevated LGE suggests acute necrosis and elevated mapping parameters suggestive of subclinical myocardial edema.
Huber (2019)	20 IIM~ vs 20 HC	T1 mapping, T2 mapping, ECV	Elevated T1 native, T1 contrast and T2 mapping IIM vs. HC	IIM patients pre-selected for suspected cardiac involvement with elevated troponin T >50ng/ml (note troponin T not specific). Elevated mapping parameters suggestive of subclinical myocardial edema.
Studies including pat	ients with clinical f	eatures of myocarditis		
Dieval (2015)	12 ASyS with myocarditis	T1, LGE	Spontaneous T2 hypersignal 3/11 (27%); T1-gadolinium late signal (suggestive of myocarditis) 7/11	
Liu (2020)	32 IIM* vs. 32 myocarditis	LGE, T2 mapping	50% IIM with LGE. 20% IIM with elevated T2	IIM without myocarditis compared to IIM with known myocarditis (biopsy proven). 50% LGE and 20% elevated T2 mapping in IIM without myocarditis suggestive of LV necrosis and myocardial edema.
Studies of an unselec	ted* cohort of IBM	patients		
Rosenbohm (2020)	20 IBM vs. 20 HC	EF, volumes, EGE, LGE	Reduced stroke volume in IBM vs. HC. EGE in 8/18 (44%) IBM and 1/19 (5%) HC.	Reduced stroke volume but normal EF and mass between groups, of uncertain significance. Elevated EGE in IBM suggestive of myocardial edema. No significant difference in LGE between groups.

Table 5: Cardiac MRI findings in idiopathic inflammatory myopathies

254x190mm (96 x 96 DPI)

Cardiac Enzymes	Asymptomatic patients • Elevated cTnT is <u>common</u> in IIM and correlates with measures of IIM disease activity • cTnI appears to be more specific than cTnT for cardiac involvement in IIM <u>Confirmed Myocarditis</u> • In IIM and myocarditis, cardiac enzymes are almost always abnormal
ECG/Holter	 Non-specific ST changes are <u>common</u> in 11M patients without clinically manifest cardiac disease Most patients with 11M and myocarditis will have an abnormal ECG
TTE	 <u>Asymptomatic patients</u> <u>LV and RV systolic function are frequently normal</u> in IIM patients using traditional measurements (e.g. ejection fraction) Subclinical systolic dysfunction is increasingly detected using advanced techniques, particularly global longitudinal strain <u>Abnormal diastolic function</u> parameters are the <u>most common</u> abnormality in IIM cohorts vs. controls; though few studies graded diastolic function using ASE guidelines or adjusted for age and comorbidities. The significance of abnormal diastolic parameters is unclear but may be associated with disease duration or steroid use. <u>Confirmed Myocarditis</u> <u>LVEF</u> is generally <u>reduced</u> in IIM patients with myocarditis
CMR	Asymptomatic patients • Prevalence of LGE (suggestive of <u>regional necrosis or scar</u>) and abnormal T1, T2 and ECV mapping parameters (suggestive of <u>myocardial inflammation</u> , fibrosis and oedema) suggest significant subclinical myocardial pathology in IIM despite a normal ejection fraction in most cases. • Reduced LVEF is <u>uncommon</u> in IIM

Cardiac investigations in patients with Idiopathic Inflammatory Myopathies

Abbreviations: ASE = American Society of Echocardiography; cTnT = cardiactroponin T, cTn1 = cardiactroponin (; ECG = echocardiography; ECV = extracellularvolume; HM = idiopathic inflammatory myopathy; LV = left ventricle; IVEF = left ventricular ejection fraction; RV = right ventricle; TTE = transitionacic echocardiography.

Figure 2

254x190mm (96 x 96 DPI)